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Abstract: This paper provides a new common rail injector drive circuitry for practical use. The new
drive circuitry with variable freewheeling circuit was developed based on the requirements for the
rate of current drop in the peak-and-hold solenoid model. The variable freewheeling circuit exhibited
superior performance in the control accuracy compared to the conventional circuit with a resistor
in series with diode (RD) freewheeling circuit. Furthermore, the current cutting process was 30 µs
shorter, and the control accuracy of the cycle fuel injection mass was improved by at least 0.36%
or exactly 2.86% when a small fuel injection mass was used. In addition, the variable freewheeling
circuit consumed less power because the drive power charging was done through the feedback
from electromagnetic energy to electrical energy. When the fuel injection mass was large, the fall
range of the driving power voltage became 1 V smaller, its recovery time was 1ms shorter, and the
highest temperature of the drive circuitry was only 37 ◦C, which was 127 ◦C lower than that of
the RD freewheeling due to the decrease in energy consumption. Finally, experimental tests with
a multi-cylinder engine showed that the variable freewheeling circuit reduced the cycle-by-cycle
combustion variations by 0.5%, and lessened the NOx and soot emissions significantly by 3.5% and
4%, respectively, in comparison to the RD freewheeling circuit.
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1. Introduction

Various advanced engine combustion modes have been developed in order to achieve high
efficiency and low engine emissions [1–4]. The engine control unit (ECU) must provide more flexible
and accurate control for the start of injection (SOI), end of injection (EOI) and various injection
patterns [5–7]. Therefore, the common rail injector must not only have a highly responsive solenoid
but also have a suitable injector drive circuitry. The circuitry performance affects the control accuracy
of the injection that eventually will influence the combustion performance.

The injector solenoid is usually driven through the peak-and-hold model [8]. Figure 1 illustrates
the typical current shape of the peak-and-hold injector. In order to start a fuel injection, the solenoid
current accelerates rapidly from 0 A to Ipeak and the solenoid plunger is lifted quickly. Then, when the
plunger is already lifted, the current drops from Ipeak to Ihold, as shown in Stage (a) in Figure 1.
During the Ihold phase, the current is maintained near the Ihold, and the plunger is still lifted (Stage (b)).
Next, Stage (c) is the process in which the current drops from Ihold to 0A causing the plunger to be
lowered. The requirements for the rate of current drop are different in the three stages [9]. The rate
in Stages (a) and (b) should be slow to ensure a smooth transition and reduce the current vibrating
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range and the drive power consumption, respectively. Meanwhile, the rate in Stage (c) should be fast
to cut off the current quickly; the quicker the cutting process, the higher the accuracy of EOI and fuel
injection mass would be obtained [10,11].
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The conventional RD freewheeling circuit often employed in the solenoid drive circuitry
design [12], as shown in Figure 2, where the circle line outlines the current freewheeling path, and the
arrow represents the current direction. The rule of current drop in the RD freewheeling circuit is
expressed by Equation (1), which applies to all three stages mentioned above. However, a single
freewheeling path cannot simultaneously satisfy the different demands of the three stages [13].

di
dt

= − (R + r)i + UD
L

(1)
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Figure 2. Drive circuitry with resistor in series with diode (RD) freewheeling.

Several methods were proposed for designing an injector drive circuitry for the peak-and-hold
model. John D. Mooney [14] suggested a simulation code for evaluating circuitry designs,
introduced the design method for a single or dual power supply, and analyzed the influence of
different battery voltage on the drive current and DC/DC circuitry. The variable freewheeling circuit
was employed in his circuitry design, but without considering the feedback from the solenoid to the
power for energy recovery and electric energy saving. Jin Li [15] analyzed the drive voltage on the
solenoid responses based on a finite element model of solenoid valves, showing that the voltage was
one of the key factors for controlling the injector. Cai [16] studied the soft-switching circuit parameters
and their characteristics via simulation, and the results showed that using soft-switching technology
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in a high-speed solenoid drive circuitry could reduce the switching devices loss, noise, and energy
consumption. In addition, there exist some patents [17–19] about drive circuitries, but they failed
to provide the structure design principle and performance report. Also, some designs were only
explained through simulation, and these designs might be impractical for use. Therefore, in this study,
a new drive circuitry with a single power supply combined with a variable freewheeling circuit was
proposed and its structure design principle and performance were discussed.

2. Variable Freewheeling Drive Circuitry

The variable freewheeling drive circuitry employs different freewheeling paths in different stages.
By changing the switches’ working conditions, a single appropriate freewheeling path will be effective
enough to control the current drop process according to the different requirements in the three stages.

A predesign and example, which completely satisfied the drop rate requirements, is illustrated in
Figure 3a. The control time sequence of QH (the high-side MOSFET) and QL (the low-side MOSFET)
are shown in Figure 3b. The effective freewheeling path for Stages (a) and (b) is illustrated in Figure 4a,
in which QH was on and QL was off. Its rule of the current drop is expressed by Equation (2), where the
resistance of QH was neglected under the on state, resulting in the lowest rate. In Stage (c), QH and
QL were both off, which means that the current immediately became 0A through a so-called avalanche
current drop. Meanwhile, the effective freewheeling path for Stage (c) is illustrated in Figure 4b and
expressed by Equation (3). However, since the solenoid generated a large self-induced electromotive
force, the QH source would generate a high negative transient voltage, which would then damage the
circuitry [20,21].
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3. Improved Design

Considering the practical application, the improved design derived from Figure 3a is shown
in Figure 5, where L is the injector, QH and QL are the high-side MOSFET and low-side MOSFET,
QH-logic and QL-logic are the corresponding control time sequence inputs of QH and QL, IR2101S is
the high-side and low-side driver chips, Ho and Lo are the amplified signal outputs, R2 and R3 are
the respective gate resistors of QH and QL, C3 and D3 are the corresponding bootstrap capacitor and
diode, C1 is the absorption capacitor, D1 and D2 are the freewheeling diodes, R1 is the pull-down
resistor, and all D1, C1, and R1 connect the QH source to the ground,. The control time sequence was
the same as the one in Figure 3b. The descriptions of symbols used in Figure 5 are detailed in Table 1.
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Figure 5. Improved design of the variable freewheeling drive circuit.

Table 1. The descriptions of symbols used in Figure 5.

Definitions Description Definitions Description

C1 Absorption Capacitor L Injector
C3 Bootstrap Capacitor QH High Side MOSFET
D1 Freewheeling Diode QL Low Side MOSFET
D2 Freewheeling Diode R1 Pull-down Resistor
D3 Bootstrap Diode R2 Gate Resistor

IR2101S Gate Drive Chip R3 Gate Resistor

3.1. Safety and Reliability

D1, C1, and R1 were set to ensure the safety and reliability of the drive circuitry. Their functions
are described as follows:

3.1.1. Function of Freewheeling Diode D1 Set

The QH sources and Vs pin of IR2101S in Figure 5. were connected, which is the technical
requirement of bootstrap [22]. As shown in Figure 6a, a large negative transient voltage was generated
at the QH source without D1. The voltage reached −20 V and would damage the IR2101S after several
working cycles. The D1 setting voltage was limited to −1 V (i.e., the forward voltage of D1), as shown
in Figure 6b. Setting D1 ensured that the negative transient voltage would not corrupt the IR2101S.
Therefore, the feasibility of circuitry was realized.
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Figure 6. Effects of D1 on controlling the negative transient voltage in the variable freewheeling
drive circuit.

3.1.2. Function of Absorption Capacitor C1 Set

At the beginning of Stage (c), a voltage spike of −10 V was generated because D1 was not fully
switched on, as shown in Figure 7a. The IR2101S (or other high-side driver chips) only had a negative
transient voltage tolerance of−5 V. The spike would not damage the circuitry but could unexpectedly
cause the IR2101S to be latched [23,24]. If latched, the circuitry would go out of control, and QH would
turn on again. The effective freewheeling path then turned into the one in Figure 4a, and the rate of
current drop became slower (Figure 7c). The slower drop rate delayed the lowering process of the
plunger, which would subsequently prolong the injection process and significantly increase the fuel
injection mass.
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Therefore, to eliminate the voltage spike, C1 was set to connect the Vs to the ground.
Accordingly, the spike was eliminated by capacitor absorption, as illustrated in Figure 7b.

3.1.3. Function of Pull-Down Resistor R1 Set

If R1 was not set, the Vs was suspended. As shownin Figure 8, when the circuit was ready for
operation, but the Vs voltage reached 6 V and the voltage difference of C3 was not big enough, then QH
could not be fully executed when turned on. As a result, the current became atypical.
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Figure 8. Suspension of Vs in the variable freewheeling drive circuit.

To eliminate the suspended state, R1 was set to connect the Vs to the ground. After injection,
the Vs returned to 0 V due to the pull-down effect of the resistor. Consequently, the aberration
was eliminated.

3.2. Current Drop Rate

In Stages (a) and (b), QH was turned on when QL was off. The effective freewheeling
path is illustrated in Figure 9a, and the rule of current drop rate is expressed by Equation (2).
Therefore, with this design, the current drop rate would be the slowest and would fully satisfy
the requirements of Stages (a) and (b).
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In Stage (c), both QH and QL were off. The effective freewheeling path of Stage (c) is illustrated
in Figure 9b, and it followed Equation (4). When compared to Figure 4b, VCC, D1, D2, and L form
a new freewheeling path. The current did not drop to 0 A immediately; instead, the rate of current
drop became slower. However, the feasibility of the circuitry was implemented by setting D1 and
charging the drive power from the solenoid because of the conversion from electromagnetic energy to
electrical energy. The charging capacity is consequently expressed by Equation (5).

di
dt

= − ri + VCC + UD1 + UD2

L
(4)

Evcc =

Ihold∫
0

VCC · i · dt (5)

Based on the design in Figure 5, the following two methods were commonly employed to improve
the rate of current drop in Stage (c).

3.2.1. Adding Impedance Elements

Adding impedance elements into the effective freewheeling path in Figure 9b could increase
the rate of current drop in Stage (c). The effective freewheeling path of Figure 9b could be broken
down into three branches. Branch 2 and Branch 3 were the common parts of Stages (a) and (b).
The impedance added into these branches could increase the rate of current drop not only in Stage (c)
but also in Stages (a) and (b). Meanwhile, the impedance added intoBranch1 could only increase the
rate of current drop in Stage (c), but the negative transient voltage generated by Vs in Stage (c) would
be increased from –UD1 to –(UD1+Uimpedance). By doing so, the safety of the circuitry safety would be
threatened as described above. Therefore, it is not recommended to add any impedance elements to
improve the rate of the current drop in Stage (c).

3.2.2. Increasing the VCC Voltage

While considering the injector voltage and current limits, the effects of different VCCs on the
drive current were simulated using the PSPICE software as shown in Figure 10a, where QH-logic and
QL-logic are the same as Figure 3b, r = 0.23 Ω and L = 150 uH are as a circuit model for the injector,
Main Pulse = 100 µs, Injection Pulse = 400 µs, VCCs = 24V, 36V, 48V, 60V, 70V, and Hold Pulses are
adjusted to guarantee Ihold = 12 A. As can be seen in Figure 10b, increasing the VCC not only could
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increase the current growth rate from 0 A to Ipeak but also could increase the current drop rate in
Stage (c), as also shown by Equation (4). The drive power voltage is a standardized parameter of
injectors, and its value must be within an acceptable range. A higher drive power voltage would
reduce the conversion efficiency of the boost circuitry. However, an appropriate increase should
be acceptable.Energies 2018, 11, x FOR PEER REVIEW  10 of 19 
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Figure 10. Effects of VCC on the drive current in the variable freewheeling circuit through PSPICE.

4. Experiments

The boost circuitry was used as the power source in the drive circuit to evaluate the electric energy
consumption; its schematic diagram is illustrated in Figure 11. If the VCC was lower than the target
value, the boost circuitry would start to work, and vice versa; if higher, the circuitry would stop.
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Figure 11. Boost circuitry.

The effect of different R on the drive current with the RD freewheeling circuit is shown in
Figure 12. As the R increased, the rate of current drop in Stage (c) would be faster, as shown in
Equation 1. However, the rate of current drop was basically the same when R = 10 Ω and R = 15 Ω.
In Stage (c), the positive transient voltage of the drain electrode Q (V) in Figure 2 is expressed by
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Equation (6); consequently, as the R increased, the V would grow significantly larger and damage the
MOSFET. Therefore, a value of 10 Ω was selected as the optimal value of R.

V = VCC + iR + UD (6)
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In order to study the effect of the two types of the freewheeling circuit on the combustion performance,
an engine test was carried out using a self-developed ECU under the condition that only the injector drive
circuit was changed. The test engine, as shown in Figure 13, was based on a heavy-duty six-cylinder diesel
engine. The detailed specifications of the test engine are shown in Table 2.
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Table 2. Engine characteristics.

Bore × Stroke 126 × 155 mm
Swirl Ratio 1.2

Compression Ratio 17:1
Injection system Common rail

Injection Pressure 160 MPa
Number of Injector Nozzle Holes 8 holes

Injector Nozzle Hole Diameter 0.217 mm
Injector Spray Angle (included) 143 deg

Peak Cylinder Pressure 16.5 Mpa
Rated Rotating Speed 2100 r/min

Rated Torque 1970 N·m
Rated Power Rating 353 kW

Ignition Order 1-5-3-6-2-4

As described above, the RD and variable freewheeling injector drive circuits were established,
as shown in Figures 2 and 5, respectively, with R = 10 Ω. The BOSCH-CRIN2 (the second generation
of Bosch common rail injector for truck and heavy duty vehicles) injector was chosen in the test,
with standardized VCC of 48 V, Ipeak of 25 A, and recommended Ihold of 12 A. The modulation
frequencies of both circuitries in the Ihold phase were the same. The experimental results are discussed
as follows.

4.1. Drive Current

A comparison of the drive current with an injection pulse of 600 µs is illustrated in Figure 14 below.
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Using the variable freewheeling circuit, the rates of current drop in Stages (a) and (b) were slower
than those of the RD freewheeling circuit, as described in Equation (1) and Equation (2), respectively.
Therefore, the process duration using the variable freewheeling circuit in Stage (a) was longer. In the
Ihold phase, the duty cycle to maintain the current value near the Ihold of the RD freewheeling circuit
was bigger, and its current fluctuation range was also larger.

In Stage (c), R was 10 Ω, while UD1 was 1 V from Equation (1). As the current became smaller,
the rate of current drop in the RD freewheeling circuit would become lower. Using Equation (4),
when r was nearly 0 Ω, the VCC was 48 V; hence, when I was small, the current drop rate hardly
changed. As is illustratedin Figure 14, the current drop rate in the variable freewheeling circuit was
faster than that of the RD freewheeling circuit. The former’s solenoid valve seating duration was 30 µs
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shorter than the inflection point of the drive current, which was nearly equivalent to the landing time
of the solenoid valve.

4.2. Control Accuracy

The cycle variations corresponding to different injection fuel masses at a fuel pressure of 160 MPa
are shown in Table 3. When the injection fuel mass was the same, the pulse width of the variable
freewheeling circuit was slightly longer, but the cycle variation was smaller, indicating better control
accuracy in the injection of fuel mass. The control accuracy increased by at least 0.36% or exactly 2.86%
at 5-mg fuel mass injection as shown in Figure 15. This was a result of a faster current drop rate and
a faster end of injection in Stage (c).

Table 3. Comparative effects of freewheeling injection circuits on the control accuracy of fuel
mass injection.

RD freewheeling (1000 cycles)

Fuel Mass (mg) 5 10 40 80 120 160 200
Pulse Width (µs) 265 334 585 777 1090 1467 1847

Cycle Variation (%) 5.94 4.28 2.32 1.82 0.87 0.82 0.71

Variable freewheeling (1000 cycles)

Fuel Mass (mg) 5 10 40 80 120 160 200
Pulse Width (µs) 299 379 614 808 1132 1502 1876

Cycle Variation (%) 3.08 2.18 1.51 1.1 0.45 0.38 0.35
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injected mass at 5 mg.

4.3. Electric Energy Consumption

The change in VCC voltage is illustrated in Figure 16. When the injection fuel mass was 200 mg
and done at 160 MPa, the fall range of the drive power voltage became 1 V smaller, and its recovery
time was 1 ms shorter than those of the RD freewheeling circuit.
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Figure 16. Comparative effects of freewheeling injection circuits on the electric energy consumption.

In Figure 16, the levels of electricity consumption were the same when the current increased from
0 A to Ipeak. However, there was no energy consumption when the current decreased from Ipeak to Ihold.
In the Ihold phase, the electric energy consumption of the variable freewheeling circuit was smaller than
that of the RD due to a smaller duty for maintaining the current value near the Ihold. The drive power
was charged in Stage (c) when using the variable freewheeling circuit, but not when using the RD
freewheeling circuit. Therefore, the electric energy consumption of the variable freewheeling circuit
was smaller.

4.4. Highest Attainable Temperature

The highest temperature captured by a thermal infrared imager (FLIR) at 1900 rpm was below
the environment temperature of 20 ◦C during a single injection and at a fuel mass of 200 mg, as
shown in Figure 17. The highest temperature of the variable freewheeling circuit was only 37 ◦C,
which was 127 ◦C lower than that of the RD freewheeling circuit. This was due to the smaller electricity
consumption in the former drive circuit. The element that had the highest temperature in the RD
freewheeling circuit was R, where as it was D2 in the variable freewheeling circuit.
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4.5. Cycle-by-Cycle Variations

At a load of 1600 rpm, IMEP = 1 MPa, and a circulating fuel injection mass of 100 mg,
the cycle-by-cycle variations of the peak cylinder pressure for the two types of the freewheeling
circuit are shown in Figure 18. It can be seen that due to the improvement on the control accuracy of
the fuel injection mass, the cycle variations (COV) of the peak cylinder pressure using the variable
freewheeling circuit were reduced from 1.5% to 1%, indicating a significant performance improvement.
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Figure 18. Comparative effects of freewheeling injection circuits on the cycle-by-cycle variations of
peak cylinder pressure.

4.6. Combustion Performance

At three load levels (1300 rpm, 1600 rpm, and 1900 rpm) and IMEP = 1 MPa with the same
optimal control strategy, the NOx and soot emissions and the thermal efficiency for the two types of the
freewheeling circuit are compared in Figure 19. The engine emissions and combustion efficiency were
improved due to the decrease in the combustion cycle variations, which could effectively reduce the
influence of deviation of combustion process from the optimal control target. Especially at 1900 rpm,
where the NOx and soot emissions were reduced by 3.5% and 4%, respectively, and the thermal
efficiency was slightly increased by 0.3%, while the HC and CO emissions were little improved.
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Figure 19. Comparative effects of freewheeling injection circuits on the engine emissions and
combustion efficiency.

5. Conclusions

(1) Compared to the RD freewheeling circuit, the variable freewheeling injector drive circuit
met the requirements better for the rate of current drop in the three different stages of the
peak-and-hold model.

(2) Through analysis and structural improvements to improve the safety and reliability of the
circuitry, any anomalies interfering with the practical use of the variable freewheeling circuit were
eliminated simultaneously.

(3) Reducing the current drop rate in the Ihold phase could effectively reduce the
energy consumption.

(4) By charging the drive power supply using the electromagnetic energy released by the injector
during the current closing stage, the electric energy consumption could be reduced and the power
recovery time could be accelerated.

(5) Compared to the RD freewheeling circuit, the variable freewheeling circuit exhibited higher
accuracy in controlling the injection mass, consumed lower electric energy and lowered the circuit’s
highest attainable temperature.
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(6) Compared to the RD freewheeling circuit, the variable freewheeling circuit could
effectively improve the cycle-by-cycle variations, lower the engine emissions and increase the
combustion efficiency.

The highlights of this article are as follows:
1. The injector drive circuitry with variable freewheeling circuit had better control accuracy of

fuel injection mass and lower electrical consumption than with a RD freewheeling circuit.
2. The improved design of the variable freewheeling circuit was studied to eliminate

anomalies interfering.
3. The variable freewheeling circuit could effectively improve the cycle-by-cycle variations,

lower the engine emissions and increase the combustion efficiency of diesel engine than RD
freewheeling circuit.
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Nomenclature

Definitions in Circuitry Schematics

VCC Driving Power
L Injector Solenoid
D Diode
R Resistor
Q MOSFET
C Capacitor
QH High-side MOSFET
QL Low-side MOSFET

Definitions in Formulas

VCC Voltage of Driving Power
i Solenoid Current
r Resistance of Solenoid
L Inductance of Solenoid
UD Forward Voltage of D
R Resistance of R
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