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Abstract: This paper proposes a robust nonlinear predictive current control (RNPCC) method for
permanent magnet synchronous motor (PMSM) drives, which can optimize the current control
loop performance of the PMSM system with model parameter perturbation. First, the disturbance
caused by parameter perturbation was considered in the modeling of PMSM. Based on this model,
the influence of parameter perturbation on the conventional predictive current control (PCC) was
analyzed. The composite integral terminal sliding mode observer (SMO) was then designed to
estimate the disturbance caused by the parameter perturbation in real time. Finally, a RNPCC method
is developed without relying on the mathematical model of PMSM, which can effectively eliminate
the influence of parameter perturbation by injecting the estimated disturbance value. Simulations
and experiments verified that the proposed RNPCC method was able to remove the current error
caused by the parameter perturbation during steady state operation.

Keywords: permanent magnet synchronous motor (PMSM); sliding mode observer (SMO); parameter
perturbation; predictive current control (PCC)

1. Introduction

Field-oriented control (FOC) have been widely used in permanent magnet synchronous motor
(PMSM) drives due to the fast and fully decoupled control of torque and flux [1-4]. In a FOC-based
PMSM drive, the inner double-loop control is usually adopted. The internal current loop is designed
for current tracking, while the external speed loop regulates the rotor speed [5]. The dynamic response
and stability of the internal current loop are the key factors that determine the performance of the
whole drive system.

To achieve a high performance PMSM drive system, the predictive current control (PCC) method
has been adopted in a wide range of applications [6]. The PCC can calculate the required command
voltage based on the discrete mathematical model of PMSM, and achieves an accurate current
tracking [7]. Furthermore, the PCC improves the bandwidth of current control loops and the dynamic
performance of motors theoretically [8-10]. However, the performance of PCC is largely dependent
on the accuracy of the PMSM model, which means that the parameter perturbation will deteriorate
its performance.

Neglecting the parameter perturbation in the PCC design results in a significant steady-state
current error and oscillation. To overcome this shortage, a robust PCC technique is proposed in [11],
which can reduce the current error caused by motor parameter variation. In [12], an extension of the
PCC method is presented to improve the prediction accuracy, which can not only reduce the current
ripple, but also improve the robustness of the PCC against parameter perturbation. In [13], a real-time
predictive control scheme with a parallel integral loop is presented for Pulse Width Modulation
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(PWM) nverter-fed PMSM drives, which can compensate for the variations in motor parameters.
However, to achieve an acceptable transient response without overshooting, the integral gain needs to
be properly designed.

Some other robust PCC methods based on a disturbance observer have been investigated to
enhance the predictive control performance under parameter perturbations. The authors in [14]
propose a flux immunity robust PCC for PMSM drives which can operate without knowing the
rotor flux. In order to avoid the divergence caused by stator inductance mismatch, the proposed
robust PCC adopts an extended state observer to enhance inductance robustness. In [15], a composite
predictive control method based on stator current and a disturbance observer is developed, which
can achieve perfect current control performance of the PMSM with model parameter mismatch.
In [16], a simple disturbance observer is designed to increase the robustness of the proposed deadbeat
predictive control algorithm against parameter uncertainties of the Permanent Magnetic Synchronous
Generator (PMSG). In [17], a robust fault-tolerant predictive current control algorithm is proposed
based on a composite observer, which can enhance robustness against parameter perturbation and
permanent magnet demagnetization by adding compensation voltage. In [18], a continuous-time
offset-free model predictive control approach based on a disturbance observer is developed for
a general disturbed system, which can correct the errors caused by disturbances and uncertainties.
By designing a novel sliding surface based on the disturbance estimation, a disturbance observer
method was developed to counteract the mismatched disturbance in [19]. In [20], a generalized
nonlinear model predictive control augmented with a disturbance observer is proposed, which can
solve the disturbance problem of nonlinear systems. The disturbance observers in the aforementioned
methods are able to achieve precise disturbance compensation. Moreover, it is possible to enhance
robustness against parameter perturbation. In industrial applications, the flux linkage parameter
is often accompanied by a change of inductance parameter. However, it is difficult to use these
disturbance observers to simultaneously compensate for the resistance, inductance and flux linkage
parameter perturbation.

In order to eliminate motor parameter perturbation effects, with improved robustness against
inductance and flux linkage parameter mismatch, this paper proposes a robust nonlinear predictive
current control (RNPCC) algorithm, which has three main contributions. Firstly, the influence of
parameter perturbation on the PCC was analyzed. PCC is mostly sensitive to flux linkage and
inductance parameters, whereas the influence of the resistance parameter can be ignored. Secondly,
a composite integral terminal observer based on the Luenberger observer and sliding mode observer
(SMO) was designed, which can estimate the external disturbance caused by parameter perturbation.
Thirdly, the proposed RNPCC with online disturbance estimation can overcome the weakness
of the steady-state current error of the conventional PCC. Thus it can be readily applicable in
practical engineering.

This paper is organized as follows. A nonlinear PMSM model is developed in Section 2.
The influence of parameter perturbation on conventional PCC is analyzed in Section 3. The RNPCC
method is proposed in Section 4. The composite integral terminal SMO is designed in Section 5.
The simulations and experiments are set up in Sections 6 and 7, respectively. Section 8 concludes
this paper.

2. Nonlinear PMSM Model

Machine Model Description

The voltage equations of the PMSM in a synchronous rotating reference frame are written as
in [10,21]:

diy R : Ly . 1

qt = 7L7dld + fdw1q + fdud (1)
dﬁ—_ﬂl _ECUZ _lp7w+1

a — T LT LT L
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where u; and u, denotes the d- and g-axis stator voltages, respectively; i; and i; present the d- and
g-axis currents, respectively; R, Ly, and L, denotes the nominal values of the stator resistance, the d-axis
inductance and the g-axis inductance, respectively; w is the electrical rotor speed; and ¢, is the flux
linkage established by the permanent magnet.

For surface-mounted PMSM (SPMSM), Ly, = Lgo = Lo. If we define AR =R —R,, AL=L — L,
and Ay, = ¢, — 1y, the voltage equations of the SPMSM are expressed as follows, according to (1),

when parameter perturbations are considered.
0 i 0 5
— an 0 fo (Sq

: R , 1
| _ | 7L, “1){ ia Iy (1) Ug
g —w Ls Ig 0 L, Ug

where R,, L,, and ¢, are the nominal values and AR, AL, and A, are the perturbation values of
the corresponding model parameters; and J; and J; represent the disturbances caused by parameter
perturbations. The §; and J; can be expressed as:

+ +

6y = 7(LOA+LAL) (g — Roig — ARig + Lowiy + ALwiy) + (ARiz — ALwiy)

. . . . . ) 3
by = ﬁ(uq — Ryig — ARiy — Lowiy — ALwiy — wipro — wAY,) + (ARig + ALwig + wAipy) ©)
According to (2), the nonlinear mathematical model of SPMSM is established as:
x = Ax+ Bu + Df, — BJ
{ - s @
y=Ex

i u i J . .
wherex = | 7 |, u= a1, y= 4 1,and 8§ = | "? | are state variables, system inputs, system
lq g fq %
outputs, and disturbances, respectively.
The coefficient matrixes of the state equations are:

R 1
-7 w 0 0 0 0 10
A: LG , B: LO , = , D: , E
—w _% 0 —Llo ] Ty l Pro 1 [ 0 —f 01 1

3. Parameter Sensitivity Analysis of Conventional PCC

According to [15], the output voltage vectors of conventional PCC are expressed by:

u(k) = F'[i" (k+ 1) — H(k)i(k) — P(k)] ®)
ref
. . e B (k+1) ig(k) | ug(k)
where, T is the sampling period: i (k + 1) = :,ef(k-l-l) (k) = [ ij(k) ],u(k) = [ uz(k) ],
E o B 0 | 1-PTs Tw(k)
F= l 0 L ]'P(k) = [ T [ T 1 1- R, 1

When the sampling period (T5) is small enough, we can obtain g? = M According to (2),

the discrete model of the SPMSM under parameter perturbations can be expressed by,

i(k+1) = H(k) -i(k) + F- u(k) + P(k) — F- f(k) ©)

where: f(k) = l ijég ]

The conventional PCC method belongs to one beat delay control, and the voltage vector u(k) is
applied to the SPMSM at the (k + 1) Ty moment. Therefore, substituting (5) into (6) yields:
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Ai(k+1) =" (k+1) —i(k+1) = F-f(k) ?)
with,
. Aig Ts | da(k)
1 k = . k = . = —
Ai(k +1) = F- f(k) Ay L [ (k) ] ®)

where Ai;y and Aij are the d- and g-axis current errors, respectively.
The stationary equations are given as follows [22]:

ug (k)
ug (k)
In this paper, i; is set to 0. Thus, the current on d-axis is neglected. Combining (3), (8) and (9),
the current errors on the d- and g-axis can be simplified as:

{ Aig = —(L +AL) Tswig (k)

Roig (k) — Locwiq (k)

Roiq (k) + Lowig (k) + wipro ©)

(10)

Aiq Tslq (k) Ts

TotAD) +AL) + % +¢AL)

From (10), the d- and g-axis current errors can be deduced when there is a resistance parameter
error AR between actual value R and nominal value R,:

Aig=0
. ) 11
{ Nig = R Tsig (k) (1)

Similarly, the d- and g-axis current errors can be obtained by (12) under flux linkage parameter

error A,
Nig=0
: y (12)
{ Azq = AL‘/; Tsw
The d- and g-axis current errors can be obtained by (13) under inductance parameter error AL:
Azq =0

The motor parameters are provided in Table 1. According to (11), (12), and (13) the d- and g-axis
current errors are plotted, as in Figure 1. Figure 1a shows the g-axis current error under resistance
parameter mismatch. It can be observed from Figure 1a and Equation (11) that the resistance parameter
perturbation does not affect the d-axis current, and resistance parameter perturbation has little effect
on the g-axis current. Figure 1b shows the g-axis current error under flux linkage parameter mismatch.
From Figure 1b and Equation (12), it is known that the flux linkage parameter mismatch does not affect
the d-axis current, but the influence on the g-axis current is very strong. Figure 1c shows the d-axis
current error under inductance parameter mismatch. From Figure 1c and Equation (13), it is known
that the g-axis current error is zero, and the d-axis current error increases with the increase of the speed
and g-axis current. Through the above analysis, the inductance and flux linkage parameter mismatches
deteriorate the performance of the PCC, while the influence of the resistance parameter mismatch can
be ignored.
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Table 1. Main parameters of surface permanent magnet synchronous motor (SPMSM).

Parameters Value
Rated power 125 kW
Rated speed 2000 r/min
Rate torque 600 N-m
Stator phase resistance (R,) 0.02 O
Number of pole pairs (1) 4
Inductance (L,) 1mH
Flux linkage of PM (¥ o) 0.892 Wb

Rotational inertia (])

1.57 kg-m?

g-axis current error{A]

o
Q

—50%R, < AR <50%R,

—30%R, <AR<30%R,

0 =

<
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<
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<
o
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g-axis current error[A]
(=]

—30%W,, <Ay, <30%,,

-axis current error[A]

speed[rad/s]

200 400 600 800
speed[rad/s]

(b)

RN
(©)

Figure 1. d- and g-axis current errors under parameter mismatches. (a) g-axis current error under

50f19

resistance parameter mismatch; (b) g-axis current error under flux linkage parameter mismatch; (c)

d-axis current error under inductance parameter mismatch.
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4. Design of the RNPCC

4.1. Design of the Optimal Control Law

The reference value and predictive value of the output currents are respectively defined as:

ref .
t+ 71 ig(t+ 1)
t = Jy(t = . 14
yr( +T) [ ref( y( +T> Zq(i‘—l-T) (14)
To simplify the calculations, these two values are expanded to 1th-order Taylor series:
N y, () _ y(t)
yr(t+T)—[E M}[ym ,y(t+r)_[E M} oo (15)

il () ia(t) 10 T 0
here T is the ti tant: y (t) = | d =" E= = .
where 7 is the time constant: y, (t) l ifff(t) ,y(1) () | 01 .M 0 T

In Figure 2, the control sequence logic diagram of the proposed RNPCC method is illustrated in
a discrete-time framework. The design of the cost function depends on the requirements of the control
system performance. The servo control system belongs to the tracking control system, and it is hoped
that the output can track the input reference accurately. Therefore, the cost function is defined as:

_ %/OT eT(t+ T)e(t + T)dT (16)
with
e(t—i—r):yr(t—i-r)—y(t—i-r):[lf MH‘?(”] (17)

where: e(t) = y,(f) —y(t) = [ EZ ] =

: la’q (k)measured : Ila‘ (k + l)measuredl Ila‘q(k + 2)neasured
1, (K)applied : '“d (k + 1)applied ! ' mdq (k + 2)apphedl

[P S P SO N e SR
v : y
Calculation Calculation Calculation
U 4, () Uy, (k+1) U, (k+2)
E‘ T " Ts Ll

§

Figure 2. Logic diagram of a beat delay compensation using robust nonlinear predictive current control
(RNPCC) method.

e(t)

e(t)

Substituting (17) into (16), the cost function is written as:

T
Po=3 [T o ] [ o || ]

(18)
= eT(t)Pre(t) + &' ()Pae(t) + eT () Pse(t) + &' (t)Pyelt
where: Py = 1 [* ETEdt, P, = § [[* MTEdt, Py = L [ ETMdt, Py = L [[* MT Mdr.
The constraint condition of the optimal control law is given by:
oP
=0 (19)

ou(t)
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Substituting (18) into (19) yields:

.T . T -
S et~ orS+ S+ ORGg —0 e

Thus, the optimal control law can be obtained according to (19), as given by:
u(t) = (B)"'| S2e(t) — Ax(t) — Df,, + B4 (t) 1)

4.2. Design of the RNPCC
In order to improve the robustness against the parameter perturbation, a composite integral terminal
SMO is designed. Taking u‘rff and ugef as the references of u; and 14, respectively, the predictive current
controller is designed as:
u;ef = [%éd + Rofd — Loqu} + Sd

e = [%éq + Lobgw + Roiy + 1l7706LJ} +4,

22
s uref » (22)
d=1;" — 1l
N uref 2
Eq = lq — lq

where 5d, 5q are the estimation values of J;, J;, respectively; fd, fq are the estimation values of iy, iy,

respectively; and u‘r;f and u,rff are the output references of the RNPCC. The block diagram of RNPCC
method with a composite integral terminal SMO is shown in Figure 3.

Predictive Current
Controller
(20)

4

Composite Integral
Terminal SMO
(30)/(32)

=
yred

) R4 9)

PMSM

Figure 3. Block diagram of the RNPCC method with composite integral terminal sliding mode observer
(SMO) for permanent magnet synchronous motor (PMSM).

5. Design of the Composite Integral Terminal SMO

The key to realizing the RNPCC method is to estimate the disturbance caused by parameter
perturbation. Based on (4), the composite integral terminal SMO is designed as:

&= A1% + wALR + Bu+ Df, + Qu(t — x) — U, (23)
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2

where % is the observed value of x, Q is the designed gain matrix of Luenberger observer,

T _Ry 0
u, = { Uos  Uog } is the sliding mode control function, A = A + wA, A} = l Lo R, ],

0 1
-1 0|

Consider the following integral terminal sliding surface vector:

and A; =

t
So = e, + /\/0 sgn(e,)dt (24)

In industrial applications, chattering suppression is necessary when designing observers because
the chattering of the sign function easily causes the chattering of the system. Therefore, the hyperbolic
tangent function with smooth continuity is used instead of the sin function. The hyperbolic tangent

function is expressed as:

eV —1
sgn(v) = tanh(v) = 21 (25)

T
where s, = { Sod  Soq } , A > 0; sgn() is the sign function; and e, is defined as:

eozx_x:[eod]:[??d] (26)
Coq g~ 1q

Taking the time derivative for (24), and combining it with (4) and (23), the error equation of the
composite integral terminal SMO can be obtained as:

So = A1e, + Bd + (Ay + Q)we, + Asgn(e,) — U, (27)

To prevent the influence of the motor speed on the error equation, the gain matrix of the
Luenberger observer must be designed as Q = —Aj. Thus, Equation (27) can be simplified to:

So = A1e, +Bd + Asgn(e,) — U, (28)

Considering the integral terminal sliding surface Equation (24) and the error Equation (27),
to guarantee the convergence of error e,, the sliding mode control function is designed:

U, = Are, + Asgn(eo) + kso + kssgn(s,) (29)
k1 . e . kqa 0 |. 1 .
where k = 0 K |52 positive diagonal matrix, and ks = 0k is the observer sliding gain.
2 s2

Consider the Lyapunov function candidate as follows:
V = Zsls, (30)
Differentiating Equation (30) and combining with Equation (28) yields:

V =sl(Are, + B8 + Asgn(e,) — U,) (31)
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Applying Equations (29)—(31) yields:

V  =sI(B& — ks, — kssgn(s,))
= —k152, — kzsgq +sIBS — slkssgn(s,)
< 53 B3 — ks [[S0a || — ks2[Soq |

1) J,
= (f‘isod — ka1 lsoall) + (fqusoq - ksZHSqu)

(32)

In industrial applications, the disturbances § should be bounded, that is, normal values exist,
satisfying |64] < N, |6;] < Np. If the gain matrix of composite integral terminal SMO satisfies

J, 0,
A e e
composite observer are guaranteed.

From (23), the composite integral terminal SMO can be represented by:

, then V < 0. Therefore, the stability and convergence of the

?d = —lz—sfd—i-wfq—l—%oud—w(fq—iq) — Uy
fq = _%{q_w%‘i‘%ﬂuq_Lﬂolpro“‘w({d_id)_uoq
R, (2 . ~ . ~ . t 2 .
Uy = —12(ia —ia) + Asgn(iy — ig) + ki (ia — i) +kaA f sgn(iy — ig)dt (33)
+ks1sgn(iy —iyg) + kslsgn)\fot sgn(iy —ig)dt
+ksosgn(ty — i) + kszsgn/\f(;E sgn(ig —ig)dt

According to the sliding mode equivalent principle, when the system reaches the sliding mode
surface, that is, e, = e, = 0, Equation (28) can be simplified to:
Bs = U, (34)

A

From (34), the estimated disturbances § can be represented by:

" L 0 U, LoU,
S — Biluo _ 0 od — oYod
0 L U LoU
) X 0 oq olog (35)
5= | %
‘5‘7
With: A
d = Lolog
o 36
{ q = LO qu ( )

6. Simulations

The parameters of SPMSM used in the simulation are given in Table 1. The sampling frequency
for current control loop was 10 kHz; the proposed composite integral terminal SMO parameters were
A = 800, K1 = Ky = K3 =5000, and K51 = Kp = Kg3 = 100, respectively. At 0 s, the speed reference
increased from 0 to 800 rad/s, and the load torque increased suddenly from no-load to rated load.

6.1. Performance Comparison of Conventional PCC and Proposed RNPCC under Inductance Parameter
Perturbation

In this simulation, the inductance parameter perturbation value AL was set to zero initially.
At0.5s, AL changed to AL = 50%L,. The simulation results are shown in Figures 4 and 5.

When taking the conventional PCC method, the d-axis current response value cannot track the
current reference after 0.5 s, which is shown clearly in Figure 4a. The d-axis current response value
was 11 A, which was bigger than its current reference, that is, 0 A, and the steady error was —11 A.
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The reason for this was that the conventional PCC depends on the inductance parameter of the motor.
Figure 5¢ presents the simulation results of the disturbance estimation when using the RNPCC method.
The results reflect that the proposed composite integral terminal SMO can accurately estimate the
disturbance under inductance parameter perturbation. From Figure 5a, it can be seen that the current
response can track its reference accurately by using the proposed composite integral terminal SMO.
Figure 4b shows the three-dimension rotor flux trajectories of the conventional PCC method under
inductance parameter perturbation. Figure 5b shows the three-dimensional rotor flux trajectories of the
RNPCC method under inductance parameter perturbation. The influence of inductance perturbation
on the a- and B-axis flux linkage can be neglected because of the small d-axis current error, which can
be clearly seen in Figures 4b and 5b.

Flux linkage error
Response flux linkage

800 Reference flux i -
‘g 600+ g Ol- e e S 05
2 “Pes 0.7 0.75 — 064 ¢
5 ] 130 : : = 0.1 0.1
Q L < (4] : .
a0 S| e 2 04 | -01 T 0.
% Iy ¢ = oo®
¢ P =02 :
200 3 0.7 0.75] . ]
g T —— T 2
d
0 0.2 ) 04 0.6 0.8 {
Time[s] Wﬁ[Wb] v [Wb]
a
(a) (b)

Figure 4. Simulation results of the conventional predictive current control (PCC) method under
inductance parameter perturbation. (a) d- and g-axis current responses and references; (b)

three-dimension rotor flux trajectories.

800 : : :
S —
>
':‘ L C.U 0 TR T e Eaer T _
56% 5 m "
E p :300,35 0.7 0.75
5 400/ @ ]
-2 l-;ef ?';
s “ 10
200 865 07 0.75]
g S Ve S
T Ly Al
~ U ~weraymmrsge e IS
| . . _
0 0.2 0.4 06 0.8

Figure 5. Cont.
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Flux linkage error
Response flux linkage

Reference flux linkage

0.8

ime[s|
o o
= 5
o
—
o

T
o
NS

o

800 : . .
T ™ ]
= 600/ S O meTe—————"
E “0.65 0.7 0.75
5 400} o 10 ]
.= S
# ?
E:- 200+ / < 1063 - 4
- jref 65 0.7 0.75
o
?
o

0“

r—m—q A _rej
. e
0 0.2 0. 0.6 0.8
Time][s]
(c)

Figure 5. Simulation results of the RNPCC method under inductance parameter perturbation. (a) d-
and g-axis current responses and references; (b) three-dimensional rotor flux trajectories; (c) disturbance
estimation results.

6.2. Performance Comparison of Conventional PCC and Proposed RNPCC under Flux Linkage Parameter
Perturbation

In this simulation, the flux linkage parameter perturbation value Ay, was set initially to zero.
At 0.5 s, Ay, changed to Ay, = —50%1,,. The simulation results are shown in Figures 6 and 7.

From Figure 6a, it is known that the g-axis current response values cannot track current references
under flux linkage parameter perturbation when using the conventional PCC method. After 0.5 s,
the g-axis current response value and reference value were respectively 225 A and 185 A, and the
steady error was —40 A. When using the RNPCC method, the disturbance was accurately estimated
using the proposed composite integral terminal SMO, as can be seen in Figure 7. From Figure 7a, it can
be seen that the steady state current error can effectively be removed by injecting the estimated external
disturbance value. Figure 6b shows the three-dimensional rotor flux trajectories of the conventional
PCC method under flux linkage parameter perturbation. Figure 7b shows the three-dimensional rotor
flux trajectories of the RNPCC method under flux linkage parameter perturbation. Note that there are
large a- and B-axis flux linkage errors when the flux linkage parameter is changed suddenly at 0.5 s.
The reason for this is that the conventional PCC produces a large g-axis current steady error under flux
linkage parameter perturbation.
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Flux linkage error

@
[=]
o

@
(=]
o

d-and g-axis current[A]
(] Esy
o o
CID o

o

Response flux linkage

v Wbl Ty
(b)

Figure 6. Simulation results of the conventional PCC method under flux linkage parameter perturbation.
(a) d- and g-axis current responses and references; (b) three-dimensional rotor flux trajectories.

800

[o1]
o
o

s
o
o

[he]
[=]
o

d-and g-axis current[A]

o

Reference flux linka

m 0
3 ,< ~ S
£ -100} % d
2 =
’E 0oL 08 0.7 0.8 ]
% v
£ 00 3 &5
g = S Al
086 0.7 0.8
400 0.2 0.4 06 0.8
Time[s]
(c)

Figure 7. Simulation results of the RNPCC method under flux linkage parameter perturbation. (a) d-
and g-axis current responses and references; (b) three-dimension rotor flux trajectories; (c) disturbance

estimation results.
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6.3. Performance Comparison of Conventional PCC and Proposed RNPCC under Inductance and Flux Linkage
Parameter Perturbation

In this simulation, the inductance and flux-linkage parameter perturbation values were both set
to zero initially, and changed to AL = 50%L, and Ay, = —50%1,, at 0.5 s, respectively. The simulation
results are shown in Figures 8 and 9.

From Figure 8a, it can be seen that the d- and g-axis current steady error were respectively 12 A and
—43 A after 0.5 s when using the conventional PCC, which were larger than those of simulations (a)
and (b). The disturbance caused by the inductance and flux linkage parameter perturbations was also
able to be accurately estimated when using the RNPCC, as can be seen in Figure 9. Furthermore, the d-axis
and g-axis current steady error was effectively removed using the proposed composite integral terminal
SMO. Figure 8b shows the three-dimensional rotor flux trajectories of the conventional PCC method
under inductance and flux linkage parameter perturbation. Figure 9b shows the three-dimensional
rotor flux trajectories of the RNPCC method under inductance and flux linkage parameter perturbation.
The errors of a- and B-axis flux linkage were more serious than those of simulation (b) under inductance
and flux linkage parameter perturbations, while still being nearly zero when using the RNPCC, as is
clearly shown in Figures 8b and 9b. The Comparison of the current tracking between the conventional
PPC and RNPCC are provided in Table 2.

Flux linkage error

800 - : . Response flux linkage .
z I _% o Reference flux hage
: 0.8
= 800l 5 [FTT———
5 5(%.65 0.7 0.75
= w 25 06
= = 0
© 400 T . S 04
.2 o 15&] .
= .65 0.7 0.75 -
i =02
T 200+
= w 0
3 lgm a1 J ) 5y
° o#ﬁ = 1
‘ . . Ly 0 ; 0
0 0.2 0.4 06 0.8 -1 -1
Time[s] '/’p[Wb] Wa[Wb]
(a) (b)

Figure 8. Simulation results of the conventional PCC method under inductance and flux linkage
parameter perturbation. (a) d- and g-axis current responses and references; (b) three-dimensional rotor
flux trajectories.
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Figure 9. Simulation results of the RNPCC method under inductance and flux linkage parameter
perturbations. The comparative performance of the current tracking between the conventional PCC

and RNPCC methods was provided as follows. (a) d- and g-axis current responses and references.;
(b) three-dimensional rotor flux trajectories; (c) disturbance estimation results.

Table 2. Comparison of the current tracking between the conventional PPC and RNPCC.

Steady State Current Errors Controller Type
Parameter Perturbation Conventional PCC  Proposed RNPCC
Inductance +(iy " — iy) +17 A +0.8 A
Parameter Perturbation +(iy ref _ ig) +14A +12A
Flux Linkage +(iy " — iy) +07 A +04 A
Parameter Perturbation +(iy ref _ iq) 55 A 2 A
Inductance and Flux Linkage +(iy " — i) +18 A +13A
Parameter Perturbation +(iy ref _ ig) +47 A +0.7 A

iz ¥ is the reference value of i;.

7. Experimental Results

To further verify the proposed RNPCC method, experiments were conducted using a PMSM
laboratory platform, as is shown in Figure 10. It was composed of two motors (drive and load
machines). The per-unit (p.u.) values of 10kW PMSM parameters are consistent with the simulation
models. The current clamp was used to detect the current during the experiment. A torque sensor
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(Beijing Sanjing Creation Science & technology Group Co., LTD., Beijing, China) was used to detect
motor torque. Finally, the experimental results were obtained by Tek oscilloscope.

Figure 10. Experimental platform of the permanent magnet synchronous motor (PMSM)

The experimental results of the conventional PCC and proposed RNPCC under inductance
parameter perturbation are shown in Figures 11 and 12, respectively. From Figure 11, it can be seen
that the d-axis current value was greater than the reference value, but the inductance parameter
perturbation had little effect on the g-axis current when using the conventional PCC. Figure 12 shows
that the d-axis current steady state error could be removed by using the proposed RNPCC. Figures 13
and 14 show the control performance comparisons under flux linkage parameter mismatch. Figure 13
shows that the flux linkage parameter mismatch exerted an effect on the g-axis current response in the
conventional PCC method. The g-axis current response value was greater than the current reference
under flux linkage parameter mismatch. When using the RNPCC method, it can be observed from
Figure 14 that the g-axis current response could track the current reference accurately and quickly.
Figures 15 and 16 show the control performance comparisons under inductance and flux linkage
parameter mismatch. From Figure 15, it can be seen that neither the d-axis nor the g-axis current
response could track the current reference. The g-axis value of the current response was greater than
the current reference, whereas the d-axis current response value was less than the current reference
when using the conventional PCC. Figure 16 shows that the proposed RNPCC could remove the steady
state current error caused by the inductance and flux linkage parameter perturbations during steady
state operation.

Normai 1 Induétance pfarametéer misﬁlatch R

| q-axis current response : _
: - q-axis current reference -

I T . .d-azf;is currknt reférence.
5[100.013f1s/div] : :

Figure 11. Experimental results of the conventional PCC method under inductance parameter perturbation.
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Figure 12. Experimental results of the RNPCC method under inductance parameter perturbation.
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Figure 13. Experimental results of the conventional PCC method under flux linkage parameter perturbation.
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Figure 14. Experimental results of the RNPCC method under flux linkage parameter perturbation.
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Figure 15. Experimental results of the conventional PCC method under inductance and flux linkage
parameter perturbations.
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Figure 16. Experimental results of the RNPCC method under inductance and flux linkage
parameter perturbations.

8. Conclusions

This paper proposed an RNPCC method based on a composite integral terminal SMO for current
loop of the PMSM control system, without relying on the mathematical mode. The steady state
current tracking errors caused by parameter perturbations were eliminated by the introduction of
the disturbance estimation into the proposed control law. Moreover, the proposed RNPCC was
able to effectively guarantee the control precision of the current loop regardless of the inductance
and flux linkage parameter perturbations. The simulation and experimental results validated the
performance of the proposed RNPCC. Compared with the traditional PCC, the proposed RNPCC
shows its superiority in control precision and disturbance rejection. Additionally, the proposed RNPCC
presents strong robustness and an excellent dynamic response in the case of parameter perturbations,
where the weakness of the conventional PCC was successfully overcome. However, the proposed
control method ignores the effect caused by rotor position detection error. The rotor position of the
PMSM may deviate from the true position due to the position detection device fault, which can provide
a mistaken response current to the proposed control method. As a result, the control performance of
the proposed method deteriorated. A further research direction is to propose a novel robust predictive
control algorithm to overcome the influence of inaccurate rotor position detection.
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