
energies

Article

A Cross-Entropy-Based Hybrid Membrane
Computing Method for Power System Unit
Commitment Problems

Min Xie 1, Yuxin Du 2, Peijun Cheng 3, Wei Wei 1,* and Mingbo Liu 1

1 School of Electric Power, South China University of Technology, Guangzhou 510640, China;
minxie@scut.edu.cn (M.X.); epmbliu@scut.edu.cn (M.L.)

2 State Grid Ganzhou Electric Power Supply Company, Ganzhou 341000, China; xinzi6726@163.com
3 Guangzhou Power Supply Bureau Co., Ltd., Guangzhou 510620, China; 201621012001@mail.scut.edu.cn
* Correspondence: epweiwei@mail.scut.edu.cn

Received: 7 January 2019; Accepted: 31 January 2019; Published: 2 February 2019
����������
�������

Abstract: The cross-entropy based hybrid membrane computing method is proposed in this paper to
solve the power system unit commitment problem. The traditional unit commitment problem can
be usually decomposed into a bi-level optimization problem including unit start-stop scheduling
problem and dynamic economic dispatch problem. In this paper, the genetic algorithm-based P system
is proposed to schedule the unit start-stop plan, and the biomimetic membrane computing method
combined with the cross-entropy is proposed to solve the dynamic economic dispatch problem
with a unit start-stop plan given. The simulation results of 10–100 unit systems for 24 h day-ahead
dispatching show that the unit commitment problem can be solved effectively by the proposed
cross-entropy based hybrid membrane computing method and obtain a good and stable solution.

Keywords: power system unit commitment; hybrid membrane computing; cross-entropy; the genetic
algorithm based P system; the biomimetic membrane computing

1. Introduction

The unit commitment (UC) problem is a typical optimization problem for power systems. The main
goal of UC is to schedule the start-stop state of units and generate power according to the load forecasting
curve during the dispatch period, with the corresponding constraints so that the cost is minimized [1].
Usually the UC problem can be broken down into two sub-problems: the unit start-stop plan and
economic dispatch [2].

Mathematically, the UC problem is a high-dimensional, non-convex and mixed-integer nonlinear
programming problem. Its discrete and continuous variables, non-convex objective function and
network constraints enhance its non-convexity and complex [3]. Moreover, with the increase in unit
and calculation scale, it is difficult to obtain an accurate feasible solution in a reasonable time frame.
Therefore, many methods have been proposed by scholars to solve the UC problem, which can be
roughly divided into three categories: heuristic methods, mathematical optimization methods, and
intelligent optimization methods.

Heuristic methods are represented by the priority list method [4], the earliest method applied
to solve the UC problem, which generally sorts by some economic indicators with small and simple
calculations, usually relies on the actual scheduling experience.

Mathematical optimization methods include mixed integer nonlinear programming, the
Lagrangian relaxation (LR) method [5], etc. Mixed integer nonlinear programming methods include
the branch-and-bound (BB) [6], Benders decomposition [7], and other methods, with the decomposition

Energies 2019, 12, 486; doi:10.3390/en12030486 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en12030486
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/12/3/486?type=check_update&version=2

Energies 2019, 12, 486 2 of 18

technique generally used to simplify the problem; the solving efficiency has been rapidly improved
with improvements in mathematical optimization software [8]. For the dynamic programming method,
the global optimal solution can be obtained with no special requirements on the behavior of the
objective function; however, there will be a “dimensionality disaster” [9] when the number of units
is large, and to simplify the problem, the optimal solution will be lost when the approximation
method adopted. Moreover, it is difficult to consider time-dependent constraints such as the ramp
rate constraint. Compared with the dynamic programming method, the LR method has an advantage
for large-scale problems since the calculation complexity is approximately proportional to the unit
scale; in addition, the Lagrangian multiplier is of practical economic significance, but it cannot prove
whether the solution is optimal due to the dual gap. It is also inflexible when considering some kinds
of constraints, such as the ramp rate limit, and the possible oscillation and singularity during iteration
may lead to convergence difficulties [10].

Bioinspired optimization methods are algorithms that simulate biological evolution or its behavior,
and include genetic algorithms (GA) [11], particle swarm algorithm (PSO) [12], and memetic algorithm
(MA) [13]. An approximate optimal solution can be obtained with no special requirements on the
behavior of the objective function, and feasible solutions can be obtained even when the unit scale is
large where no feasible solution can be obtained by other methods; however, the solving efficiency is
affected by how the constraints are processed since these methods are essentially unconstrained.

Membrane computing is a computational framework inspired by the living cell and its
organization in tissues and other higher order structures, and was first proposed by Gheorghe Pǎun, an
academic at the European Academy of Sciences. In recent years, optimization problems such as image
processing [14], robot path planning [15], DNA sequence design [16], gasoline blending scheduling [17],
the travelling salesman problem [18], and the minimum storage problem [19] have been successfully
solved by this framework. In this paper, we propose a cross-entropy-based hybrid membrane
computing (CEHMC) method to solve the UC problem by combining the genetic algorithm-based
P system (GAPS) with the biomimetic membrane computing (BMC) method. The GAPS is based
on the binary genetic algorithm. It is nested by multiple membranes with the unit start-stop state
(0,1 binary variables) as evolution objects. The evolution rules adopt the crossover and mutation rules
of binary coded genetic algorithms. The difference between GAPS and GA is the communication of
optimal objects in different membranes, which means the optimization results of the outer membrane
can be transmitted into the inner membranes constantly when genetic rules are executed in each
membrane. The calculation method of biomimetic membrane is inspired by the important role of Golgi
apparatus in living cells. With the inner membrane system as the calculation carrier, the required
regional structure is designed to simulate the static or dynamic membrane structure, the biochemical
or physical reactions in the inner membrane system are simulated by various evolutionary rules, so
that the top-ranking evolution objects after evaluation are selected for transmission according to the
permeability of substances in the transporting through the membrane. Based on the combination
of GAPS with the biomimetic membrane computing method, the cross-entropy (CE) optimization
method is introduced to strengthen the searching ability during the optimization.

Because the UC problem is not fully standardized and specified, we will not attempt to give
a definitive algorithmic solution to the problem. Instead, our goal in this paper is to demonstrate
that the proposed CEHMC approach is viable. We include a case study showing than our method
outperforms other nonlinear optimization alternatives for a case study. Therefore, our formulation of
the UC problem and its solution algorithm are for illustration purposes only. For that purpose and for
the ease of exposition and understanding, the classical UC formulation which has been commonly
used in the past decades is used in this paper. The simulation results of 10–100 unit systems for 24 h
day-ahead dispatching showed that the UC problem could be solved effectively by the proposed
method, and a satisfactory and stable solution was obtained.

Energies 2019, 12, 486 3 of 18

2. The Mathematical Model for UC Problems

2.1. Objective Function

The total generation cost FC during the dispatching period is taken as the optimization goal,
including fuel cost and startup cost of all units. Thus, the objective function is:

minFC =
T

∑
t=1

N

∑
i=1

[
Ii,tFi,t + (Ii,t − Ii,t−1)

2Ci,t

]
(1)

where T is the total dispatch period; N is the number of generators; Ii,t is the state of unit i at tth hour;
value 1 represents startup, while 0 represents shutdown; Fi,t and Ci,t are the fuel cost and startup cost,
respectively, of unit i at t-th hour; and the fuel cost Fi,t can be expressed by the quadratic function
as follows:

Fi,1 = Ai,2P2
i,t + Ai,1Pi,t + Ai,0 (2)

where Pi,t is the generation of unit i at t-th hour; and Ai,2, Ai,1, and Ai,0 are the unit cost coefficients of
unit i.

Startup cost Ci,t is related to the unit OFF time, which can be expressed by the following step function:

Ci =

{
Chot,i To f f

i ≤ To f f
i,t ≤ To f f

i + Tcold
i

Ccold,i To f f
i,t > To f f

i + Tcold
i

(3)

where Chot,i and Ccold,i are the hot start cost and cold start cost, respectively, of unit i; To f f
i is the

minimum downtime of unit i; To f f
i,t is the OFF time of unit i at t-th hour; and Tcold

i is the cold start time
of unit i.

2.2. Constraints

The constraints of the UC problem usually include the system power balance, system spinning
reserve requirement, generation limits, ramp rate limits, and minimum up and down time limits.

• System power balance:
N

∑
i=1

Pi,t = Dt (4)

• System spinning reserve requirement:

N

∑
i=1

Pi Ii,t ≥ Dt + Rt (5)

• Generation limits:
Pi Ii,t ≤ Pi,t ≤ Pi Ii,t (6)

• Ramp rate limits:{
Pi,t − Pi,t−1 ≤ Pup

i Ii,t−1 + Pstart
i (Ii,t − Ii,t−1) ≤ Pi(1− Ii,t)

Pi,t−1 − Pi,t ≤ Pdown
i Ii,t + Pshut

i (Ii,t−1 − Ii,t) ≤ Pi(1− Ii,t−1)
(7)

• Minimum up and down time limits:{
(Ton

i,t−1 − Ton
i)(Ii,t−1 − Ii,t) ≥ 0

(To f f
i,t−1 − To f f

i)(Ii,t − Ii,t−1) ≥ 0
(8)

Energies 2019, 12, 486 4 of 18

Here, Dt is the system load demand at t-th hour; Pi and Pi are the maximum and minimum
generation limits, respectively, of unit i; Rt is the system reserve demand, typically 5–10% of the system
load demand; Pup

i and Pdown
i are the up and down ramp rate limit, respectively; Pstart

i and Pshut
i are the

start and stop rate limit, respectively; To f f
i,t−1 is the OFF time of unit i at the (t−1)-th hour; and Ton

i is the
minimum up time.

3. Unconstrained UC Model for CEHMC Method

As mentioned above, the traditional UC model is a multi-constrained nonlinear optimization
problem, yet natural computing frameworks such as membrane computing are essentially
unconstrained optimization methods, which are commonly used to solve unconstrained optimization
problems. As for the complex multi-constrained optimization problem, using the penalty function
is usually a good choice [20]. To facilitate the proposed method, the quadratic penalty function was
used to deal with the constraints, transforming the UC problem into an unconstrained model without
providing any initial feasible solution. Since GAPS is for the unit start-stop plan with embedded
generic rules. These rules are design to screen the unit start-stop plans, i.e., testing whether the system
spinning reserve requirement and minimum up and down time limits are satisfied, which determines
the feasible unit state combination. Consequently, for the unconstrained UC model, only system power
balance and ramp rate limits need to be transformed. The objective function can be rewritten as a
penalty function as follows:

minQ = FC + µ1∑
h

max
(∣∣∣∣ N

∑
i=1

Pi,t − Dt

∣∣∣∣− δ, 0
)2

+µ2∑
g

max

[

Pi,t − Pi,t−1 − Pup
i Ii,t−1 − Pstart

i (Ii,t − Ii,t−1)− Pi(1− Ii,t), 0
]2

+
[

Pi,t−1 − Pi,t − Pdown
i Ii,t − Pshut

i (Ii,t−1 − Ii,t)− Pi(1− Ii,t−1), 0
]2

(9)

Here, the penalty factors µ1, µ1 > 0; δ > 0 is the acceptable violation domain when converting
the equality constraint into an inequality constraint. In fact, the value of penalty factors is related to
the magnitude of objective function and constraints. If the value is too large, it is likely to get bad
solutions, and if the value is too small, the searching direction might be far away from the feasible
region. Therefore, the method of testing is usually used to make the penalty item have the same or
larger magnitude as the objective function so as to determine the penalty factors.

4. CEHMC Method Applied to Solve UC Problem

Three basic elements of membrane computing are membrane structure, evolution object,
and evolution rules. The membrane structure and evolution rules can be designed according to
requirements [21]. Taking an intracellular membrane system as the computational framework, the main
procedures of the membrane computing method are as follow: first design the membrane structure,
then evolve objects according to evolution rules, and lastly select the optimal objects for transmission
and communication.

When using the CEHMC method for solving the UC problem, we utilize GAPS to schedule the
unit start-stop plan since the start-stop states of generators are discrete variables. While for the dynamic
economic dispatch problem, the generation of units is a continuous variable. Since the evolutionary
objects (solution vectors) of biomimetic membrane computing is only required to be a real number,
not limited to discrete variables. If the evolutionary rules are set to apply to continuous variables,
biomimetic membrane computing can used to solve continuous variable optimization problems, such
as the dynamic economic dispatch problem in UC. Then, the cross-entropy optimization method is
introduced combined with biomimetic membrane computing to improve the searching ability during
iteration. Finally, the minimum generation cost is taken as the optimal result of the UC problem.

Energies 2019, 12, 486 5 of 18

4.1. GAPS for Unit Start-Stop Plan

Figure 1 shows the membrane structure of GAPS; it is a nested structure [22], where the symbol
N represents the N-th nested genetic membrane (i.e., the variable N in Table 1). In practice, it needs
to be determined synthetically according to unit size, number of constraints, calculation time and
convergence effect, etc. The start-stop states of generators are taken as the evolution objects I, and the
crossover and mutation rules of the binary encoding GA are the evolution rules.

Energies 2019, 12, x FOR PEER REVIEW 5 of 18

4.1. GAPS for Unit Start-Stop Plan

Figure 1 shows the membrane structure of GAPS; it is a nested structure [22], where the symbol
N represents the N-th nested genetic membrane (i.e. the variable N in Table 1). In practice, it needs to
be determined synthetically according to unit size, number of constraints, calculation time and
convergence effect, etc. The start-stop states of generators are taken as the evolution objects I, and the
crossover and mutation rules of the binary encoding GA are the evolution rules.

Figure 1. Structure of genetic membrane.

4.2. Biomimetic Membrane Computing Method for Dynamic Economic Dispatch

Figure 2 shows the membrane structure of the biomimetic membrane computing method used
in this paper. It is a reticular structure including an outermost membrane, m basic membranes, and a
quasi-Golgi membrane [23] represented by G, and the output of generators is taken as the evolution
objects P, that is, 1 2(, ,...,)lp p p=Ρ , ,{ , 1,2,..., ; 1,2,..., }k i tp P i N t T∈ = = . In addition, m is corresponding
to the variable Nb in Table 1, which is usually determined synthetically according to unit size, number
of constraints, calculation time and convergence effect, etc.

Figure 2. Structure of biomimetic membrane.

The evolution rules can be divided into two categories according to the environment, that is,
rules in the basic membranes, and rules in the quasi-Golgi membrane. Besides, correction rules can
be used in all conditions. All the basic rules are set with the calculation probability as the execution
condition. When the calculation probability is satisfied, the rule will be executed immediately. The
evolution rules are as follows:

1) Crossover rules

• Numerical crossover rule. Each element on both evolution object is numerically crossed, and the
cross ratio of each element is different, which can be described as follows:

' '

'

'

, ,

(1)
(1)

→

 = × + − ×

= − × + ×

a b a b

a a b

b a b

η η

η η

Ρ Ρ Ρ Ρ

Ρ Ρ Ρ
Ρ Ρ Ρ

 (10)

where Ρ and ′Ρ are the original and new object, respectively, generated after executing evolution
rule; and η is a vector whose value is a random number uniformly distributed on [0,1].
• Interval crossover rule. First, select the interval to be randomly exchanged, and then swap the

elements in the same interval for two objects. This is described as follows:

Figure 1. Structure of genetic membrane.

Table 1. Initial parameters of the proposed method.

Unit 10 20 40 60 80 100

GAPS

N 20 20 40 50 60 60
No 10 16 20 20 30 30
Nco 2 2 4 4 6 6
Pc 0.9 0.9 0.9 0.9 0.9 0.9
Pm 0.5 0.5 0.5 0.5 0.5 0.5

HMC

Nc
′ 10 20 30 30 40 50

Nb
′ 10 20 20 30 40 50

No
′ 10 10 10 10 12 12

Nco
′ 4 4 4 4 6 6

Pc
′ 0.95 0.95 0.95 0.95 0.95 0.95

Pm
′ 0.5 0.5 0.5 0.5 0.5 0.5

Pt
′ 0.9 0.9 0.9 0.9 0.9 0.9

4.2. Biomimetic Membrane Computing Method for Dynamic Economic Dispatch

Figure 2 shows the membrane structure of the biomimetic membrane computing method used in
this paper. It is a reticular structure including an outermost membrane, m basic membranes, and a
quasi-Golgi membrane [23] represented by G, and the output of generators is taken as the evolution
objects P, that is, P = (p1, p2, . . . , pl), pk ∈ {Pi,t, i = 1, 2, . . . , N; t = 1, 2, . . . , T}. In addition, m is
corresponding to the variable Nb in Table 1, which is usually determined synthetically according to
unit size, number of constraints, calculation time and convergence effect, etc.

Energies 2019, 12, x FOR PEER REVIEW 5 of 18

4.1. GAPS for Unit Start-Stop Plan

Figure 1 shows the membrane structure of GAPS; it is a nested structure [22], where the symbol
N represents the N-th nested genetic membrane (i.e. the variable N in Table 1). In practice, it needs to
be determined synthetically according to unit size, number of constraints, calculation time and
convergence effect, etc. The start-stop states of generators are taken as the evolution objects I, and the
crossover and mutation rules of the binary encoding GA are the evolution rules.

Figure 1. Structure of genetic membrane.

4.2. Biomimetic Membrane Computing Method for Dynamic Economic Dispatch

Figure 2 shows the membrane structure of the biomimetic membrane computing method used
in this paper. It is a reticular structure including an outermost membrane, m basic membranes, and a
quasi-Golgi membrane [23] represented by G, and the output of generators is taken as the evolution
objects P, that is, 1 2(, ,...,)lp p p=Ρ , ,{ , 1,2,..., ; 1,2,..., }k i tp P i N t T∈ = = . In addition, m is corresponding
to the variable Nb in Table 1, which is usually determined synthetically according to unit size, number
of constraints, calculation time and convergence effect, etc.

Figure 2. Structure of biomimetic membrane.

The evolution rules can be divided into two categories according to the environment, that is,
rules in the basic membranes, and rules in the quasi-Golgi membrane. Besides, correction rules can
be used in all conditions. All the basic rules are set with the calculation probability as the execution
condition. When the calculation probability is satisfied, the rule will be executed immediately. The
evolution rules are as follows:

1) Crossover rules

• Numerical crossover rule. Each element on both evolution object is numerically crossed, and the
cross ratio of each element is different, which can be described as follows:

' '

'

'

, ,

(1)
(1)

→

 = × + − ×

= − × + ×

a b a b

a a b

b a b

η η

η η

Ρ Ρ Ρ Ρ

Ρ Ρ Ρ
Ρ Ρ Ρ

 (10)

where Ρ and ′Ρ are the original and new object, respectively, generated after executing evolution
rule; and η is a vector whose value is a random number uniformly distributed on [0,1].
• Interval crossover rule. First, select the interval to be randomly exchanged, and then swap the

elements in the same interval for two objects. This is described as follows:

Figure 2. Structure of biomimetic membrane.

The evolution rules can be divided into two categories according to the environment, that is, rules
in the basic membranes, and rules in the quasi-Golgi membrane. Besides, correction rules can be used

Energies 2019, 12, 486 6 of 18

in all conditions. All the basic rules are set with the calculation probability as the execution condition.
When the calculation probability is satisfied, the rule will be executed immediately. The evolution
rules are as follows:

(1) Crossover rules

• Numerical crossover rule. Each element on both evolution object is numerically crossed, and the
cross ratio of each element is different, which can be described as follows:

Pa, Pb → P′a, P′b{
P′a = η× Pa + (1− η)× Pb
P′b = (1− η)× Pa + η× Pb

(10)

where P and P′ are the original and new object, respectively, generated after executing evolution
rule; and η is a vector whose value is a random number uniformly distributed on [0,1].

• Interval crossover rule. First, select the interval to be randomly exchanged, and then swap the
elements in the same interval for two objects. This is described as follows:

Pa, Pb → P′a, P′b
Pa = (pa1, · · · , pap, · · · , paq, · · · , pal)

Pb = (pb1, · · · , pbp, · · · , pbq, · · · , pbl)

P′a = (pa1, · · · , pbp, · · · , pbq, · · · , pal)

P′b = (pb1, · · · , pap, · · · , paq, · · · , pbl)

(11)

where p, q ∈ [1, l], [p, q] is the interval to be swapped; and l is the length of object. The procedure
of crossover can be divided into two or three steps according to the length of the object. When
the length is short, two-step crossover is preferred: first, execute the numerical crossover rule
on two selected adjacent objects, and then execute the interval crossover rule on two randomly
selected objects. Conversely, when the length of object is long, three-step crossover is preferred:
first, execute the numerical crossover rule on two randomly selected objects, then execute the
interval crossover rule on the two objects, and lastly execute the numerical crossover rule on two
adjacent objects.

(2) Mutation rule

A random increment vector is added to the original object, which can be described as follows:

P→ P′{
P′ = P +ϕ

ϕ = h× r× (P− P)
(12)

where ϕ is the mutation vector; P and P are the upper and lower limits of P, respectively; h is the
mutation coefficient; and r is the random vector that follows the standard normal distribution.

(3) Correction rule

After some certain rules, such as the mutation rule, some elements of the new object may exceed
their limits and must be modified, that is:

p′ =

{
p p > p
p p < p

(13)

For the quasi-Golgi membrane, activation conditions are set, which means the following rules are
executed only if the quasi-Golgi membrane is activated:

Energies 2019, 12, 486 7 of 18

• Target indication rule

The communication objects sent into the quasi-Golgi are sorted by their function value, and then
each communication object is subtracted from the former stored object by this order. Thus, a direction
vector is generated, and the new target indication vector is the sum of this direction vector and last
target indication vector. Regardless of whether the quasi-Golgi is activated, the direction vector and
target indication vector should be calculated, and the target indication vector should be reserved.
Furthermore, the target indication object can be generated only if the quasi-Golgi is activated. This is
described as follows:

P→ PS1, PS2
→
λ =

→
λ + (Pnew

sort − Pold
sort)

PS1 = P + w×
→
λ

PS2 = P− w×
→
λ

(14)

where
→
λ is the target indication vector; Pnew

sort and Pold
sort are the sorted communication objects stored in

the quasi-Golgi this time and the last time; PS2 and PS1 both are the new target indication objects; and
w is the indication coefficient.

• Transition rule

First select two elements of the selected object randomly, and then swap these elements if they are
in the range of the other’s value, that is:

P→ P′
P = (p1, · · · , pp, · · · , pq, · · · , pl)

P′ = (p1, · · · , pq, · · · , pp, · · · , pl)

pq ≤ pp ≤ pq ∧ pp ≤ pq ≤ pp

(15)

• Abstraction rule

The abstraction rule is designed only for optimal and suboptimal objects, where each element of
the optimal object is replaced by the element on the same position of the suboptimal object, one after
another. Then, the element from the suboptimal object is reserved if the new object is better than the
old optimal one; otherwise, the old optimal object remains:

Pa, Pb → P′
Pa = (pa1, · · · , paj, · · · , pal)

Pb = (pb1, · · · , pbj, · · · , pbl)

P′ = (p1, · · · , pj, · · · , pl) pj ∈
{

paj, pbj

} (16)

When using the biomimetic membrane computing method, there is an iterative calculation and
communication for each basic membrane, and the good objects in the basic membrane can be reserved
and sent to the quasi-Golgi for local optimization and evolution. However, with the increment of
unit scale, the searching ability and stability of the method is reduced, and thus we added the CE
optimization method to the membrane computing method to enhance its searching ability and stability.

4.3. CE Optimization Method

The CE method is an optimization method proposed by Rubinstein and Kroese, who estimated
probabilities of rare events for stochastic networks [24]. It was first used to solve combinatorial
optimization problems, and then also applied to solve continuous optimization problems [25].
Cross-entropy is a measurement for the similarity degree of two probability distributions. The main

Energies 2019, 12, 486 8 of 18

idea of CE is to get a probability distribution whose difference with the unknown optimal probability
distribution is minimal [26].

For the dynamic dispatch problem:

γ∗ = min
P∈ρ

F(P) (17)

where γ* represents the optimization result of γ for economic dispatching; ρ is the probability space.
Obviously, Equation (17) is a minimization problem. When generation P obeys the distribution of
f (◦; u), the original optimization problem can be transformed into an optimization problem of finding
the optimal probability density function f (◦; u). Moreover, when we define S{F(P)≤γ} as a set of
different indicator functions on ρ with value γ, the optimization problem of f (◦; u) can be further
transformed into a corresponding probability estimation problem as follows. The indicator functions
in S{F(P)≤γ} is used to describe the characteristics of a stochastic process, usually formulated as mean
function, variance function and correlation function, etc.:

l(γ) = Hu(F(P) ≤ γ) = ∑
P

S{F(P)≤γ} f (P; u) = EuS{F(P)≤γ} (18)

where Hu and Eu are the probability measure and expectation, respectively, of the optimal probability
distribution f (◦; u).

Usually the importance sampling method is used to calculate l(γ∗): sampling the generation
Pi(i = 1, 2, . . . , N) based on the probability distribution g on P:

l̂ =
1
N

N

∑
i=1

S{F(Pi)≤γ}
f (Pi; u)
g(Pi)

(19)

when the probability distribution g is:

g∗(P) =
S{F(P)≤γ} f (P; u)

l
(20)

where l̂ is the value of l after the importance sampling method; g* is the assumed value of g for the
importance sampling method.

There is an unbiased estimated zero variance with only one sample needed. Therefore, it is difficult
to calculate g∗ since its value is related to l, and the probability distribution g can usually be selected
from the probability distribution cluster { f (◦; v)}. In this way, the original optimization problem is
finally transformed into a determination of parameter v that minimizes the difference between the
probability distribution of generation f (◦; v) and optimal g∗. In this paper, parameter v includes the
mean value µ and standard deviation σ of samples.

Relative-entropy (i.e., Kullback-Leibler distance) and cross-entropy are commonly used measures
for the similarity degree of two probability distributions [27]. In this paper, we used the CE method, as
the following formula shows:

min
v
−
∫

g∗(P) ln f (P; v)dP (21)

Combining Equations (18) and (20), v∗ can be calculated by Equation (22):

v̂∗ = argmax
v

1
N

N

∑
i=1

S{F(Pi)≤γ} ln f (Pi; v) (22)

Moreover, through the smoothing technique, the parameter estimation form v̂ of v∗ can be
expressed as follows:

v̂k = α
∼
vk + (1− α)v̂k−1 (23)

Energies 2019, 12, 486 9 of 18

where “~” represents the parameter of elite samples. The top-ranking dispatching solutions after
evaluation are chosen as the elite samples. “ˆ” represents the parameter of total samples. α is the
smoothing factor (typically between 0.7 and 1); and ṽk is the value v of the elite sample after the kth
smoothing. Therefore, it is easier to approach the optimal solution with the correction of v̂ through the
elite sample.

In short, when using the CE optimization method, first predefine the parameter v and generate
the candidate solution set according to the probability density function f (◦; v), and then update the
value of v through the elite sample. Thus, the searching direction continues to approximate the optimal
solution in the iteration.

4.4. Procedures of CEHMC Method for UC Problem

The main steps of the CEHMC method are in detail as follows, and illustrated in Figure 3.

Energies 2019, 12, x FOR PEER REVIEW 9 of 18

4.4. Procedures of CEHMC Method for UC Problem

The main steps of the CEHMC method are in detail as follows, and illustrated in Figure 3.

k

∧
μ k

∧
σ

k

∧
μ k

∧
σ

2
~ kkN

∧ ∧
P μ σ（ ， ）

Figure 3. Flowchart of cross-entropy-based hybrid membrane computing (CEHMC)-based unit
commitment (UC) problem.

Step 1: Initialization. Set the initial parameters, construct the genetic membrane structure, and
generate the initial binary object Io in each membrane (i.e., generate the start-stop states).

Step 2: Evolution. Execute the evolution rules for all objects I in each membrane.
Step 3: Evaluation. For all start-stop states, solve the economic dispatch part with the CEHMC

method. The numerical result F(P) is taken as the evaluation indicator to replace the old objects. In
this dispatch part, the evolution object P is the generation of units, and the main steps are as follows:

3.1 Initialization. Set the initial parameters, construct biomimetic membrane structure, and
create Nco initial communication objects Pco in the outermost membrane and send them to
the first basic membrane.

3.2 Computation in the basic membrane. Create No initial objects Po in the current membrane, and
execute the basic evolution rules in order for No optimal objects to be selected in this
membrane. Then, select Nco optimal objects Pbest as the communication objects Pco and Ns
suboptimal objects as the reservation objects. Finally, remove the remaining objects, and
send the communication objects Pco into the quasi-Golgi membrane.

3.3 Computation in the quasi-Golgi membrane. Update the target indicator vector, and check
whether the activate condition of quasi-Golgi is satisfied. If not, the communication objects
Pco are sent to the next basic membrane directly, and return to step 3.2; if satisfied, execute

Figure 3. Flowchart of cross-entropy-based hybrid membrane computing (CEHMC)-based unit
commitment (UC) problem.

Step 1: Initialization. Set the initial parameters, construct the genetic membrane structure, and
generate the initial binary object Io in each membrane (i.e., generate the start-stop states).

Step 2: Evolution. Execute the evolution rules for all objects I in each membrane.

Energies 2019, 12, 486 10 of 18

Step 3: Evaluation. For all start-stop states, solve the economic dispatch part with the CEHMC
method. The numerical result F(P) is taken as the evaluation indicator to replace the old objects. In this
dispatch part, the evolution object P is the generation of units, and the main steps are as follows:

3.1 Initialization. Set the initial parameters, construct biomimetic membrane structure, and create
Nco initial communication objects Pco in the outermost membrane and send them to the first
basic membrane.

3.2 Computation in the basic membrane. Create No initial objects Po in the current membrane, and
execute the basic evolution rules in order for No optimal objects to be selected in this membrane.
Then, select Nco optimal objects Pbest as the communication objects Pco and Ns suboptimal objects
as the reservation objects. Finally, remove the remaining objects, and send the communication
objects Pco into the quasi-Golgi membrane.

3.3 Computation in the quasi-Golgi membrane. Update the target indicator vector, and check whether
the activate condition of quasi-Golgi is satisfied. If not, the communication objects Pco are sent to
the next basic membrane directly, and return to step 3.2; if satisfied, execute evolution rules in the
quasi-Golgi for communication objects Pco, and then select the new communication objects Pco.

3.4 Check whether the current computation cycle is completed. If not, send the communication objects Pco

into the next basic membrane and return to step 3.2; if completed, start the CE optimization steps:

• Initialization. Calculate the mean and standard deviation for all communication objects Pco

in the current cycle as the initial sample.
• Sampling. Take generation samples P1, P2, . . . , PN based on the P ∼ N(µ̂k, σ̂2

k).
• Evaluation. Select the elite sample set, and then calculate its mean and standard deviation.
• Update parameters. Update the mean µ̃k and standard deviation σ̃k according to Equations

(24) and (25):
µ̂k = α

∼
µk + (1− α)µ̂k−1, (24)

σ̂k = βk
∼
σk + (1− βk)σ̂k−1 (25)

The standard deviation is usually updated by dynamic smoothing, that is, βk = β0 −
β0(1− 1

k)
r
, where β0 is the smoothing factor (typically between 0.8 and 0.99), k is the

iteration number, and r is an integer (typically between 5 and 10).
• Judgment of the termination condition. If the iteration was over, output the optimal object

Pbest; if not, return to Step 3.2.

3.5 Judgment of termination conditions. Check whether all computation cycles are completed. If not,
send the communication objects Pco to the first basic membrane and return to step 3.2; if
completed, output the function value of the optimal object Pbest.

Step 4: Communication. Select Ne optimal objects Ibest, and send them to the adjacent (sub-outer)
membrane. At the same time, the outermost membrane is dissolved, and thus the previous sub-outer
membrane becomes the new outermost membrane.

Step 5: Judgment of termination conditions. If all membranes are dissolved, output the best result
Ibest of the UC problem; if not, return to Step 3.2.

5. Case Study

The 10-unit 24 h standard thermal power test system was taken as the test example to verify
the effectiveness of the proposed method. The unit characteristics and load demand are detailed in
the literature [28], and the ramp rate limits of units 1, 3, and 4 are all as follows [29]: Pi

up = Pi
down

= 40 MW/h, Pi
start = Pi

shut = 2Pi. The initial parameters of the proposed method are list in Table 1.
The quasi-Golgi activate condition is that the multiplication of current computation cycle and current
basic membrane can be divided by 3 after the second computation cycle.

Energies 2019, 12, 486 11 of 18

In order to analyze the performance of the proposed method, 20 complete independent
simulations are conducted on each system. Two cases of the UC problem are simulated: (1) UC problem
without ramp constraints; (2) UC problem with ramp constraints. The characteristics, including the
number of continues and integer variables and number of constraints for these two cases are list in
Table 2, which contribute to depict the magnitude and complexity of the investigated UC problem.

Table 2. Computation characteristics of the UC problem.

Unit
Variables Constraints

Integer Continuous Without Ramp With Ramp

10 240 240 748 886
20 480 480 1448 1724
40 960 960 2848 3400
60 1440 1440 4248 5076
80 1920 1920 5648 6752

100 2400 2400 7048 8428

In the following sections, the corresponding simulation results for these two cases are discussed
and compared. Moreover, the simulation of the proposed method is programmed by MATLAB 2014a
(The MathWorks, Inc, Natick, MA, USA) on the PC with Intel Core i5-3470 CPU, 3.20 GHz, 4 GB Ram
(Intel, Santa Clara, CA, USA).

5.1. Simulation Results of UC Problem without Ramp Constraints

The generation of a 10–100-unit 24 h system is shown in Figure 4, where the area of each unit is
the generation value.

Energies 2019, 12, x FOR PEER REVIEW 11 of 18

Table 1. Initial parameters of the proposed method.

Unit 10 20 40 60 80 100

GAPS

N 20 20 40 50 60 60
No 10 16 20 20 30 30
Nco 2 2 4 4 6 6
Pc 0.9 0.9 0.9 0.9 0.9 0.9
Pm 0.5 0.5 0.5 0.5 0.5 0.5

HMC

Nc’ 10 20 30 30 40 50
Nb’ 10 20 20 30 40 50
No’ 10 10 10 10 12 12
Nco’ 4 4 4 4 6 6
Pc’ 0.95 0.95 0.95 0.95 0.95 0.95
Pm’ 0.5 0.5 0.5 0.5 0.5 0.5
Pt’ 0.9 0.9 0.9 0.9 0.9 0.9

Table 2 Computation characteristics of the UC problem

Unit
Variables Constraints

Integer Continuous Without ramp With ramp
10 240 240 748 886
20 480 480 1448 1724
40 960 960 2848 3400
60 1440 1440 4248 5076
80 1920 1920 5648 6752

100 2400 2400 7048 8428

In the following sections, the corresponding simulation results for these two cases are discussed
and compared. Moreover, the simulation of the proposed method is programmed by MATLAB 2014a
(The MathWorks, Inc, Natick, MA, USA) on the PC with Intel Core i5-3470 CPU, 3.20 GHz, 4 GB Ram
(Intel, Santa Clara, CA, USA).

5.1. Simulation Results of UC Problem without Ramp Constraints

The generation of a 10–100-unit 24 h system is shown in Figure 4, where the area of each unit is
the generation value.

Figure 4. Generation of the 10 units (not considering unit ramp rate constraint).

Comparison of the proposed CEHMC with six bioinspired optimization methods (EPSO,
MRCGA, GA, MA, EP, HMC) and three mathematical optimization methods (SOCP, IPL, C&B) is
shown in Table 3. To be more illustrative, the normalized comparison results of different algorithms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

200

400

600

800

1000

1200

1400

1600

time (h)

ge
ne

ra
tio

n
(M

W
)

Unit 5
Unit 4

Unit 3

Unit 1

Unit 7 Unit 8
Unit 9 Unit 10

Unit 6

Unit 2

Figure 4. Generation of the 10 units (not considering unit ramp rate constraint).

Comparison of the proposed CEHMC with six bioinspired optimization methods (EPSO, MRCGA,
GA, MA, EP, HMC) and three mathematical optimization methods (SOCP, IPL, C&B) is shown in
Table 3. To be more illustrative, the normalized comparison results of different algorithms are plotted
in Figure 5. For the bioinspired optimization methods, the best and mean solutions of them are plotted
as Figure 5a,b, respectively.

Energies 2019, 12, 486 12 of 18

Table 3. Comparison of different algorithms (not considering unit ramp rate constraint), unit: $.

Methods
Unit

10 20 40 60 80 100

SOCP [4] 564,531 1,124,713 2,244,369 3,363,758 4,484,357 5,603,728

IPL [7] 563,977 1,123,795 2,243,546 3,360,764 4,481,411 5,600,108

C&B [30] 563,938 1,123,783 2,243,687 3,363,593 4,484,497 5,603,976

EPSO [31]
best 563,938 1,123,232 2,243,407 3,365,480 4,488,601 5,612,742

mean 563,969 1,124,127 2,246,800 3,373,859 4,501,254 5,620,785
worst 564,206 1,125,815 2,250,364 3,381,947 4,510,984 5,633,447

MRCGA [11]
best 564,244 1,125,035 2,246,622 3,367,366 4,489,964 5,610,031

mean 564,467 1,126,199 2,249,609 3,371,036 4,497,346 5,616,957
worst 565,756 1,128,326 2,252,076 3,375,815 4,505,511 5,623,248

GA [13]
best 565,866 1,128,876 2,252,909 3,377,393 4,507,692 5,626,362

mean 567,329 1,130,106 2,262,585 3,394,044 4,525,204 5,669,362
worst 571,336 1,131,565 2,269,282 3,401,847 4,552,982 5,690,086

MA [13]
best 565,827 1,127,254 2,252,937 3,388,676 4,501,449 5,640,543

mean 566,453 1,128,824 2,262,477 3,394,830 4,527,779 5,665,803
worst 566,861 1,130,916 2,270,316 3,408,275 4,545,305 5,698,039

EP [32]
best 564,551 1,125,494 2,249,093 3,371,611 4,498,479 5,623,885

mean 565,352 1,127,257 2,252,612 3,376,255 4,505,536 5,633,800
worst 566,231 1,129,793 2,256,085 3,381,012 4,512,739 5,639,148

HMC
best 564,541 1,127,594 2,250,328 3,388,056 4,522,491 5,654,987

mean 564,716 1,128,188 2,251,504 3,390,237 4,525,342 5,659,001
worst 564,949 1,128,953 2,260,989 3,392,445 4,527,762 5,664,080

CEHMC
best 563,930 1,123,206 2,243,314 3,360,779 4,479,720 5,600,004

mean 564,027 1,123,309 2,249,388 3,369,956 4,480,122 5,602,334
worst 564,796 1,126,712 2,260,684 3,391,698 4,497,391 5,609,585

Note: SOCP: second-order cone programming; IPL: improved priority list; C&B: cut and branch; EPSO: elite particle
swarm optimization; MRCGA: matrix real-coded genetic algorithm; EP: evolutionary programming; HMC: hybrid
membrane computing.

Energies 2019, 12, x FOR PEER REVIEW 12 of 18

are plotted in Figure 5. For the bioinspired optimization methods, the best and mean solutions of
them are plotted as Figures 5a,b, respectively.

From the best solutions, it can be seen that CEHMC has the best performance in all the seven
intelligent methods. Compared with the three mathematical optimization methods, the best solutions of
CEHMC are lightly larger than IPL (with the smallest objective cost) when unit size is 60 and 80. In other
cases of unit size, CEHMC gets the best results. That means, the proposed CEHMC has stable optimization
process when unit size increases. Comparing the results of CEHMC and HMC, the solution of CEHMC is
much better than HMC. It is shown that the hybrition of cross-entropy and membrane computing theory
can significantly improve the optima searching ability and optimization efficiency.

Table 3. Comparison of different algorithms (not considering unit ramp rate constraint), unit: $.

Methods
unit

10 20 40 60 80 100
SOCP [4] 564,531 1,124,713 2,244,369 3,363,758 4,484,357 5,603,728

IPL [7] 563,977 1,123,795 2,243,546 3,360,764 4,481,411 5,600,108
C&B [30] 563,938 1,123,783 2,243,687 3,363,593 4,484,497 5,603,976

EPSO [31]
best 563,938 1,123,232 2,243,407 3,365,480 4,488,601 5,612,742

mean 563,969 1,124,127 2,246,800 3,373,859 4,501,254 5,620,785
worst 564,206 1,125,815 2,250,364 3,381,947 4,510,984 5,633,447

MRCGA [11]
best 564,244 1,125,035 2,246,622 3,367,366 4,489,964 5,610,031

mean 564,467 1,126,199 2,249,609 3,371,036 4,497,346 5,616,957
worst 565,756 1,128,326 2,252,076 3,375,815 4,505,511 5,623,248

GA [13]
best 565,866 1,128,876 2,252,909 3,377,393 4,507,692 5,626,362

mean 567,329 1,130,106 2,262,585 3,394,044 4,525,204 5,669,362
worst 571,336 1,131,565 2,269,282 3,401,847 4,552,982 5,690,086

MA [13]
best 565,827 1,127,254 2,252,937 3,388,676 4,501,449 5,640,543

mean 566,453 1,128,824 2,262,477 3,394,830 4,527,779 5,665,803
worst 566,861 1,130,916 2,270,316 3,408,275 4,545,305 5,698,039

EP [32]
best 564,551 1,125,494 2,249,093 3,371,611 4,498,479 5,623,885

mean 565,352 1,127,257 2,252,612 3,376,255 4,505,536 5,633,800
worst 566,231 1,129,793 2,256,085 3,381,012 4,512,739 5,639,148

HMC
best 564,541 1,127,594 2,250,328 3,388,056 4,522,491 5,654,987

mean 564,716 1,128,188 2,251,504 3,390,237 4,525,342 5,659,001
worst 564,949 1,128,953 2,260,989 3,392,445 4,527,762 5,664,080

CEHMC
best 563,930 1,123,206 2,243,314 3,360,779 4,479,720 5,600,004

mean 564,027 1,123,309 2,249,388 3,369,956 4,480,122 5,602,334
worst 564,796 1,126,712 2,260,684 3,391,698 4,497,391 5,609,585

Note: SOCP: second-order cone programming; IPL: improved priority list; C&B: cut and branch;
EPSO: elite particle swarm optimization; MRCGA: matrix real-coded genetic algorithm; EP:
evolutionary programming; HMC: hybrid membrane computing.

0.998

1

1.002

1.004

1.006

1.008

1.01

1.012

SOCP
IPL
C&B
EPSO
MRCGA

GA
MA
EP
HMC
CHMC

10 20 40 60 80 100

O
bj

ec
tiv

e
co

st
 (s

ta
nd

ar
di

za
tio

n
se

pa
ra

te
ly

)

Unit size
0.998

1.002

1.006

1.01

1.014

SOCP
IPL
C&B
EPSO
MRCGA

GA
MA
EP
HMC
CHMC

O
bj

ec
tiv

e
co

st
 (s

ta
nd

ar
di

za
tio

n
se

pa
ra

te
ly

)

10 20 40 60 80 100
Unit size

(a) best (b) mean

Figure 5. Normalized comparison results of different algorithms (not considering unit ramp rate constraint) Figure 5. Normalized comparison results of different algorithms (not considering unit ramp rate constraint).

From the best solutions, it can be seen that CEHMC has the best performance in all the seven
intelligent methods. Compared with the three mathematical optimization methods, the best solutions
of CEHMC are lightly larger than IPL (with the smallest objective cost) when unit size is 60 and 80.
In other cases of unit size, CEHMC gets the best results. That means, the proposed CEHMC has stable
optimization process when unit size increases. Comparing the results of CEHMC and HMC, the solution

Energies 2019, 12, 486 13 of 18

of CEHMC is much better than HMC. It is shown that the hybrition of cross-entropy and membrane
computing theory can significantly improve the optima searching ability and optimization efficiency.

5.2. Simulation Results of UC Problem with Ramp Constraints

The generation of a 10-unit 24 h system is shown in Figure 6, where the area of each unit is the
generation value. Comparison of the proposed CEHMC with two intelligent optimization methods
(PSO, HMC) and six mathematical optimization methods (MISOCP, OO, BB, HCMIP, SHCMIP, MILP)
is shown in Table 4. To be more illustrative, the normalized comparison results of different algorithms
are also plotted in Figure 7. For PSO, HMC and CEHMC, the best solutions of them are plotted as
Figure 7a,b, respectively.

Energies 2019, 12, x FOR PEER REVIEW 13 of 18

5.2. Simulation Results of UC Problem with Ramp Constraints

The generation of a 10-unit 24 h system is shown in Figure 6, where the area of each unit is the
generation value. Comparison of the proposed CEHMC with two intelligent optimization methods
(PSO, HMC) and six mathematical optimization methods (MISOCP, OO, BB, HCMIP, SHCMIP,
MILP) is shown in Table 4. To be more illustrative, the normalized comparison results of different
algorithms are also plotted in Figure 7. For PSO, HMC and CEHMC, the best solutions of them are
plotted as Figures 7a,b, respectively.

It is found that, with the unit size larger than 40, CEHMC has the best performance in all the
nine optimization methods. In other cases of unit size, the best result of CEHMC is lightly larger than
the optima of all the nine optimization algorithms. The introduction of cross-entropy theory greatly
improves the optima searching ability, which makes the results of CEHMC generally much better
than HMC.

Figure 6. Generation of 10 units (considering unit ramp rate constraint)

Table 4. Comparison of different algorithms (considering unit ramp rate constraint), unit: $.

Methods
Unit

10 20 40 60 80 100
MISOCP [32] 565,777 1,130,647 2,259,203 3,382,470 4,511,813 5,638,456

OO [33] 569,751 1,139,504 2,261,900 3,401,850 4,570,808 5,697,510
BB [33] 568,710 1,136,650 2,260,214 3,383,489 4,531,817 5,658,458

HCMIP [34] 566,084 1,129,241 2,257,269 3,379,852 4,508,689 5,633,984
SHCMIP [35] 565,397 1,127,437 2,251,617 3,376,821 4,501,420 5,625,531

MILP [36] 566,188 1,127,218 2,252,810 3,375,967 4,501,532 5,623,814

PSO
best 571,766 1,141,430 2,285,074 3,436,205 4,590,027 5,730,530

mean 572,216 1,142,604 2,307,258 3,439,609 4,592,237 5,732,596
worst 572,623 1,144,225 2,328,432 3,441,807 4,593,553 5,733,525

HMC
best 568,639 1,134,835 2,269,523 3,402,549 4,542,599 5,679,389

mean 569,396 1,136,139 2,271,292 3,404,612 4,545,670 5,683,837
worst 570,513 1,137,804 2,273,074 3,406,002 4,548,406 5,687,362

CEHMC
best 565,398 1,127,217 2,251,620 3,375,960 4,501,300 5,623,716

mean 565,408 1,127,882 2,252,030 3,376,309 4,501,976 5,623,975
worst 5,654,812 1,130,861 2,256,933 3,380,629 4,503,035 5,624,019

Note: MISOCP: mixed integer second-order cone programming; OO: ordinal optimization method;
BB: branch and bound method; HCMIP: hyper-cube mixed integer programming; SHCMIP: sub
hyper-cube mixed integer programming; MILP: mixed integer linear programming.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

200

400

600

800

1000

1200

1400

1600

time (h)

ge
ne

ra
tio

n
(M

W
)

Unit 1

Unit 3
Unit 4

Unit 5

Unit 2

Unit 6

Unit 9
Unit 7

Unit 10
Unit 8

Figure 6. Generation of 10 units (considering unit ramp rate constraint).

Table 4. Comparison of different algorithms (considering unit ramp rate constraint), unit: $.

Methods
Unit

10 20 40 60 80 100

MISOCP [32] 565,777 1,130,647 2,259,203 3,382,470 4,511,813 5,638,456

OO [33] 569,751 1,139,504 2,261,900 3,401,850 4,570,808 5,697,510

BB [33] 568,710 1,136,650 2,260,214 3,383,489 4,531,817 5,658,458

HCMIP [34] 566,084 1,129,241 2,257,269 3,379,852 4,508,689 5,633,984

SHCMIP [35] 565,397 1,127,437 2,251,617 3,376,821 4,501,420 5,625,531

MILP [36] 566,188 1,127,218 2,252,810 3,375,967 4,501,532 5,623,814

PSO
best 571,766 1,141,430 2,285,074 3,436,205 4,590,027 5,730,530

mean 572,216 1,142,604 2,307,258 3,439,609 4,592,237 5,732,596
worst 572,623 1,144,225 2,328,432 3,441,807 4,593,553 5,733,525

HMC
best 568,639 1,134,835 2,269,523 3,402,549 4,542,599 5,679,389

mean 569,396 1,136,139 2,271,292 3,404,612 4,545,670 5,683,837
worst 570,513 1,137,804 2,273,074 3,406,002 4,548,406 5,687,362

CEHMC
best 565,398 1,127,217 2,251,620 3,375,960 4,501,300 5,623,716

mean 565,408 1,127,882 2,252,030 3,376,309 4,501,976 5,623,975
worst 5,654,812 1,130,861 2,256,933 3,380,629 4,503,035 5,624,019

Note: MISOCP: mixed integer second-order cone programming; OO: ordinal optimization method; BB: branch
and bound method; HCMIP: hyper-cube mixed integer programming; SHCMIP: sub hyper-cube mixed integer
programming; MILP: mixed integer linear programming.

Energies 2019, 12, 486 14 of 18
Energies 2019, 12, x FOR PEER REVIEW 14 of 18

1

1.005

1.01

1.015

1.02

1.025

HMC
CHMC

MISOCP
OO
BB
HCMIP
SHCMIP

MILP
PSO

10 20 40 60 80 100
Unit size

O
bj

ec
tiv

e
co

st
 (s

ta
nd

ar
di

za
tio

n
se

pa
ra

te
ly

)

1

1.005

1.01

1.015

1.02

1.025

1.03

10 20 40 60 80 100
Unit size

HMC
CHMC

MISOCP
OO
BB

HCMIP
SHCMIP
MILP

PSO

O
bj

ec
tiv

e
co

st
 (s

ta
nd

ar
di

za
tio

n
se

pa
ra

te
ly

)

(a) best (b) mean

Figure 7. Normalized comparison results of different algorithms (considering unit ramp rate
constraint)

5.3. Influences of the Membrane Number to Convergence

For ease of explanation, the case of 10-unit without ramp constraints is taken as an example to
analyze the influences of membrane number to approximation of optimal solution for the proposed
CEHMC method.

5.3.1. GAPS

The effect of membrane number in GAPS on the objective value is simulated and illustrated in
Figure 8. It is found that No and Nco may have little influence on the convergence with all those curves
have similar shapes. Considering the computation cost and matching with other parameters, No is set
as 10, and Nco is 10.

Figure 8. Influence of membrane number to convergence (GAPS).

5.3.2. BMC

BMC is for the dynamic dispatching problem with continuous variables. The influence of
membrane number to convergence for BMC is based on a certain unit start-stop plan. The number of
membranes is the product of Nc’ and Nb’, which can also represent the iteration number. Figure 9
shows the penalty value curves changing with membrane number of BMC. It is found that when the
abscissa is 100, the curve is almost gentle. Therefore, Nc’ is set as 10, and Nb’ is 10.

0 10 20 30 40
5.5

5.6

5.7

5.8

5.9

6
x 105

Number of Genetic Membranes

To
ta

l G
en

er
at

io
n

C
os

t

No=8,Nco=2
No=10,Nco=2
No=12,Nco=2
No=10,Nco=4

Figure 7. Normalized comparison results of different algorithms (considering unit ramp rate constraint).

It is found that, with the unit size larger than 40, CEHMC has the best performance in all the
nine optimization methods. In other cases of unit size, the best result of CEHMC is lightly larger than
the optima of all the nine optimization algorithms. The introduction of cross-entropy theory greatly
improves the optima searching ability, which makes the results of CEHMC generally much better
than HMC.

5.3. Influences of the Membrane Number to Convergence

For ease of explanation, the case of 10-unit without ramp constraints is taken as an example to
analyze the influences of membrane number to approximation of optimal solution for the proposed
CEHMC method.

5.3.1. GAPS

The effect of membrane number in GAPS on the objective value is simulated and illustrated in
Figure 8. It is found that No and Nco may have little influence on the convergence with all those curves
have similar shapes. Considering the computation cost and matching with other parameters, No is set
as 10, and Nco is 10.

Energies 2019, 12, x FOR PEER REVIEW 14 of 18

1

1.005

1.01

1.015

1.02

1.025

HMC
CHMC

MISOCP
OO
BB
HCMIP
SHCMIP

MILP
PSO

10 20 40 60 80 100
Unit size

O
bj

ec
tiv

e
co

st
 (s

ta
nd

ar
di

za
tio

n
se

pa
ra

te
ly

)

1

1.005

1.01

1.015

1.02

1.025

1.03

10 20 40 60 80 100
Unit size

HMC
CHMC

MISOCP
OO
BB

HCMIP
SHCMIP
MILP

PSO

O
bj

ec
tiv

e
co

st
 (s

ta
nd

ar
di

za
tio

n
se

pa
ra

te
ly

)

(a) best (b) mean

Figure 7. Normalized comparison results of different algorithms (considering unit ramp rate
constraint)

5.3. Influences of the Membrane Number to Convergence

For ease of explanation, the case of 10-unit without ramp constraints is taken as an example to
analyze the influences of membrane number to approximation of optimal solution for the proposed
CEHMC method.

5.3.1. GAPS

The effect of membrane number in GAPS on the objective value is simulated and illustrated in
Figure 8. It is found that No and Nco may have little influence on the convergence with all those curves
have similar shapes. Considering the computation cost and matching with other parameters, No is set
as 10, and Nco is 10.

Figure 8. Influence of membrane number to convergence (GAPS).

5.3.2. BMC

BMC is for the dynamic dispatching problem with continuous variables. The influence of
membrane number to convergence for BMC is based on a certain unit start-stop plan. The number of
membranes is the product of Nc’ and Nb’, which can also represent the iteration number. Figure 9
shows the penalty value curves changing with membrane number of BMC. It is found that when the
abscissa is 100, the curve is almost gentle. Therefore, Nc’ is set as 10, and Nb’ is 10.

0 10 20 30 40
5.5

5.6

5.7

5.8

5.9

6
x 105

Number of Genetic Membranes

To
ta

l G
en

er
at

io
n

C
os

t

No=8,Nco=2
No=10,Nco=2
No=12,Nco=2
No=10,Nco=4

Figure 8. Influence of membrane number to convergence (GAPS).

5.3.2. BMC

BMC is for the dynamic dispatching problem with continuous variables. The influence of
membrane number to convergence for BMC is based on a certain unit start-stop plan. The number

Energies 2019, 12, 486 15 of 18

of membranes is the product of Nc
′ and Nb

′, which can also represent the iteration number. Figure 9
shows the penalty value curves changing with membrane number of BMC. It is found that when the
abscissa is 100, the curve is almost gentle. Therefore, Nc

′ is set as 10, and Nb
′ is 10.Energies 2019, 12, x FOR PEER REVIEW 15 of 18

Figure 9. Influence of membrane number to convergence (BMC).

5.4. Analysis of Calculation Efficiency

Figure 10 shows how Nco’ influences the approaching to the optimal solution. It is found that Nco’
have effect on convergence. When Nco’ is set 6, the convergence rate is fastest. when Nco’ is set 2, the
convergence rate is the slowest. After comprehensive consideration, the value of Nco’ is set 4.

In order to verify the calculation efficiency of the proposed method, the calculation efficiency
for the proposed CEHMC method and the other methods (in Table 4) are analysed and compared.
The unit ramp rate constraints are considered. The computation time growth rate curves with the
unit size increasing from 10 to 100 are illustrated in Figure 11. The computation time growth rate is
based on the time consumed for the case of 10-unit.

Figure 10. The sensitivity of Nco’ to convergence (BMC)

0 100 200 300 400
5

6

7

8

9

10
x 105

Total Number of Parallel Basic Membranes

P
en

al
ty

 F
un

ct
io

n

No'=8
No'=10
No'=12

0 100 200 300 400
5

6

7

8

9

10
x 105

Total Number of Parallel Basic Membranes

P
en

al
ty

 F
un

ct
io

n

Nco'=2
Nco'=4
Nco'=6

Figure 9. Influence of membrane number to convergence (BMC).

5.4. Analysis of Calculation Efficiency

Figure 10 shows how Nco
′ influences the approaching to the optimal solution. It is found that

Nco
′ have effect on convergence. When Nco

′ is set 6, the convergence rate is fastest. when Nco
′ is set 2,

the convergence rate is the slowest. After comprehensive consideration, the value of Nco
′ is set 4.

Energies 2019, 12, x FOR PEER REVIEW 15 of 18

Figure 9. Influence of membrane number to convergence (BMC).

5.4. Analysis of Calculation Efficiency

Figure 10 shows how Nco’ influences the approaching to the optimal solution. It is found that Nco’
have effect on convergence. When Nco’ is set 6, the convergence rate is fastest. when Nco’ is set 2, the
convergence rate is the slowest. After comprehensive consideration, the value of Nco’ is set 4.

In order to verify the calculation efficiency of the proposed method, the calculation efficiency
for the proposed CEHMC method and the other methods (in Table 4) are analysed and compared.
The unit ramp rate constraints are considered. The computation time growth rate curves with the
unit size increasing from 10 to 100 are illustrated in Figure 11. The computation time growth rate is
based on the time consumed for the case of 10-unit.

Figure 10. The sensitivity of Nco’ to convergence (BMC)

0 100 200 300 400
5

6

7

8

9

10
x 105

Total Number of Parallel Basic Membranes

P
en

al
ty

 F
un

ct
io

n

No'=8
No'=10
No'=12

0 100 200 300 400
5

6

7

8

9

10
x 105

Total Number of Parallel Basic Membranes

P
en

al
ty

 F
un

ct
io

n

Nco'=2
Nco'=4
Nco'=6

Figure 10. The sensitivity of Nco′ to convergence (BMC).

In order to verify the calculation efficiency of the proposed method, the calculation efficiency for
the proposed CEHMC method and the other methods (in Table 4) are analysed and compared. The
unit ramp rate constraints are considered. The computation time growth rate curves with the unit size
increasing from 10 to 100 are illustrated in Figure 11. The computation time growth rate is based on
the time consumed for the case of 10-unit.

Energies 2019, 12, 486 16 of 18
Energies 2019, 12, x FOR PEER REVIEW 16 of 18

0

5

10

15

20

25

30

CHMC
MILP
SHCMIP
HCMIP
BB
MISOCP

10 20 40 60 80 100
Unit size

C
om

pu
ta

tio
n

tim
e

gr
ow

th
 ra

te

Figure 11. Computation time growth rate curves (considering unit ramp rate constraint).

It can be seen that only SHCMIP has a little better calculation efficiency than the proposed
CEHMC method as the unit size increases. The time growth rate of CEHMC is significantly lower
than the other four methods (MISOCP, BB, HCMIP, MILP) for large-scale UC problems.

6. Conclusions

In this paper, a cross-entropy-based hybrid membrane computing method is proposed to solve
the UC problem which is inspired by living cells and their organization in tissues and other higher
order structures. In the proposed method, the genetic algorithm-based P system is applied for the
unit start-stop plan with embedded generic rules, which can transmit the outer optima into the inner
membranes. The biomimetic membrane computing method combined with the cross-entropy is
proposed to solve the dynamic economic dispatch problem with strengthened searching ability,
which is inspired by the important role of Golgi apparatus in living cells. The 10–100 unit systems for
24 h day-ahead dispatching simulation results showed that the UC problem could be solved by the
proposed method with good efficiency and stability. In future research, network constraints will be
considered, and the method will be further improved to optimize simulation results.

Author Contributions: conceptualization, M.X.; methodology, Y.D.; software, Y.D. and P.C.; validation, W.W.;
writing—original draft preparation, Y.D.; writing—review and editing, M.X.; supervision, M.X. and M.L.;
funding acquisition, M.X.

Funding: The financial supports for this research, from Guangdong Natural Science Foundation Free
Application Project (2018A0303130134), are gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pandžić, H.; Dvorkin, Y.; Qiu, T.; Wang, Y.; Kirchen, D. Toward cost-efficient and reliable unit commitment
under uncertainty. IEEE Trans. Power Syst. 2016, 31, 970–982.

2. Mohammad, J.F.; Mitch, C.; Shabbir, A.; Ahmed, S.; Grijalva, S. Large-scale decentralized unit commitment.
Int. J. Electr. Power Energy Syst. 2015, 73, 97–106.

3. Bai, Y.; Zhong, H.; Xia, Q.; Kang, C. A decomposition method for network-constrained unit commitment
with AC power flow constraints. Energy 2015, 88, 595–603.

4. Quan, R.; Jian, J.; Yang, L. An improved priority list and neighborhood S. Arch method for unit
commitment. I. J. Electr. Power Energ. Syst. 2015, 67, 278–285.

5. Yuan, W.; Zhai, Q. Power-based transmission constrained unit commitment formulation with energy-
based reserve. IET Gener. Trans. Distrib. 2017, 11, 409–418.

6. Zheng, H.; Jian, J.; Yang, L.; Quan, R. A deterministic method for the unit commitment problem in power
systems. Comput. Oper. Res. 2016, 66, 241–247.

Figure 11. Computation time growth rate curves (considering unit ramp rate constraint).

It can be seen that only SHCMIP has a little better calculation efficiency than the proposed CEHMC
method as the unit size increases. The time growth rate of CEHMC is significantly lower than the other
four methods (MISOCP, BB, HCMIP, MILP) for large-scale UC problems.

6. Conclusions

In this paper, a cross-entropy-based hybrid membrane computing method is proposed to solve
the UC problem which is inspired by living cells and their organization in tissues and other higher
order structures. In the proposed method, the genetic algorithm-based P system is applied for the
unit start-stop plan with embedded generic rules, which can transmit the outer optima into the
inner membranes. The biomimetic membrane computing method combined with the cross-entropy
is proposed to solve the dynamic economic dispatch problem with strengthened searching ability,
which is inspired by the important role of Golgi apparatus in living cells. The 10–100 unit systems for
24 h day-ahead dispatching simulation results showed that the UC problem could be solved by the
proposed method with good efficiency and stability. In future research, network constraints will be
considered, and the method will be further improved to optimize simulation results.

Author Contributions: Conceptualization, M.X.; methodology, Y.D.; software, Y.D. and P.C.; validation, W.W.;
writing—original draft preparation, Y.D.; writing—review and editing, M.X.; supervision, M.X. and M.L.; funding
acquisition, M.X.

Funding: The financial supports for this research, from Guangdong Natural Science Foundation Free Application
Project (2018A0303130134), are gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pandžić, H.; Dvorkin, Y.; Qiu, T.; Wang, Y.; Kirchen, D. Toward cost-efficient and reliable unit commitment
under uncertainty. IEEE Trans. Power Syst. 2016, 31, 970–982. [CrossRef]

2. Mohammad, J.F.; Mitch, C.; Shabbir, A.; Ahmed, S.; Grijalva, S. Large-scale decentralized unit commitment.
Int. J. Electr. Power Energy Syst. 2015, 73, 97–106.

3. Bai, Y.; Zhong, H.; Xia, Q.; Kang, C. A decomposition method for network-constrained unit commitment
with AC power flow constraints. Energy 2015, 88, 595–603. [CrossRef]

4. Quan, R.; Jian, J.; Yang, L. An improved priority list and neighborhood S. Arch method for unit commitment.
Int. J. Electr. Power Energ. Syst. 2015, 67, 278–285. [CrossRef]

5. Yuan, W.; Zhai, Q. Power-based transmission constrained unit commitment formulation with energy-based
reserve. IET Gener. Trans. Distrib. 2017, 11, 409–418. [CrossRef]

http://dx.doi.org/10.1109/TPWRS.2015.2434848
http://dx.doi.org/10.1016/j.energy.2015.05.082
http://dx.doi.org/10.1016/j.ijepes.2014.11.025
http://dx.doi.org/10.1049/iet-gtd.2016.0865

Energies 2019, 12, 486 17 of 18

6. Zheng, H.; Jian, J.; Yang, L.; Quan, R. A deterministic method for the unit commitment problem in power
systems. Comput. Oper. Res. 2016, 66, 241–247. [CrossRef]

7. Nasri, A.; Kazempour, S.J.; Conejo, A.J.; Ghandhari, M. Network-constrained AC unit commitment under
uncertainty: A benders decomposition approach. IEEE Trans. Power Syst. 2015, 31, 412–422. [CrossRef]

8. GAMS Development Corporation. GAMS, the Solvers’ Manual, 2015. Available online: http://www.gams.
com/solvers (accessed on 1 December 2018).

9. Rouhi, F.; Effatnejad, R. Unit commitment in power system t by combination of dynamic programming (DP),
genetic algorithm (GA) and particle swarm optimization (PSO). Indian J. Sci. Technol. 2015, 8, 134. [CrossRef]

10. Magnússon, S.; Weeraddana, P.C.; Rabbat, M.G.; Fischione, C. On the convergence of alternating direction
Lagrangian methods for nonconvex structured optimization problems. IEEE Trans. Control Netw. Syst. 2016,
3, 296–309. [CrossRef]

11. Sun, L.; Zhang, Y.; Jiang, C. A matrix real-coded genetic algorithm to the unit commitment problem.
Electr. Power Syst. Res. 2006, 76, 716–728. [CrossRef]

12. Shukla, A.; Singh, S.N. Multi-objective unit commitment using search space-based crazy particle swarm
optimisation and normal boundary intersection technique. IET Gener. Trans. Distrib. 2016, 10, 1222–1231.
[CrossRef]

13. Valenzuela, J.; Smith, A.E. A seeded memetic algorithm for large unit commitment problems. J. Heuristics
2002, 8, 173–195. [CrossRef]

14. Wang, H.; Peng, H.; Shao, J.; Wang, T. A thresholding method based on P systems for image segmentation.
ICIC Express Lett. 2012, 6, 221–227.

15. Wang, X.; Zhang, G.; Zhao, J.; Rong, H.; Ipate, F.; Lufticaru, R. A modified membrane-inspired algorithm
based on particle swarm optimization for mobile robot path planning. Int. J. Comput. Comm. Control 2015, 10,
732–745. [CrossRef]

16. Xiao, J.H.; Zhang, X.Y.; Xu, J. A membrane evolutionary algorithm for DNA sequence design in DNA
computing. Chin. Sci. Bull. 2012, 57, 698–706. [CrossRef]

17. Zhao, J.; Wang, N. A bio-inspired algorithm based on membrane computing and its application to gasoline
blending scheduling. Comput. Chem. Eng. 2011, 35, 272–283. [CrossRef]

18. Zhang, G.X.; Cheng, J.X.; Gheorghe, M. A membrane-inspired approximate algorithm for traveling salesman
problems. Rom. J. Inf. Sci. Technol. 2011, 14, 3–19.

19. Leporati, A.; Pagani, D. A membrane algorithm for the min storage problem. In International Workshop on
Membrane Computing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 443–462.

20. Pereira, S.; Ferreira, P.; Vaz, A.I.F. A simplified optimization model to short-term electricity planning. Energy
2015, 9, 2126–2135. [CrossRef]

21. Păun, G. Computing with membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
22. Păun, A. On P Systems with Active Membranes. Unconventional Models of Computation; UMC’2K; Springer:

London, UK, 2001; pp. 187–201.
23. Rubinstein, R. The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput.

Appl. Probab. 1999, 1, 127–190. [CrossRef]
24. Kroese, D.P.; Porotsky, S.; Rubinstein, R.Y. The cross-entropy method for continuous multi-extremal

optimization. Methodol. Comput. Appl. Probab. 2006, 8, 383–407. [CrossRef]
25. Quinn, A.; Kárný, M.; Guy, T.V. Fully probabilistic design of hierarchical Bayesian models. Inf. Sci. 2016, 369,

532–547. [CrossRef]
26. Yang, Z.; Gao, K.; Fan, K.; Lai, Y. Sensational headline identification by normalized cross entropy-based

metric. Comput. J. 2015, 58, 644–655. [CrossRef]
27. Senjyu, T.; Shimabukuro, K.; Uezato, K.; Funabashi, T. A fast technique for unit commitment problem by

extended priority list. IEEE Trans. Power Syst. 2003, 18, 882–888. [CrossRef]
28. Guo, S.; Guan, X.; Zhai, Q. The necessary and sufficient conditions for determining feasible solutions to unit

commitment problems with ramping constraints. IEEE Power Eng. Soc. Gen. Meet. 2005, 1, 344–349.
29. Yuan, X.; Tian, H.; Zhang, S.; Ji, B.; Huo, Y. Second-order cone programming for solving unit commitment

strategy of thermal generators. Energy Convers. Manag. 2013, 76, 20–25. [CrossRef]
30. Roy, P.K. Solution of unit commitment problem using gravitational search algorithm. Int. J. Electric. Power

Energy Syst. 2013, 53, 85–94. [CrossRef]

http://dx.doi.org/10.1016/j.cor.2015.01.012
http://dx.doi.org/10.1109/TPWRS.2015.2409198
http://www.gams.com/solvers
http://www.gams.com/solvers
http://dx.doi.org/10.17485/ijst/2015/v8i2/57782
http://dx.doi.org/10.1109/TCNS.2015.2476198
http://dx.doi.org/10.1016/j.epsr.2005.10.005
http://dx.doi.org/10.1049/iet-gtd.2015.0806
http://dx.doi.org/10.1023/A:1017960507177
http://dx.doi.org/10.15837/ijccc.2015.5.2030
http://dx.doi.org/10.1007/s11434-011-4928-7
http://dx.doi.org/10.1016/j.compchemeng.2010.01.008
http://dx.doi.org/10.1016/j.energy.2015.10.040
http://dx.doi.org/10.1006/jcss.1999.1693
http://dx.doi.org/10.1023/A:1010091220143
http://dx.doi.org/10.1007/s11009-006-9753-0
http://dx.doi.org/10.1016/j.ins.2016.07.035
http://dx.doi.org/10.1093/comjnl/bxu107
http://dx.doi.org/10.1109/TPWRS.2003.811000
http://dx.doi.org/10.1016/j.enconman.2013.07.019
http://dx.doi.org/10.1016/j.ijepes.2013.04.001

Energies 2019, 12, 486 18 of 18

31. Juste, K.A.; Kita, H.; Tanaka, E.; Hasegava, J. An evolutionary programming solution to the unit commitment
problem. IEEE Trans. Power Syst. 1999, 14, 1452–1459. [CrossRef]

32. Quan, R.; Hua, W.; Jian, J. Solution of large scale unit commitment by second-order cone programming.
Proc. CSEE 2010, 30, 101–107.

33. Xie, M.; Zhu, Y.; Wu, Y.; Yan, Y.; Liu, M. Application of ordinal optimization theory to solve large-scale unit
commitment problem. Control Theory Appl. 2016, 33, 542–551.

34. Yang, L.; Jian, J.; Han, D.; Zheng, H. A hyper-cube cone relaxation model and solution for unit commitment.
Trans. China Electrotech. Soc. 2013, 28, 252–261.

35. Yang, L.; Jian, J.; Zheng, H.; Dan, D. A sub hyper-cube tight mixed integer programming extended cutting
plane method for unit commitment. Proc. CSEE 2013, 33, 99–108.

36. Liu, S.; Jian, J. Research on unit commitment considering emission trading. Power Syst. Technol. 2013, 3,
3558–3563.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/59.801925
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Mathematical Model for UC Problems
	Objective Function
	Constraints

	Unconstrained UC Model for CEHMC Method
	CEHMC Method Applied to Solve UC Problem
	GAPS for Unit Start-Stop Plan
	Biomimetic Membrane Computing Method for Dynamic Economic Dispatch
	CE Optimization Method
	Procedures of CEHMC Method for UC Problem

	Case Study
	Simulation Results of UC Problem without Ramp Constraints
	Simulation Results of UC Problem with Ramp Constraints
	Influences of the Membrane Number to Convergence
	GAPS
	BMC

	Analysis of Calculation Efficiency

	Conclusions
	References

