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Abstract: The aim of this paper is to improve the operating share of a biomass cogeneration unit by
using unavoidable heat waste heat recovered from a district network heating used for drying woody
biomass’ return water (law-grade temperature heat). The optimal operating conditions of a drying
unit added to the system were estimated from an energy and a financial point of view, applying four
objective functions (drying time, energy consumption, energy balance, and financial performance of
the cogeneration unit). An experimental design methodology used heat for the implementation of
these functions and to obtain an operating chart. Numerical modelling was performed to develop a
simulation tool able to illustrate the unsteady operations able to take into account the available waste
heat. Surprisingly, the model shows that the right strategy to increase the financial gain is to produce
more warm water than necessary and to consequently dispose higher quantities of unavoidable
heat in the network’s return water, which heat up the drying air at a higher temperature. This
result contrasts with the current approaches of setting-up cogeneration units that are based on the
minimization of the heat production.

Keywords: unavoidable heat waste; efficiency; biomass drying; financial gain

1. Introduction

1.1. General Introduction

In the current global context, energy management and energy saving technologies are of strategic
importance in the transition to a more efficient, sustainable, and low carbon energy system. Indeed,
the world energy consumption and demand is rapidly rising [1] and the development of alternative
and more sustainable energy sources have become a priority in order to decrease environmental issues.
Unfortunately, certain scenarios predict that renewable energies will not be sufficient to meet overall
energy needs [2]. One of the most promising solutions is to reduce heat waste when using alternative
energies. Heat waste represents a significant fraction of the total energy consumption, but the variable
geographical location, process source, amount, quality, and availability issues make energy recovery
and utilization challenging. Gingerich et al. [3] investigated the full potential, quality, and possible
use of waste heat coming from thermal power generation units in the US. Heat waste streams were
analyzed differently in terms of temperature, seasonal availability, and amount, and consequently,
the identified applications were disparate [4].

Many studies have been devoted to the use of extra heat or heat waste coming from industrial
units in district heating [5]. The transformation into power or electricity by Organic Rankine Cycles
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(ORC) was also investigated [6,7]. However, a dramatic lack in studies concerning the recovery of
low-grade heat (T < 70 ◦C) has been identified in the recent literature. This fraction of waste energy at
low temperatures is commonly defined as “unavoidable waste heat”.

Highly efficient cogeneration units produce electricity, heat, and hot water for domestic, municipal
(district heating) and industrial issues. The hot water produced is then distributed to the downstream
users in the pipeline of a heating network. After use, the return water must be cooled down before
being re-injected in the heat system of the steam generator. For this reason, the heating network
is generally equipped of cooling towers to dissipate the residual heat from the return water. This
low-grade heat (temperature in the 30–60 ◦C range) called “unavoidable waste heat” is completely lost
in this process [8]. Besides, the cooling system needs extra-energy for operating valves, pumps, and
extra-costs to supply the chemical products for antibacterial water treatments.

In France, the resale grid-connected tariff of power is directly proportional to the cogeneration
plant efficiency (ratio between the usable energy and the nominal fuel power) [9]. The recovery of
“unavoidable waste heat” appears then to be very interesting from environmental, energetic, and
financial points of view because [10]: (i) the global plant efficiency increases; (ii) the resale tariff of
electric power, and thus, the profit of the industrial plant increases; (iii) the use of extra energy and
water treatment products in the cooling towers is minimized or even eliminated; (iv) the waste heat is
not dissipated in the atmosphere.

1.2. Low-Grade Heat Recovery (T < 70 ◦C)

A current challenge is to identify new market applications for this energy [11,12]. Indeed, the
efficient use of heat at low temperatures is limited to a few applications such as power generation from
ORC [13,14], which has poor efficiency at low temperatures, heating of horticultural greenhouses [12],
preheating steps in industrial processes [15,16], and heat supply for anaerobic digestion of biomass [17].
Due to the geographical location of the power units (i.e., generally close to residential buildings and
municipal infrastructures, integrated to district heating networks), it is seldom possible to develop
such “unavoidable” heat waste recovery systems. Several studies have a major aim to evaluate the
potential of process sites for low-grade heat recovery, especially the efficiency of various options
(e.g., ORC, Kalina cycles, adsorption heat pumps, chillers, etc.) [18]. The optimization of cogeneration
systems was also numerically studied [19]. Other works focused on specific techniques to recover
heat waste. For example, the use of heat pumps operating in various production sites [20] or the
implementation of chemisorption-based energy storage systems [21]. As the domestic demand of
heat fluctuates as a function of the weather, the temperature of the return flow, and consequently the
availability of heat waste in the heating network, will be variable [22]. One possible alternative way
to use this low-grade heat is by pre-drying or drying wet materials, such as fuel pre-drying [16,23],
sewage sludge drying (including heat from the biochemical process treatment [24]), and biomass
drying for energy purposes [17,25–27]. Indeed, woody biomass coming from forestry contains up to
50% in water weight and its combustion is consequently energetically unattractive. By eliminating
around 20% of the initial water, the heat capacity increases from 2.2 to 3.9 kWh·kg−1. In this way, the
dried biomass can be stored (if protected to avoid further moisture absorption) and used as fuel with
higher heat capacity [28].

1.3. Industrial Setup

The former industrial installation consisted in a biomass cogeneration unit (17.2 MW) producing
electricity (5.2 MW) and hot water (12 MW), which was used to distribute the heat in a district
heating network.

Figure 1 shows a schematic diagram of the cogeneration unit. The biomass used (woodchips,
corncob, or wood wastes) was moved by a conveyer belt from the tank and introduced by a feeder screw
in the boiler (fluidized bed). Electric power was produced from two coaxial turbines (HP backpressure
turbine and BP turbine). The second (0.1 bar, 45 ◦C) could not be engaged as it operates only in the low
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season, where it is cooled by a water loop coming from air coolers. The district heating network was 10
km in length and covered heat needs of 3500 housing equivalents. Before the installation of the drying
set-up (dotted box in Figure 1), the return water (law-grade temperature water) was re-injected into
the boiler. After modifications (installation of the drying system), the return water was directly used to
heat up the drying air in a heat exchanger. The annual electricity production was about 25 GWh and
the useful heat output was 40 GWh.
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Figure 1. Schematic diagram of the cogeneration facility.

1.4. Methodology

The main objective of this work was to determine and optimize the process parameters to
dry biomass using “unavoidable energies”. A three-pronged approach (biomass characterization,
experimental study, and numerical treatment of results) was used to investigate the drying efficiency
as a function of time, available energy, and financial gain. The industrial interest of such work is
to identify the best operating conditions for both companies: the heat and electricity producer and
the wood supplier. This study provides a global approach, where the interactions between the two
industrial activities are taken into account in the numerical modeling.

At the laboratory scale, an experimental study was carried out on a pilot dryer (scaled-down
reproduction of the industrial installation) and a numerical tool was developed to simulate the dryer
performances. From these experimental and simulated results, relevant operating information were
obtained, allowing us to construct the operating chart. Indeed, several studies investigated the
optimization of wood drying processes in the past [29,30]. They concluded that the optimization of
drying operations is a difficult combinatorial problem and that the calculation of a complex objective
function including criteria (e.g., economical, technical, performance, time, etc.) requires a modeling
approach and various assumptions.

2. Materials and Methods

2.1. Experimental Setup

The experimental equipment is the pilot dryer (T.I.A., Bollène, France) represented in Figure 2.
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Figure 2. Pilot dryer and drying chamber.

The pilot dryer [31] consisted of a small-scale reproduction (1/10th scale model) of the industrial
dryer (Réseaux de Chaleur Urbains d’Alsace company). The ambient air was drawn by a fan, heated
by electrical heaters, and then introduced in the drying chamber. Air velocity, temperature, and
humidity WERE directly measured USING sensors connected to a control panel. The biomass was then
placed into the drying chamber, in which it was composed of two parallel beds. The drying chamber,
containing the biomass, was then placed on a balance, able to continuously measure the mass loss,
and indirectly the humidity content. Four supplementary thermocouples allowed for temperature
measurement inside the biomass beds. Further, one thermocouple and a sensor were placed at the exit
of the dryer to measure the temperature and humidity of the exhaust air. All experimental data were
recorded in real time with a data acquisition system integrated into the control panel.

The physico-chemical properties of the different wood biomasses were measured (i.e., density,
specific heat, and thermal conductivity) at different temperatures and water contents. The same
properties were also determined for each material in the configuration used during drying (bed of
biomass chips), thus taking into account the presence of air between the wood chips.

2.2. Biomass Thermo-Physical Properties

The selected biomasses were wood chips from forestry. The length and width of the chips were in
the 1–5 cm range, while the thickness was lower than 2.5 cm. The initial water content was in the 40 to
50 mass% (wet basis) range.

To correctly simulate the biomass drying, the thermo-physical properties of the biomass, as a
function of water content and temperature, have to be integrated into the model. The properties of the
biomass bed are required, too. For this reason, the density of the wood was obtained by mass balance.
A weighed mass of chips was introduced in a vessel of known volume and the empty space between
the chips filled with sand. The apparent density of the biomass bed was then directly obtained by
weighting the chips/sand mixture.

The water content was measured using the weight difference of the wood samples before and
after drying (at 105 ◦C during 24 h).

The specific heat of the wood was obtained by calorimetric analysis performed in an adiabatic
calorimeter, while the thermal conductivity of the biomass beds was estimated by using a guarded
hot plate apparatus. Such experiments allowed for the measurement, in the steady state, of heat flow
passing through the biomass for a given temperature gradient.

2.3. Modelling of the Drying Process

The model used in this study was a classic drying model already accurately detailed in the
literature [32–34]. Mass and heat transfer were assumed to be monodimensional (x) and time dependent
(t) in the biomass bed [35]. Hence, the drying process was described using a set of three coupled and
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non-linear differential equations (Equations (1)–(3)), representing the water mass balance (Equation (1))
and the energy balances in air (Equation (2)), as well as the biomass (Equation (3)), respectively.
An additional equation was used to approximate the drying kinetics (Equation (4)).

The water mass balance in the wood bed was:

.
ma

∂H
∂x

+ ρbed
b V

∂M
∂t

= 0 (1)

The energy balance of air passing through the biomass bed was:

.
ma(ca + cv H)

∂T
∂x

= ρbed
b cv(T − θ)

∂M
∂t

− ha(T − θ) (2)

The energy balance in the biomass was:

ρbed
b cb

∂θ

∂t
= ha(T − θ) + ∆Hvapρbed

b
∂M
∂t

(3)

The boundary conditions were as follows:
The inlet temperature T (x = 0) and humidity of air H (x = 0) are constant. The biomass was

assumed to be at room temperature θ0 = 20 ◦C and the biomass water content was equal to M0

before drying.
Kinetic modelling of the drying process:
An empirical equation [36,37] was used to simulate the drying process. This equation, called the

Henderson and Pabis equation or the Lewis equation for a = 1, assumed a diffusive control of the
drying process. This equation was previously used for various agricultural products (e.g., bagasse,
peanuts) and is particularly suitable for wood residues (chips, bark, small branches of softwood).

M = Meq + a
(

M0 − Meq
)
e−kt (4)

The biomass humidity (dry basis) at the equilibrium Meq was calculated using the equation developed
by Zuritz et al. [38]. For wood, this equation provides reliable results in the 21.1 ◦C to 71.1 ◦C range [39].

Meq = 0.01

 −Tln(1 − ϕ)

0.13
(

1 − T
Tc

)−6.46


1

110 T−0.75

(5)

With Tc = 647.1 K the critical temperature of water.
Numerical calculation:
The model consisted of four equations and associated boundary conditions with four unknown

factors (H, M, T, and θ). This system was spatially discretized according to the finite difference
method and the Euler method, used for time integration. The different thermo-physical properties
of air and biomass were calculated as a function of temperature and water content. Simulations
were performed according to an explicit scheme, which previously required an adjustment of the
discretization parameters.

2.4. Experiments and Results Analysis

Experiments were performed according to the Design of Experiments (DOE) (central composite
design), as shown in Figure 3. This approach allowed us to optimize the utilization of experimental
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and numerical results [40]. On the basis of the DOE, the studied functions Y can be approximated by
the quadratic function of air temperature and flow rate, reported as follows:

Y = a0 + a1T + a2Qair + a3T2
+ a4Qair

2
+ a5QairT (6)

The five parameters were numerically estimated by minimizing a quadratic criterion between
experimental and calculated values. This methodology required a minimum of nine experimental
tests to perform the calculation and some additional tests to estimate the relevance of the results. To
compare the five parameters, two operating conditions were normalized in the [−2,2] range. T and Qair
represented the normalized values of air temperature and flow rate, respectively. This methodology
allowed us to estimate the influence of each operating condition on the studied function, as was
previously reported in similar studies [41–45].
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Figure 3. Experimental tests according to the design of experiments (DOE).

To estimate the dryer performances and the efficiency of the waste heat recovery process, four
response functions were taken into account: (i) the drying time (td): the time to reach the final water
content (Mf); (ii) the heat (Q) used to dry biomass from the initial to the final humidity (expressed per
kilogram of evaporated water):

Q =
ρaQairCa(T0 − T∞)td

mb

(
M0 − M f

) (7)

(iii) the energy balance (E): the gain in heat value (heat upgrade obtained after drying of the biomass)
divided by the heat used to dry, as follows:

E =
m f LHVf − m0LHV0

ρairQairCa(T0 − T∞)td
(8)

where LHVf and LHV0 (J·kg−1) are the final and initial lower heating values, respectively; and (iv) the
financial gain (FG): ratio between the gain of the cogeneration unit including the drying process and
the gain of the cogeneration unit without the drying process.

FG =
(Ugenerated − Uused)elec × Costelec(with drying) + Qused × Costheat

(Ugenerated − Uused)elec × Costelec(without drying) + Qused × Costheat (9)

Costelec and Costheat are respectively the feed-in tariffs of electric power and heat. The numerator
of FG corresponds to the actual financial gain of the cogeneration system in the presence of the drying
unit, while the denominator is the financial gain in absence of the drying unit. This gain is the sum
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of the benefit obtained by selling electricity (Ugenerated − Uused) at the feed-in tariff (Costelec) and the
benefit obtained by selling heat (Qused) at the actual net price of heat per kWh.

The electricity used to run the global system includes the energy consumed from the fan, for the
circulation of the drying air (in the numerator) and the energy required from the cooling towers (in the
denominator). Recent results obtained during two years of operation shows that the drying unit used
12 thermal GWh (compared to 80 GWh of heat generated) and 0.14 GWh of electric power (compared
to 49 GWh of electricity produced).

The difference between the numerator and the denominator corresponds to the feed-in tariff
of electric power, which is linearly indexed (case study based on the French tariffs) to the
cogeneration efficiency.

Numerical approximation of experimental functions td, E, Q and FG were performed by solving a
system of n equations (number of tests) with six unknowns. The six model parameters were estimated
by minimizing the sum of square errors RSS = ∑n

i=1
(
yexp(i)− ycalc(i)

)
with y = E, Q, td, or FG.

The quality of numerical approximation was examined from five statistic values:

(i) the determination coefficient r2;

(ii) the standard error of estimate S =
√

RSS
n − 6

;

(iii) the Marquard’s percent;

(iv) standard deviation MPSD =

√
1

n − 6 ∑n
i=1

(
yexp(i)− ycalc(i)

)
yexp(i)

;

(v) the mean absolute error EABS =
1
n ∑n

i=1
⌊
yexp(i)− ycalc(i)

⌋
;

(vi) the mean relative error RE =
1
n ∑n

i=1

⌊
yexp(i)− ycalc(i)

yexp(i)

⌋
.

3. Results

3.1. Experimental Results

Experiments were performed accordingly to the central composite design. The operating
conditions in terms of air temperature and air mass flow rate are shown in Figure 3. Table 1 shows the
results obtained for the 10 experimental tests in terms of drying time, heat used for drying, energy
balance, and financial gain (projection on a real cogeneration installation).

Table 1. Experimental results of drying tests.

Test mb M0 Tair Qair Td Q 103E FG

Kg (db) kg·kg−1 (db) (◦C) (m3·h−1) (h) MWh·kg−1

1 4.08 0.65 40.8 137.9 2.25 1.00 2.90 1.16
2 4.50 0.58 55.8 119.2 1.31 1.09 2.78 1.28
3 4.35 0.51 54.0 173.4 1.47 1.99 1.59 1.26
4 4.03 0.60 63.8 133.5 1.46 1.73 1.73 1.37
5 4.27 0.58 31.5 175.9 4.89 1.76 1.72 1.11
6 4.86 0.51 77.3 168.6 1.35 2.90 1.09 1.74
7 4.47 0.52 40.9 195.6 1.59 1.66 1.89 1.16
8 5.48 0.39 65.1 195.2 1.01 2.76 1.25 1.39
9 5.08 0.40 55.0 221.8 1.39 3.39 1.01 1.27

10 4.30 0.58 44.2 130.2 2.67 1.72 1.77 1.26

At first, the six experimental tests were performed at the same operating conditions (50 ◦C and
150 m3/h) to assess the experimental error. One of these tests shows anomalous results probably due
to a weak initial moisture. The drying time obtained for the five remaining tests are 1.7 h ± 0.12 h
(standard deviation = 0.07).
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The pertinence of the quadratic approximations of the four studied functions is investigated for
10 experimental results (9 of the DOE + 1 additional test). The results are presented in Table 2.

Table 2. Relevance of the numerical approximation.

Functions r2 S EABS RE MPSD

td 0.932 0.497 0.233 0.121 0.237
Q 0.942 0.290 0.158 0.088 0.153
E 0.919 0.281 0.155 0.086 0.158

FG 0.982 0.037 0.020 0.017 0.028

The results show that numerical approximation of FG fits well the experimental results and, to
a certain extent, the Q and E functions. The worse results are obtained for drying time and are in
anyway acceptable.

Starting from these equations, response surface plots were generated for different
operating conditions.

3.2. Drying Time

Figure 4 shows the calculated drying time as a function of air temperature and flow rate.
The temperature and, at a lower extent, the air flow, which modified the drying performance. When
the air temperature was higher than 60 ◦C, the drying time slightly decreased. Moreover, the influence
of the air flow was quite limited in the studied temperature range (40 < T< 80 ◦C).
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Figure 4. Drying time as a function of air temperature and flow rate (DOE equation (line) and
experimental tests (points)).

Figure 5 shows the isocontours of the drying time in a diagram, where the air temperature is
plotted as a function of the air flow rate (obtained by the DOE equation). To satisfactorily approximate
the drying time (minimization of errors between experimental and calculated values), a polynomial
equation was applied with the logarithm of the drying time.

As expected, the drying time decreased for high temperatures and flow rates. However, for a
mass flow rate higher than 170 m3·h−1, only the drying time displayed a slight variation. Indeed,
the effect of flow rate is significant at high temperatures and a low flow rate. Under these conditions,
the extraction of water from the material was faster and the air flow rate was the limiting factor in the
mass transfer process. Sepulveda et al. [46] reached to the same conclusions for drying of waste from
cork industry. These curves were used as an industrial chart for the process optimization.
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Figure 5. Isocontours of drying time (air temperature vs. flow rate diagram).

3.3. Energy Analyses

Figure 6 shows the energy consumption for the wood chips drying process (expressed per kilogram of
evaporated water) as a function of the operation conditions (air temperature and flow rate). The numerical
approximation of the energy used was performed by studying the square root of Q.
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Figure 6. Energy used (experimental = points; DOE equation = lines) for the drying process
(per kilogram of evaporated water).

As expected, energy increased with the temperature and, even more significantly, with the flow
rate. However, the energy increase was less important in the 30–45 ◦C temperature range.

The best drying conditions in terms of time (high temperature T > 50 ◦C and Qair > 170 m3·h−1)
corresponded to the highest energy consumption. On the contrary, the lowest energy consumptions
were reached for low air flows Qair < 160 m3·h−1 and T < 60 ◦C. These two functions present opposite
behavior. The best (drying time and energy consumption) ratio could be reached at intermediate flow
rates (in the 160–170 m3·h−1 range) and intermediate temperatures (between 50 and 60 ◦C).

Figure 7 reports the energy balance as a function of air temperature at different operating
conditions (various air flow rates). The numerical approximation of the energy balance was carried out
by studying the logarithm of E. Taking into account only the energy capacity of biomass combustion,
it turned out to be more interesting to dry at a low air temperature and low flow rate. The rapider
the drying, the lower the drying efficiency. As previously observed, the optimal conditions of drying,
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in terms of time (Figure 4, T ≥ 50 ◦C), energy balance (Figure 6, 30 ≤ T ≤ 55 ◦C, Q minimal), and
energy consumption (Figure 5, 30 ≤ T ≤ 50 ◦C, Q ≈ 120 m3·h−1), were reached for low air flow rates
(i.e., 120–140 m3·h−1) and intermediate temperatures (T ≈ 50 ◦C).
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Figure 7. Energy balance (E) versus air temperature and flow rate (DOE equation (line) and
experimental tests (points)).

3.4. Kinetic Results

Table 3 gives the kinetic parameters, as calculated by Equation (4). The graph of ln
(

M(t)− Meq

M0 − Meq

)
versus time, allows for the estimation of k (slope of the linear curve) and a (intercept). First, all the
curves are linear with an interception close to 0. In these conditions, the pre-exponential factor can be
assumed to be equal to 1.

Table 3. Kinetic parameters of drying.

Test mb M0 Tair Qair k

kg (db) kg·kg−1 (db) (◦C) (m3·h−1) (10−4·s−1)

1 4.08 0.65 40.8 137.9 1.76
2 4.50 0.58 55.8 119.2 1.98
3 4.35 0.51 54.0 173.4 1.77
4 4.03 0.60 63.8 133.5 1.85
5 4.27 0.58 31.5 175.9 0.77
6 4.86 0.51 77.3 168.6 2.17
7 4.47 0.52 40.9 195.6 1.72
8 5.48 0.39 65.1 195.2 2.65
9 5.08 0.40 55.0 221.8 1.97
10 4.30 0.58 44.2 130.2 1.20

Figure 8 shows the kinetic parameter k estimated from the experimental results for the applied
operating conditions (points) and the results from the DOE investigation (lines). The air flow rate
seems to have little effect on the kinetic parameter, except at high temperature. This behavior can
be attributed to the fact that the limiting factor is the diffusion of water into the material. When
the temperature increased, water diffusion was more rapid, and the effect of air flow rate became
significant. Contrary to the four previous studied functions, the numerical approximation using the
quadratic equation gave uncertain results. Indeed, no clear trend emerged from the experimental
results, except an increase of the kinetic parameter with the air temperature.
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Figure 8. Estimated kinetic parameter (k) versus air temperature and flow rate (DOE equation (line)
and estimated values (points)).

3.5. Numerical Results

After validation, the numerical tool will be able to perform simulations in different operating
conditions. The program calculated temperatures and water content into the biomass as a function
of time and biomass bed depth. To approximate and simulate drying experiments, the knowledge
model required the estimation of three parameters (the two kinetic parameters and ha, the coefficient
of heat transfer between air and biomass). The identification of these three parameters was not
simultaneous, because the kinetic parameters were estimated by approximation of the experimental
water contents into the material and ha by the temperature profiles in the bed of biomass. The kinetic
parameters were almost identical to those directly obtained by plotting the logarithm of the average
water content versus time. These results were expected due to the use of exactly the same equation
integrated to the model. The only difference was the calculation methodology of the equation: average
condition and spatial resolution. Starting from this kinetic estimation, only the volumetric heat transfer
coefficient was numerically estimated to approximate the experimental results (temperatures and
biomass water contents). The best-fitted convective coefficient is shown in Figure 9, according to the
operating conditions.Energies 2019, 12, 501 12 of 17 
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Figure 9. Best fitted convective heat transfer coefficient for different operating conditions.
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The coefficient linearly increased with the air mass flow rate and almost linearly decreased with
the applied air temperature values. These results are in good agreement with the kinetic theory of
gases (ideal gas). Indeed, the coefficient is often calculated using correlations (Nusselt number) in the
general form; Nu = C·Reα·Prβ with α > β > 0. The Reynolds number (Re) is linearly proportional to the
fluid velocity that explains the increase of the coefficient with the air mass flow rate. According to the
kinetic theory of gases for an ideal gas, the dependence in temperature of the convective coefficient is

T
β − 3α

2 .
Starting from these equations for kinetic and heat transfer, the program can be used in a predictive

way. To evaluate the predictive capacity of the numerical tool, the model was validated by comparing
experimental and numerical temperature profiles (in the middle of the biomass bed). Figures 10 and 11
show the calculated temperature profiles compared to the four experimental profiles obtained with the
operating conditions of test 5 and test 6, respectively.
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Figure 11. Experimental and simulated temperature profiles during the drying test six in the center of
the biomass bed.

The experimental and the numerical results reported in Figures 10 and 11 are in good agreement.
The biomass temperature increasing and the equilibrium temperature are well approximated by the
numerical model, as well as the evolution of the biomass water content. The numerical approach can
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simulate the biomass drying process in the studied range of operating conditions and, after a change
of scale, the industrial drying process.

4. Influence of Drying Process on the Cogeneration Unit Performances

Economic Analysis

Figure 12 shows the financial gain, which is the ratio between the gains obtained in presence
and in absence of the drying process, as a function of air temperature. The calculation is performed
with the feed-in tariffs 2017: costheat = 0.05 and costelec = 0.045 + 0.1253 × Rcogen, where Rcogen is
the cogeneration efficiency: ratio between energy (heat and electric power) generated and biomass
disposal defined as follow:

Rcogen =

(
Ugenerated − Uused

)
+ Qused

Energy input (boiler)

The experimental results (triangular dots) from the 10 tests are obtained for different mass flow
rates and temperatures. The numerical approximation of the financial gain is obtained by the FG
function. First of all, the obtained best-fitted parameters show that there is no significant influence
of the air flow rate. Thus, the influence of this parameter can be neglected with respect to the air
temperature. From this assumption, the financial gain can be approximated by a quadratic equation
depending only on the air temperature (r2 = 0.982):

FG = 1.2 + 0.1T + 0.03T2 (10)

This result can be explained by the fact that the energy used to produce the air flow rate (fan) is
negligible compared to the heat and electric power generated. Secondly, it can be observed that FG
increases with the air temperature. Indeed, the highest financial gain is obtained when the cogeneration
efficiency is maximized and so the feed-in tariff of the electric power. This is reached when all the
produced heat is sold to the network costumers, and the waste heat is used for drying the biomass. If the
biomass drying is carried out by a third party, the heat sold for this purpose increases the cogeneration
efficiency. When the demand is lower (i.e., during a particularly warm winter season) the financial
gain can be guaranteed by selling the exceeding heat for other purposes. Indeed, the production of
more energy than needed (especially for heating purposes) is relevant for the cost effectiveness of the
cogeneration unit. This result is very interesting for the future strategy of territory’s development, in
particular for planning of eco-neighborhoods. Nowadays, the construction of new housing is designed
to obtain the best individual performances (in terms of insulation, power generation, indoor heating,
and so forth). However, the current strategy generates problems from a collective point of view, as
it creates a mismatch between the heat demand and the amount of energy actually generated and
delivered via the heating network. In this context, the integration of a cogeneration unit is a difficult
matter due to the need to continuously adjust the power and the heat generation to the heat demand.
This functioning mode becomes a financial problem for energy suppliers that are obliged to operate in
degraded mode. From these results, it appears that coupling power and heat generation in domestic
and collective projects is feasible.
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5. Conclusions

A three-pronged approach (experimental, numerical, and DOE methodology) was used to
investigate the optimization of a cogeneration unit by using unavoidable energy. This energy was used
to dry biomass from the forestry industry. At first, four functions connected to the performances of the
dryer and the cogeneration unit were studied, using the DOE methodology approach. As expected,
the decrease of the drying time with the air flow rate and temperature was observed. On the other
hand, the financial gain results were surprising. The financial gain increased when there was no heat
demand, which corresponded to the configuration in which the heat produced was fully used to dry
the biomass. This unobvious result was due to the resale grid-connected tariff of power, which was
directly proportional to the cogeneration efficiency. Because of the way the overall system operates, the
financial gain did not depend on the energy producer (cogeneration unit) alone. Indeed, companies
and municipalities use heat via the district heating system (for hot water and heating needs) and
other companies need heat to dry biomass. The needs of one are not necessarily consistent with the
interests of other partners, especially in winter, when the heat demand is high. A numerical tool was
developed and validated to simulate drying of biomass in terms of temperature and water content at
different operating conditions. Simulations allows the determination of optimal conditions for a given
drying operation. As further development, unsteady conditions will be integrated into the numerical
model, in order to improve the performances of biomass drying and the overall cogeneration unit.
A new challenge will be to study the drying process at the temperature at which the energy is available
(temperature of the return water).
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Nomenclature

Latin Letters

a Pre-exponential constant
a0, a1,...a5 DOE model parameters
c Specific heat (J·kg−1·K−1)
cost Feed-in tariff (€/kWh)
E Energy balance
FG Financial gain
ha Volumetric coefficient of heat exchange (W·m−3·K−1)
H Air humidity (kg·kg−1)
k Kinetic constant (s−1)
LHV Lower heating value (J·kg−1)
.

m Mass flow rate (kg·m−2·s−1)
m Mass of biomass for drying purpose (kg)
M Biomass water content, dry basis (kg·kg−1)
Q Energy used per kilogram of evaporated water (MWh·kg−1)
Qair Flow rate (m3·h−1)
Qused Heat sold via the heat network (kWh)
t Time (s)
td Drying time (s)
T Air temperature (K)
Ugenerated Electric power (kWh) generated
Uused Electricity used by the coge. unit (kWh)
V Volume of the biomass bed (m3)
x Coordinate (m)
y Studied function (Q, E, FG or td)

Greek Letters

φ Relative humidity of drying air
ρair Air density (kg·m−3)
ρbed

b Apparent density of the biomass bed (kg·m−3)
∆Hvap Latent heat of vaporization (J·kg−1)
θ Biomass temperature (K)

Superscript

Qair and T Normalized values of Qair and T
bed Bed

Subscript

a Air
b Biomass
c Critical
calc Calculated
elec Electric power
eq Equilibrium
exp Experimental
f Final
heat Heat
v Water vapor
0 Initial
∝ Room
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