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Abstract: In competitive power markets, electric utilities, power producers, and traders are exposed
to increased risks caused by electricity price volatility. The growing reliance on renewable sources and
their dependence on weather, nuclear uncertainty, market coupling, and global financial instability
are contributing to the importance of accurate electricity price forecasting. Since power markets are
not all equally developed, different price forecasting methods have been introduced for individual
markets. The aim of this research is to introduce a short-term electricity price forecasting method
that addresses the problems of price volatility, a varying number of input parameters, varying
data availability, and a large number of parameters and input data. Furthermore, the proposed
model can be used on any market as it targets the characteristics and specifics of each market.
The proposed Hybrid Iterative Reactive Adaptive (HIRA) method consists of two phases. In analysis
phase, fundamental parameters which affect the electricity price are identified depending on market
development. Obtained parameters are used as data inputs for price forecasting using a hybrid
method. The HIRA model combines a statistical approach for large data set analysis and a similar
day method with neural network tools. Similar days are examined using a statistical method which
combines correlation significance, price volatility, and forecasting accuracy of the historical data.
Data are collected based on their availability and electricity prices are forecasted in several iterations.
All relevant data for price forecasting are collected, categorized, and arranged using simple indicators
which makes the HIRA model adaptive and reactive to new market circumstances. The proposed
model is validated using the Hungarian Power Exchange (HUPX) electricity price data records.
The results show that with HIRA model forecasting, the error is stable and does not depend on price
volatility. The HIRA method has proven to be applicable for forecasting electricity prices in real-time
market conditions and enables effective hedging of price risk in the production or market portfolio.

Keywords: short-term electricity price forecast; electricity market; neural network; dynamic hybrid
model; data mining; spot market; electricity price

1. Introduction

Market liberalization has taken place in many countries over the past two decades. The success
of liberalization in other industries and a belief that it can be replicated in the power sector as well
as a demand for unbundling the vertically integrated monopoly structures were the driving forces
behind the liberalization of the power sector. Technology advancement and conceptual changes in the
generation technologies and in the electric power networks have enabled a separation of what had
previously been a natural monopoly. The long-term goals behind the electricity liberalization have
been to entice investments, increase efficiency and further stimulate technical innovation. As a result,
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large integrated electric utilities have been deregulated and market schemes have started playing
big roles. In any energy company’s decision making and strategy development, price forecasts have
become an essential input.

Current research on electricity price forecasting can be classified in terms of the methodology
applied and in terms of the planning horizon’s duration. Bearing in mind horizon duration, it is
common to define short-term (STPF), medium-term (MTPF) and long-term (LTPF) price forecasting
(Figure 1) [1]. In LTPF lead times are typically measured in years and the main objective is planning
and investment profitability analysis, such as decision making for future investments of power plants,
inducing locations and fuel sources. In MTPF times are typically measured in months and the
focus is on balance sheet calculations, risk management, and derivatives pricing. In MTPF, often,
the distributions of future prices over certain time periods are estimated rather than actual point
forecasts. This is because medium-term modeling has a long history in finance, so there is a strong
influence of finance solutions to this type of modeling.

Energies 2019, 12, x FOR PEER REVIEW  2 of 35 

 

result, large integrated electric utilities have been deregulated and market schemes have started 
playing big roles. In any energy company’s decision making and strategy development, price 
forecasts have become an essential input. 

Current research on electricity price forecasting can be classified in terms of the methodology 
applied and in terms of the planning horizon’s duration. Bearing in mind horizon duration, it is 
common to define short-term (STPF), medium-term (MTPF) and long-term (LTPF) price forecasting 
(Figure 1) [1]. In LTPF lead times are typically measured in years and the main objective is planning 
and investment profitability analysis, such as decision making for future investments of power 
plants, inducing locations and fuel sources. In MTPF times are typically measured in months and the 
focus is on balance sheet calculations, risk management, and derivatives pricing. In MTPF, often, the 
distributions of future prices over certain time periods are estimated rather than actual point 
forecasts. This is because medium-term modeling has a long history in finance, so there is a strong 
influence of finance solutions to this type of modeling. 

 

Figure 1. Classification of price forecasting approaches. 

Models that are applied for long and medium-term modeling can be classified as presented in 
Figure 1. Simulation models are powerful in crating various future scenarios and calculating the 
probability of price scenarios based on risk assumption. Considering the specifics of an observed 
market, Equilibrium approaches build the price scenarios based on equilibrium models. Production 
cost models simulate the operation of generating units to satisfy the system demand at a minimum 
cost based on merit order list. Fundamental methods define price movements by modeling the impact 
of important economic and physical factors on the electricity price. 

In addition to monthly or annual time horizons, short-term planning is important for generators, 
utilities, and market participants for the operational implementation of long- and medium-term 
plans. In an auction-type environment, when bidding for spot electricity, market participants are 
requested to place their bids in terms of prices and quantities. Orders are accepted in order of 
increasing or decreasing prices until total demand and supply is met. A generator that can accurate 
forecast spot prices can adjust its own production schedule accordingly and hence maximize its 
profits. Day-ahead spot market typically consists of 24 hourly (or 96 of 15-minute) auctions that take 
place simultaneously one day in advance. STPF with lead times from a few hours to a few days are 
of prime importance in day-to-day market operations. In power systems with complex market 
structures, generation companies and other market players can sell or buy electricity either directly 
through bilateral contracts or from a centralized power pool. This research describes a pool-based 
energy market as it is the most common type of market, where the producers and consumers submit 

Figure 1. Classification of price forecasting approaches.

Models that are applied for long and medium-term modeling can be classified as presented in
Figure 1. Simulation models are powerful in crating various future scenarios and calculating the
probability of price scenarios based on risk assumption. Considering the specifics of an observed
market, Equilibrium approaches build the price scenarios based on equilibrium models. Production
cost models simulate the operation of generating units to satisfy the system demand at a minimum
cost based on merit order list. Fundamental methods define price movements by modeling the impact
of important economic and physical factors on the electricity price.

In addition to monthly or annual time horizons, short-term planning is important for generators,
utilities, and market participants for the operational implementation of long- and medium-term
plans. In an auction-type environment, when bidding for spot electricity, market participants are
requested to place their bids in terms of prices and quantities. Orders are accepted in order of
increasing or decreasing prices until total demand and supply is met. A generator that can accurate
forecast spot prices can adjust its own production schedule accordingly and hence maximize its profits.
Day-ahead spot market typically consists of 24 hourly (or 96 of 15-minute) auctions that take place
simultaneously one day in advance. STPF with lead times from a few hours to a few days are of
prime importance in day-to-day market operations. In power systems with complex market structures,
generation companies and other market players can sell or buy electricity either directly through
bilateral contracts or from a centralized power pool. This research describes a pool-based energy
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market as it is the most common type of market, where the producers and consumers submit their bids
that consist of a set of quantities with prices. Using a market clearing algorithm, the market operator
then determines the prices for the next day Day ahead price forecasting is a most valuable tool for
all the market participants as it defines decision making for the operation of a power plant and the
portfolio optimization on the spot market. Price series have complex features such as non-stationarity,
nonlinearity, and high volatility, which make forecasting very challenging. This is because of the
basic characteristics of electricity, which is its non-storable nature, the requirement of maintaining a
continuous balance between supply and demand and rigid nature of demand over a short time period.
Therefore, a decent price prediction model should be able to capture the complex behavior associated
with price series. Models used in STPF can be divided into three categories: statistical models, models
based on artificial intelligence, and hybrid models (Figure 1).

2. Short-Term Forecasting Methodologies

Taking into account the importance and complexity of short-term price forecasting various
methods for price forecasting have been introduced by researchers. Three widely used approaches are
time series models, artificial neural networks (ANN) and hybrid methods.

2.1. Time Series Models

Auto-regressive integrated moving average (ARIMA) and non-stationary time series models such
as generalized auto-regressive conditional heteroskedastic (GARCH) and dynamic regression (DR) are
mostly used stationary models for time series forecasting.

In [2] Swider and Weber proposed extended ARMA models for estimating price developments
on day-ahead electricity markets. ARMA model in combination with a GARCH was demonstrated for
a European Energy Exchange (EEX) market price forecast from January 2002 to January 2004. In [3]
Nogales et al. used dynamic regression (DR) and transfer function (TF) models for the prediction
of prices on the Spanish (Operador del Mercado Ibeico de Energia) OMEL market from January to
November 2000 and the California market from January to April 2000. In [4] Contreras et al. used
the ARIMA method on Spanish OMEL market for the prediction of short-term electricity prices from
January 2000 to November 2000, and on the California market from January 2000 to April 2000. In [5]
Bordignon et al. used autoregressive moving average parts with linear regression (LR), exogenous
variables (ARMAX), time-varying parameter regression (TVR), and Markov regime switching model
(MS) methods in prediction price on the United Kingdom Power Exchange (UKPX) market during
from April 2005 to September 2006.

2.2. Artificial Neural Network Methods

Electricity price is not a linear function of its input parameters and this may create a significant
problem for the time series techniques to accurately capture the dynamic performance of the price
signal as most time series models are based on linear predictors. To overcome this problem, models
based on neural networks (NN) and fuzzy neural networks (FNN) have been introduced to electricity
price forecasting. In [6] the authors presented models based on three different neural networks for
the day-ahead price estimation, these included the feed-forward (FFNN), cascade-forward (CFNN),
and generalized-regression (GRNN) neural networks. Models were tested on the Spanish market
(OMEL) data from 2002 and the Pennsylvania New Jersey Maryland market (PJM) data from 2010.
In [7] Amjady used a fuzzy neural network (FNN) for the forecast of the electricity prices on the OMEL
market from February to November 2002. In [8] the authors introduced an innovative method based
on self-organizing map neural network (SOM) and support vector machine (SVM) models to predict
the day-ahead electricity prices and tested it on the PJM market data from August 2002. In [9] a novel
approach was presented using a sensitivity analysis of similar days (SD) parameters to increase the
accuracy of the results obtained by artificial neural networks (ANN). This method was tested on the
PJM market from January to December 2006.
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2.3. Hybrid Methods

Hybrid methods combine both linear and nonlinear modeling strategies. To improve the forecasts,
hybrid methods use each model’s specific features to detect different patterns in the data and conjointly
yield a more accurate result. In [10] the authors present a hybrid method to predict the day-ahead prices
based on radial-basis-function neural networks (RBFN), wavelet transform (WT), and auto-regressive
integrated moving average (ARIMA) models. The results are presented on the OMEL market data from
2002. In [11] the authors propose a hybrid method based on WT, ARIMA and least squares support
vector machine (LSSVM) optimized by particle swarm optimization (PSO). Their method is tested on
the data from New South Wales (NSW) of Australian national electricity market from 2007 to 2008.
In [12] the authors suggest a hybrid method based on the combination of PSO and adaptive-network
fuzzy inference system. Like several of the previously mentioned methods, this method is also tested
on the OMEL market data from 2002.

There is no precise answer to which of these models is the best and which will give the best results.
Phatchakorn Areekul et al. [13] presented a comparison of ARIMA, ANN, and a proposed hybrid
method that combines ARIMA and ANN using data from the Australian national electricity market,
New South Wales from January to November 2006. Forecasting errors were in the range of 10.46% to
16.07% for ARIMA, 10.04% to 15.63% for ANN, and 9.99% to 15.63% for the hybrid method. These
results indicate that sophisticated, fine-tuned representatives of both groups might compete on equal
terms if they were compared in a comprehensive and thorough study.

2.4. State of the Art: Quantitative Analysis

As part of this research, a quantitative analysis of scientific articles from the field of forecasting of
electricity prices was carried out. In order to make an analysis, the following query was used for the
search on the Web of Science portal:

TS = ((“forecasting” OR “predicting”) AND (“electricity spot price” OR “electricity day-ahead
price” OR “electricity price” OR “power price”)).

Figure 2 shows an overview of the search results of the methods listed in the keyword list.
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Figure 2. Distribution of scientific articles according to the method used for the forecast of electricity
price, published from 2007 to 2017.

From this simple analysis, it is evident that the number of articles in the field of electricity price
forecasting has increased over the years. In addition, it can be concluded that statistical methods
and neural networks are constantly being applied, and it is also apparent that the number of articles
referring to hybrid methods has increased in recent years.
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This simple quantitative analysis was a motivation for a more complex analysis that analyzed in
detail scientific articles on electricity price forecasting published in IEEE Xplore and Science Direct
databases. The analysis was made on a sample of over 100 articles published in the period from 1999
to 2017. Part of the research was presented in the authors’ previous article [1] and for this research
an additional analysis of the articles was made using the same methodology (Figure 3). The analysis
observed the following characteristics:

• Forecasting time horizon
• Method used for electricity price forecasting
• Input parameters used for electricity price forecasting
• Market on which method was tested
• A range of historical data used for forecasting
• Tools used for forecasting
• Price forecasting error

A similar analysis of published articles was made by Pandey and Upadhyay [14], the main feature
of their analysis was the categorization of research papers according to the price forecasting methods
classification presented in Figure 1. An extensive analysis of state of the art was made by Weron [15],
where each of the price forecasting models was explained in detail with all the typical applications in
previously published works.

The state of the art analysis presented partly in this article and in the previously published
article [1] focuses on practical aspects of the application of forecasting methods such as the number
of input parameters, forecasting error, and the market on which the model was tested. Based on the
collected data from [1] and [14–17], a number of statistical indicators were obtained that could provide
certain guidelines for making conclusions related to the problem of predicting electricity prices.
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Classification of methods used for electricity price forecasting is made according to Figure 1 and
the result of this classification is shown in Figure 4.
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Figure 4. Distribution of articles on the forecasting of electricity prices according to the methodology
used.

In the analyzed sample of published articles, statistical methods are the most frequently used
tool for predicting prices (Figure 4). When this distribution is observed over a time horizon (Figure 5),
statistical methods are constantly represented in price prediction, neural networks have been used
more before 2010, and since 2010 hybrid methods have become an increasingly common tool for
predicting electricity prices.
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Figure 5. Published articles per year distributed according to the forecasting methodology used (in the
observed sample of scientific articles).

An interesting indicator is the number of input parameters used by researchers to test the proposed
models for predicting electricity prices (Figure 6).
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Figure 6. Distribution of articles according to the number of input parameters for price forecasting
(in the observed sample of articles).

The most common input parameter is historical prices, the second most common parameter is
time parameters, such as date and type of day, and the third most common parameter is electricity
consumption [18]. The range of input parameters in articles that are using more than three input
parameters is diverse: structure of engaged power plants in the power system, weather forecasts,
production from renewable energy sources, cross-border exchange of electricity, intraday market,
smart grid, etc., [19,20].

A forecasting error is a relative term because not all articles use the same accuracy indicators.
Since Mean Average Percentage Error (MAPE) is used in most cases, articles that used this indicator
were considered in this analysis. The correlation between MAPE and the number of input parameters
used for forecasting is shown in Figure 7. With more input parameters a smaller range of forecasting
errors can be expected. In most of the reviewed papers, input parameters included flexible production
based on the merit order list. However, a higher share of renewable sources production input
parameters with high uncertainty may increase forecasting error. In that respect, new approach
based on the correlation between spot prices and residual load (difference between consumption and
non-flexible production) has been advocated in Reference [21]. Based on this new approach, it is noted
that, while using a large number of input variables, it is important to carry out a sensitivity analysis
for input variables and use only those that have a significant influence on electricity prices.

It can be concluded that with more input parameters more accurate results can be achieved.
However, sometimes in scientific papers theoretical models with a high accuracy of price forecasting
are described, which are not realistically applicable in practice.

This review of the state of the art analyzed a large number of articles on the topic of electricity
price forecasting, and the analysis results led to the following conclusions:

• The problem of predicting electricity prices is a current topic of research in scientific circles
• Only a small number of articles use a large number of input parameters, which is why the

author believes that this is the area where scientific potential should be directed, given the rapid
development of the electricity market, increasing market transparency, and the transparency of
the operation of electric power systems

• Hybrid methods are becoming more and more popular, because they are an excellent tool for
processing and analyzing large amounts of data, and for preparing inputs for some of the existing
methods for predicting electricity prices
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3. Hybrid Iterative Reactive Adaptive (HIRA) Price Forecasting Method

As discussed in the previous section, existing price forecasting methods have several limitations.
Some models are applicable only in certain markets due to the degree of market development and
available market data. Some models are only limited to linear price modeling while prices often form
a nonlinear function. There are models which give less accurate price forecasts in conditions of high
price volatility and are not responsive to various changes of conditions in the market. Finally, many
models take only a small set of input parameters as a basis for price calculation, while it is notable
that with the use of a larger number of input parameters and input datasets, the forecasting error
(MAPE) decreases. To address these limitations, a new Hybrid Iterative Reactive Adaptive (HIRA)
price forecasting model is proposed:

The HIRA method is illustrated with the flow chart in Figure 8 and is divided into two phases:

• analysis phase—the phase of analysis of power system for which the price is forecasted and
analysis of its neighboring power systems, in order to determine the parameters that have
influence on forming of the prices in the observed market

• and forecasting phase—the price forecasting based on the relevant parameters determined in the
analysis phase.

In the phase of the analysis of the power system, by identifying the key parameters that affect the
price of electricity on a given market, the HIRA model adapts to the specifics of the market on which it
is used, i.e., the model is adaptable to the characteristics of the observed market.

The price forecasting phase uses a hybrid method that combines two methods for predicting
prices; a statistical method of similar day and neural networks. Using neural networks this model
responds to the challenge of a large number of available input parameters and data for forecasting
prices. The forecasting phase is if possible and as needed, carried out in several iterations before
auctions in the spot market of the electricity market, with the aim of efficiently managing the market
and the production portfolios. In each iteration new and updated data is used for forecasting, and
thereby the HIRA model reacts to changes in the market and/or in the power system that can affect
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price formation. In this way, the estimated price from each iteration ensures timely decision-making
and management of price risks, which makes the HIRA model reactive to changes in the market.Energies 2019, 12, x FOR PEER REVIEW  10 of 35 
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The number of iterations, i.e., the time intervals when price forecasts will be calculated, is
determined depending on the development of the electricity market for which the prices are forecasted.
For example, input data that affect price formation are more accessible and more volatile in developed
markets, which requires more frequent updating of price forecasts or shorter intervals of iterations.

3.1. Power System Analysis

In power system analysis phase, the market is analyzed as well as the surrounding markets.
The result of the analysis is a set of internal and external parameters that influence the formation of
electricity prices in the observed market.

Internal parameters describe the market for which the price is forecasted. Internal input data
include basic data on the functioning of the observed power system, which can be classified as
data on electricity consumption, electricity production, and the cross-border exchange of electricity
(import/export).

External factors can also have an influence on electricity prices. An external factor could be the
behavior of electricity market traders who are making a profit by arbitration procedures in several
related markets, therefore, their speculative actions can affect the formation of electricity prices.
Another example of an external influence is a high production of electricity from hydro power plants
or other renewable sources such as wind in the neighboring power system. During the hours when
the wind production is high, the incoming flow of energy from the neighboring electricity system
increases, which can lead to a decrease of prices in the observed market. External parameters are
defined by collecting external input data describing the fundamental parameters of neighboring
markets, cross-border energy flow, electricity prices, data from organized markets where continuous
electricity trading takes place, as well as other parameters that can affect the perception of traders
when trading on a spot market.

All information about European power systems are available on the ENTSO Transparency
Platform. This data represents the internal input parameters data and serves as the basis for setting up
the HIRA price prediction model. External input data for the model are also available on the ENTSO
Transparency Platform, as well as on the Joint Allocation Office [22] website, also there are data from
the platforms for continuous trading of standard electricity products (TFS [23]), and data from the
REMIT portal.

Input data for the HIRA model were structured as 24 datasets for each hour in a day. Dataset
timestamp contains data about time (year, month, day, and hour) and type of day. Days in the input
data were categorized as:

• Working day (Mon–Fri)
• Saturday
• Sunday
• Holiday

After the data were collected, it was necessary to give them a time context depending on the
type of day and data availability time. Hereafter, the day for which electricity prices are forecasted is
marked with d + 1, the day during which the prediction is made with d, and the previous day with
d − 1. With respect to availability, electricity price data are available at the hourly level immediately
upon the realization, while the data on planned production and consumption are available on d − 1
and d for d + 1. Accordingly, at any given moment there are three types of available data used for
price forecasting:

• Historical pricing data for the period d − 1 and older
• Data for day d at hour h consisting of data on price realization for the period 00:00–(h − 1: 00),

and planning data for h − 24
• Planning data for d + 1 available on day d
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Due to the time component of the input data described above, the HIRA method is iterative, that
is, price forecasting is carried out on multiple occasions depending on the data availability, which
makes price forecasts reactive to changes in the real-time electricity market, a feature that is not present
in existing methods for electricity price forecasting.

3.2. Electricity Price Forecasting

Since not all input data is always available as explained above, the HIRA method for price
prediction is designed in a way that it is iterative and time-dependent on data availability. When
forecasting prices, the following forecasting methods are used depending on the number of available
input parameters at the moment of calculating:

• For up to 3 parameters (historical price data, electricity consumption, time context) similar day
method is used;

• For more than 3 parameters a hybrid method that combines similar days and neural networks
is used.

This procedure is repeated several times according to the determined number of intervals when
the prices will be forecasted.

In the proposed HIRA model for forecasting electricity prices, the hybrid prediction model consists
of a linear price component and a component calculated with neural networks:

P(T)h = L(T)h + N(T)h ∀h = 1 . . . 24 (1)

where:

P(T)h—hourly price of electricity for day (T) and hour h
Lh—linear electricity price component calculated with similar day method for hour h
Nh—neural network price component for hour h

3.2.1. Linear Electricity Price Component Calculated with Similar Day Method

As shown in the HIRA method flowchart in Figure 8, in case of a small number of input parameters
a similar day method is used for electricity price forecast calculation. From previously published
articles [1,9], it can be concluded that electricity prices correlate best with the electricity consumption
parameter, therefore, when using a similar day method, the consumption of electricity is used as the
input parameter for the model. Electricity consumption is also the parameter that has been the most
frequent topic of scientific papers for years, and with the development of methods and techniques,
the prediction of consumption has been brought to a very high accuracy [24].

The HIRA method proposes the process of determining a set of similar days using the actual
historical data. Depending on the seasonality of the data being analyzed, different markets will have
different values of the historical range of days D, consequently by analyzing actual data the model
is adaptable and applicable to the respective market on which it is used for price forecasting. First,
it is necessary to take a set of historical data for at least for two years. With electricity consumption as
the input parameter, a set of similar days SSD(T) is determined as a range of electricity consumption
historical data with the following criteria:

SSD(T) ∈ [T − 1, T − D]POT (2)

with a condition
POT ∈ [(1 − α )·POT(T), (1 + α)·POT(T)]. (3)

where

D—number of days in a range of historical days for similar day data set
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α—electricity consumption discrepancy within similar days data set
POT—(T)planned electricity consumption on day T for which the electricity price is forecasted

The historical range of days D for a specific market is determined empirically; several price
forecasts are calculated using a similar day method by varying a historical range D. The historical
range D that resulted in the smallest forecasting error measured with MAPE is to be taken as a historical
range for forecasting.

D = minMAPE {L(T)}SSD(T) ∀D ∈ 〈1, 30〉 (4)

The result is SSD(T) a subset of data containing historical data on electricity prices with similar
electricity consumption. This eliminates situations when electricity price forecasts may be affected
by historical data of some extreme circumstances which occurred, such as extreme high or low
temperatures, sports events, etc. Criteria for determining a subset of historical data with similar days
is average deviation of consumption within the same category of similar days.

The price forecast for each individual hour in the linear component L(T)h of the HIRA model
based on the SSD(T) historical data set is determined on the basis of average hourly price deviation of
each individual hour:

L(T)1 = L(T − 1)23 + β1 f or h = 1 (5)

L(T)h = L(T)h−1 + βh f or h = 2 . . . 24 (6)

where:

β1 =

(
∑N

i=1 Phi
− Ph−1i

N

)
SSD(T)

f or h = 1 (7)

βh =

(
∑N

i=1 P1i − P24i−1

N

)
SSD(T)

f or h = 2 . . . 24. (8)

N—number of data in the similar days data set SSD(T)
β—linear component of difference in prices between the two adjacent hours
Phi

—hourly electricity price at hour h in the smiliar days data data set
i = 1 to N

3.2.2. Neural Network Component

If more than three input parameters (internal or external) are available, a hybrid model is used for
calculating prices forecast. The component of forecasted price that is calculated with neural network
in the HIRA model represents the price oscillation due to new input parameters. There are a large
number of scientific papers where neural networks are used, however, in cases of high price volatility
the results are not satisfying [25], therefore, in the HIRA model neural networks are used only to
calculate the deviation of the predicted price caused by changes in input data. Maryniak and Weron
conclude that electricity prices are mostly affected by traders’ behaviors rather than by the fundamental
characteristics of an electric power system [26], which is another reason for applying a model that
combines a similar day and neural network method. That way, if there is a certain price pattern,
it might be found with at least one of the methods applied and thus reduce the price forecasting error.

Before using a hybrid model, it is important to determine which input parameters are relevant.
This step is necessary in order to reduce a set of input data and to achieve better neural network
processing performances. Determining of the influence of input parameters on the forecast of electricity
price is also carried out with neural networks.

The proposed HIRA method uses neural networks to analyze the sensitivity of the forecasted
price to the input parameters. A subset of historical data S(T)h from the existing SSD(T) data set serves
as test data set for training the neural network. Each of the input parameters, internal and external,
are tested separately. Sensitivity analysis is carried out for each input parameter individually by
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fixing the value of other input parameters and using the neural network to calculate the price forecast.
Depending on the number of test cases (i) of price forecasting, ∆i is calculated as the difference between
the maximum and minimum value of the estimated price. The mean average ∆n of all values for the
selected parameter n is calculated from all test cases as:

∆n =
i

∑
x=1

(
Px

MAX − Px
MIN

)
i

(9)

where:

n—total number of input parameters
i—number of test cases
Px

MAX—maximum value of calculated price forecast in test case x for parameter n
Px

MIN—minimum value of calculated price forecast in test case x for parameter n
∆n—average value of minimum and maximum value of forecasted price in x test cases for
parameter n

The same procedure must be performed for all input parameters. Sensitivity Oy of forecasted
price to the input parameter y is calculated as follows:

Oy =
∆y

∆1 + ∆2 + · · ·+ ∆n
(10)

where:
n

∑
y=1

∆y = 1 (11)

y—number of input parameters (y = 1 . . . n)
Oy—sensitivity of forecasted electricity price to the input parameter y
∆y—average value of the difference between maximum and minimum price forecast value
calculated with parameter y

Total sum of the influence of all parameters is 1, i.e., 100%. Parameters that make up 99% of
the price impact are selected as the relevant parameters for predicting electricity prices in the HIRA
model. This eliminates all the parameters whose impact on price prediction is not significant and
which unnecessarily increase the set of data used to calculate the neural network price component.
After determining which parameters are relevant, the HIRA model is fully defined and parameterized,
and can be used for price forecasting.

To calculate the forecasted price component N(T)h of the HIRA model, a neural network with
multi-layer perceptron (MLP) with one input, one hidden layer, and one output is used. A hybrid
model takes hourly data as input. Within the existing set of similar days SSD(T), a new subset of data
of similar hours S(T)h is created, which consists of data from the previous iteration and new input
data for the current iteration. The new input data contains hourly electricity price data that are in high
correlation with the forecasted hourly price, where value 0.70 is taken as a high correlation.

S(T)h ∈ 〈Pt−k− , Pt+k+〉 ∀h = 1 . . . 24 (12)

where:

S(T)—subset of SSD(T) data set which contains hours in high correlation with forecasted hour h
k−, k+—define a range of similar hours in a historical data set of similar hours with a correlation ≥
0.70 with forecasted hour
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The neural network price component represents the difference between the predicted value
calculated with the similar day method and the actual electricity price, showing how new information
on the market influence electricity price and forecasting error. Therefore, to calculate the value of
N(T)h, it is necessary to calculate value of L(T)h with the similar day method. The difference between
L(T)h and the historical data on actual price at the hour h, form a new derived input parameter for
neural network.

4. Simulation Results

The HIRA model was applied and tested on two electricity markets of different degrees of
development; on German (EPEX) and Hungarian (HUPX) power exchanges. In the authors’ previous
article [27], the results of the price forecast on the EPEX Spot market for the period from December
2010 to June 2011 were presented. From the results obtained, it was concluded that the quality of
price forecast results depends not only on the complexity of forecasting method but also on the
characteristics of the forecasted prices. At low price volatility, the similar day method achieved
acceptable results, while at higher volatility the hybrid method that combines similar day method and
neural networks gave much more accurate forecasts (Appendix A). Therefore, when testing the price
forecasting method, it is very important to observe the complexity of forecasted prices which can be
measured by price volatility.

This section presents the results of applying the HIRA model on the HUPX Spot market using
available data for Hungarian electricity market. The prices for the period from May 1, 2017 to June
1, 2018 are forecasted on hourly resolution, with historical data from 2015 to 2018. In the analysis
of the price forecasting results, an absolute forecasting error (MAPE) was measured in absolute and
percentage values. It is important to show the error of forecasting through the absolute amount,
because at low prices even a small forecasting error results in a very high percentage, which can lead
to incorrect conclusions. In addition to forecasting errors, the results show the price volatility of the
forecasted data. The price volatility measure was calculated as the standard deviation of the observed
data set. In addition to forecasting results for hourly electricity prices, forecasting results for standard
products on electricity market base load and peak load were presented as well.

4.1. Parameterization of HIRA Model

When optimizing the trade or production portfolio, the share of electricity to be traded at some
time point is determined based on current prices and expected prices on the market in the future. On the
Hungarian market it is possible to trade continuously up to the d − 3 level (three days in advance for
day d) and also on the HUPX Spot market (day ahead for day d and within the day d) (Figure 9).

On a continuous market, standard products of base load and peak load are traded. Base load
energy is the delivery of the same amount of energy for 24 h in the same hourly amount, so the base
load energy price is the average hourly price for all 24 h. Peak energy is the delivery of the same
amount of energy in the period from 08:00 to 20:00 h in the same hourly amount, so the peak energy
price is the average hourly price from 08:00 to 20:00 h.

The Hungarian power system is connected with high-voltage cross-border lines to Croatia, Serbia,
Romania, Ukraine, Slovakia, and Austria. Thermal power plants comprise 90% of the installed capacity
in Hungary and are a stable source of electricity, but usually with a large installed capacity per unit.
Such a system is exposed to the failure of such large production units; therefore, it is very important to
follow all announcements about the unavailability of certain production units on the REMIT portal.
Inputs for price forecasting available data from the ENTSO Transparency Platform, the Joint Platform
for Cross-Border Transmission Capacities (JAOs), and the TFS Continuous Trading Platform were used.
All available data and their availability are shown in Table 1. From the available data, the following
data were used for forecasting:

• Data on realized and planned electricity consumption,
• Data of realized and planned renewable energy production,
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• Total cross-border commercial flows,
• Results of daily cross-border capacity auction,
• Electricity prices on neighboring power exchanges,
• Data on power production in Hungary, by type (biomass, fossil fuels, run-off river hydro power

plants, hydro power plants with accumulations, nuclear power plants, and others).
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Table 1. Available data set for the Hungarian power market based on data availability.

Type of
Data

Data Source

Availability of Data on Day d
for Forecasting of Electricity

Price for Day d + 1

d d + 1

internal Realized power consumption ENTSO 8:00 -
internal Power consumption forecast for day d + 1 ENTSO 10:00 -

internal Power production based on the type of
power plant type ENTSO 10:00 -

internal Solar and wind power production forecast ENTSO 10:00 -

internal Planned cross-border commercial energy
flow ENTSO 14:00 -

internal Unavailability of power plants and big power
consumers ENTSO 8:00 -

internal Price of balancing cost ENTSO 14:00 -
internal Total balancing cost ENTSO - 8:00
internal Availability of power plants MAVIR - -
external Cross-border balancing ENTSO - 8:00
external Real cross-border energy flows ENTSO - 8:00
external BSP BSP South Pool 10:00 -
external SEEPX SEEPX 10:00 -
external HUPX HUPX 11:40 -
external OPCOM OPCOM 11:00 -
external EXAA EXAA 11:00 -

external
Planned availability of cross-border capacity

for day-ahead, week-ahead, month-ahead,
and year-ahead

ENTSO 9:00 -

external Price and quantity of auctioned cross-border
capacity JAO 9:00 -

external Unavailability in power grid ENTSO 10:00 -

BSP South Pool: https://www.bsp-southpool.com; SEEPX: http://seepex-spot.rs/en/market-data/; HUPX: https:
//hupx.hu/en/; JAO: http://www.jao.eu/marketdata/dailyauction; OPCOM: https://www.opcom.ro; EXAA:
https://www.exaa.at/.

https://www.bsp-southpool.com
http://seepex-spot.rs/en/market-data/
https://hupx.hu/en/
https://hupx.hu/en/
http://www.jao.eu/marketdata/dailyauction
https://www.opcom.ro
https://www.exaa.at/
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Balancing data was not used because it is more relevant for the intra-day market, which is not
further analyzed in this article, nor is its impact on the market for the day ahead. Data on output
outages and network unavailability were not used since such events are unplanned and occur in real
time. Given the timeliness of the data availability presented in Table 1, price forecasts were calculated
in three intervals:

1. Interval d − 1
2. Interval d, 9:30 a.m.
3. Interval d, 10:30 a.m.

Once internal and external input data are defined, the HIRA model needed to be parameterized
to determine the relevant set of historical data for the forecasting of electricity price. The first
parameterization step was the categorization of days in week and the second was determination
of the historical range D for similar day data set. The analysis was carried out using the hourly price
historical data.

Table 2 shows the correlation matrix of relations between days of week calculated from the price
data for the period from 2015 to 2017. High correlations starting from 0.631 are marked with red and
orange colors, while very high correlations with values above 0.98 are marked with green. From this
table, days of the week are divided into groups:

• Working days (Monday, Tuesday, Wednesday, Thursday, Friday)
• Saturday
• Sundays and holidays

Table 2. Hourly correlation matrix between days in week.

Weekday Monday Tuesday Wednesday Thursday Friday Saturday Sunday Holidays

Monday 1.000 - - - - - - -
Thursday 0.996 1.000 - - - - - -

Wednesday 0.993 0.996 1.000 - - - - -

Thursday 0.993 0.998 0.998 1.000 - - - -

Friday 0.993 0.998 0.995 0.997 1.000 - - -

Saturday 0.877 0.894 0.912 0.911 0.900 1.000 - -

Sunday 0.724 0.732 0.762 0.751 0.732 0.935 1.000 -

Holidays 0.632 0.630 0.671 0.654 0.631 0.848 0.989 1.000

The second step of parameterization was determining the historical data range D which was used
to create a set of similar days for each category of days of the week. Determination of the range D
was carried out empirically, by analyzing forecasted price errors for different ranges D of historical
data. Simulation was made by varying a range value D from 1 to 30 days of historical data. Test
results are shown in Figures 10–12. The red line marks the number of historical days with the smallest
forecast error.

The minimum forecasting error for working days category was achieved using a range of 9
historical days. There are 5 to 7 working days within 9 calendar days, therefore, in the historical data
of 2 years, there were 25 to 35 sets of similar days to be used as a set of similar days for forecasting.

Using the same approach as for working days, the range D was calculated for Saturdays
(Figure 11); it took 21 historical days to achieve the smallest forecasting error. Within 21 days, there are
three Saturdays, which means that the historical data contained 15 similar day data sets for forecasting
for Saturday prices.

For Sundays and holidays, the results of the empirical analysis are shown in Figure 12.
The smallest error was achieved using 27 historical days. Within 27 days, and depending on which
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day is the holiday, the data set for forecasting Sunday and holidays can contain 15–20 historical days
given that holidays can also be on weekdays.Energies 2019, 12, x FOR PEER REVIEW  18 of 35 
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Figure 10. Correlation between price forecasting error and the size of a similar day data set for
working days.
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Figure 11. Correlation between price forecasting error and the size of a similar day data set for Saturday.

For Saturdays, Sundays, and holidays, the smallest forecast errors are achieved with a significantly
higher value of parameter D than for working days, but at the same time for larger values of parameter
D, there is approximately a similar number of total input parameters, so it is optimal to work with
15–20 similar days in history.

With the definition of the historical data range the market analysis phase was completed and all
input assumptions and necessary parameters for forecasting prices with the HIRA model were defined.
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and holidays.

4.2. Results of Simulation in the First Iteration of the HIRA Method

In the first interval (first iteration of the HIRA method) at the time d − 1, historical electricity
prices and electricity consumption forecast data are available (Table 1). Considering a small number of
input parameters, a similar day method was used with SSD(T)—a set of historical days obtained by
parameterizing from historical data. Table 3 shows the results of the forecasting simulation in the first
iteration of the HIRA method (forecasting error for hourly prices and forecasting error for standard
electricity products; base load and peak load).

Table 3. Simulation results for electricity price forecast calculated with similar day method in 1st
forecasting interval.

Period
Price

Volatility
(EUR/MWh)

Hourly Forecasting
Error

Peak Load
Forecasting Error

Peak Load
Forecasting Error

MAPE MAPE MAPE

(EUR/MWh) % (EUR/MWh) % (EUR/MWh) %

May 2017 13.23 5.44 12.37% 5.58 10.96% 3.79 8.37%
June 2017 13.43 5.25 13.09% 4.50 9.51% 3.69 8.70%
July 2017 16.10 5.50 10.63% 6.26 9.97% 3.65 7.06%

August 2017 26.32 6.35 12.71% 6.90 12.69% 4.14 8.88%
September 2017 12.06 4.19 9.76% 3.86 8.00% 2.76 6.54%

October 2017 20.98 8.78 15.49% 8.05 11.60% 5.56 9.66%
November 2017 24.56 11.39 17.19% 14.75 18.30% 7.82 12.21%
December 2017 20.55 7.47 19.68% 8.42 14.79% 5.10 12.15%

January 2018 14.12 6.63 19.88% 7.00 15.15% 3.66 9.77%
February 2018 12.72 6.04 14.43% 7.05 14.63% 4.44 10.54%

March 2018 18.33 5.52 12.28% 5.61 11.03% 3.77 8.57%
April 2018 11.70 3.56 10.72% 3.49 10.01% 2.11 6.08%

Forecasting results shown in Table 3 for base and peak energy are acceptable. Forecast error
ranges between 5% and 10%, while the hourly forecasting errors are 10% to 20% which is not acceptable
for application in practice.

It is interesting to observe the dependence of the price volatility and forecasting error on the
example of base energy price (Figure 13). A dotted line shows the linear interpolation of the dependence
of price forecast error on the standard deviation of the price.



Energies 2019, 12, 568 19 of 32

Energies 2019, 12, x FOR PEER REVIEW  20 of 35 

 

August 2017 26.32 6.35 12.71% 6.90 12.69% 4.14 8.88% 
September 2017 12.06 4.19 9.76% 3.86 8.00% 2.76 6.54% 

October 2017 20.98 8.78 15.49% 8.05 11.60% 5.56 9.66% 
November 2017 24.56 11.39 17.19% 14.75 18.30% 7.82 12.21% 
December 2017 20.55 7.47 19.68% 8.42 14.79% 5.10 12.15% 

January 2018 14.12 6.63 19.88% 7.00 15.15% 3.66 9.77% 
February 2018 12.72 6.04 14.43% 7.05 14.63% 4.44 10.54% 

March 2018 18.33 5.52 12.28% 5.61 11.03% 3.77 8.57% 
April 2018 11.70 3.56 10.72% 3.49 10.01% 2.11 6.08% 

Forecasting results shown in Table 3 for base and peak energy are acceptable. Forecast error 
ranges between 5% and 10%, while the hourly forecasting errors are 10% to 20% which is not 
acceptable for application in practice. 

It is interesting to observe the dependence of the price volatility and forecasting error on the 
example of base energy price (Figure 13). A dotted line shows the linear interpolation of the 
dependence of price forecast error on the standard deviation of the price. 

 
Figure 13. Correlation between forecasting error and price volatility in the 1st forecasting interval. 

Figure 13 shows that the forecasting error for similar days method increases with price volatility. 
When applying similar days method on less volatile data, forecasting results for standard products 
(base load and peak load) are acceptable. 

Figure 14 and Figure 15 present the overall results of applying the HIRA model for forecasting 
of electricity prices in the Hungarian market in the first forecasting interval. The charts show the 
hourly price forecasts and realized electricity prices for the period from May 2017 to October 2017 
and from November 2017 to April 2018. There are some periods where the difference between 
forecasted and realized prices are not negligible. Electricity prices can be very volatile on the day 
ahead market, which is influenced by some unexpected circumstances such as change in renewable 
sources production, consumption due to temperature change, power plant outage, etc. With only few 
input parameters available in the first iteration, these unexpected events cannot be foreseen, which 
causes higher forecasting error. 

y = 0.0029x + 0.0466

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0.00 5.00 10.00 15.00 20.00 25.00 30.00

El
ec

tr
ic

ity
 p

ri
ce

 fo
re

ca
st

in
g 

er
ro

r

Forecasted electricity price volatility

Figure 13. Correlation between forecasting error and price volatility in the 1st forecasting interval.

Figure 13 shows that the forecasting error for similar days method increases with price volatility.
When applying similar days method on less volatile data, forecasting results for standard products
(base load and peak load) are acceptable.

Figures 14 and 15 present the overall results of applying the HIRA model for forecasting of
electricity prices in the Hungarian market in the first forecasting interval. The charts show the hourly
price forecasts and realized electricity prices for the period from May 2017 to October 2017 and from
November 2017 to April 2018. There are some periods where the difference between forecasted and
realized prices are not negligible. Electricity prices can be very volatile on the day ahead market, which
is influenced by some unexpected circumstances such as change in renewable sources production,
consumption due to temperature change, power plant outage, etc. With only few input parameters
available in the first iteration, these unexpected events cannot be foreseen, which causes higher
forecasting error.

4.3. Results of Simulation in the Second Iteration of the HIRA Method

In the second interval (second iteration of the HIRA method) at the time of d 9:30, besides
consumption data, the data on the power plant production plan and the results of auctions for
cross-border capacities are available (Table 1). Due to a larger number of available input parameters,
price prediction was carried out using a hybrid method that combines the similar-day method with
neural networks.

Given a large number of input parameters, a large amount of input data was collected, so it was
necessary to distinguish which parameters have the highest influence on the electricity prices. In order
to evaluate the importance of a particular input parameter, it was necessary to carry out a sensitivity
analysis for the parameters. The results of the analysis carried out using the neural network are shown
in Appendix B. According to the proposed method for determining relevant prediction parameters,
the following parameters make 99% of influence on price formation in the Hungarian market:

• Renewable sources production forecast
• Electricity load forecast
• Price of cross-border capacity auction on Austrian-Hungarian border
• Energy flow on Austrian-Hungarian border
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Figure 14. Forecasted and actually realized hourly prices in first forecasting interval for the period
from May 2017 to October 2017.

As an input for calculating the price component obtained by neural networks, a subset of historical
data was used for each hour of the day, a set of similar hours S(T) from a set of similar days SSD(T).
The subset S(T) was created from the historical electricity price data, for each day in the similar days
data set as a range (k+ and k−) of neighboring hours with a price correlation with forecasted hour
greater than 0.70. Figure 16 shows the results of determining k+ and k− on the example of 15 November
2017 as a correlation matrix.

The resulting range k+ and k− defines a set of similar hours S(T)—a subset of historical data
created for each forecasted hour which was used for calculating the neural network price component
for each hour. By computing a neural network with the obtained input data, the price component
N(T)h was calculated, while the linear component of the price L(T)h was calculated using the similar
day method. The final forecasted price for each hour was calculated as:

P(T)h = L(T)h + N(T)h (13)

Table 4 shows the simulation results in the second interval (forecasting error for hourly prices and
forecasting error for standard electricity products base load and peak load). It can be concluded that
the results of forecasting prices for base and peak energy are very good and the forecast error ranges
1.5–4%, while the forecasting error for hourly prices is in the range 5.4–12.37%, which is a significant
improvement from the results obtained in the first iteration of the HIRA method.
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Table 4. Simulation results for electricity price forecast calculated with the similar day method in 2nd
forecasting interval.

Period
Price

Volatility
(EUR/MWh)

Hourly Forecasting
Error

Peak Load
Forecasting Error

Base Load Forecasting
Error

MAPE MAPE MAPE

(EUR/MWh) % (EUR/MWh) % (EUR/MWh) %

May 2017 13.23 3.03 7.41% 0.86 1.89% 0.76 1.77%
June 2017 13.43 3.46 9.28% 1.25 2.45% 0.93 2.09%
July 2017 16.10 5.19 10.21% 1.05 1.87% 1.13 2.08%

August 2017 26.32 6.94 12.78% 3.21 4.35% 2.07 4.13%
September 2017 12.06 3.77 11.96% 0.62 1.13% 0.64 1.48%

October 2017 20.98 5.00 9.22% 1.94 2.90% 1.98 3.27%
November 2017 24.56 4.80 9.16% 1.71 2.93% 1.65 3.18%
December 2017 20.55 3.33 12.37% 0.70 1.41% 1.27 2.98%

January 2018 14.12 2.95 8.21% 0.64 1.38% 0.51 1.36%
February 2018 12.72 2.41 6.80% 0.77 1.88% 0.77 2.18%

March 2018 18.33 2.32 5.90% 0.38 0.76% 0.43 1.45%
April 2018 11.70 2.47 7.34% 0.69 1.98% 0.68 2.09%

From Figure 17, it can be concluded that the forecasting error increases if the standard price
deviation is higher when the electricity price is forecasted using the hybrid method, but the forecasting
error is lower than in the first iteration.
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Figure 17. Correlation between forecasting error and price volatility in second forecasting interval.

Figures 18 and 19 show the overall results of forecasting electricity prices on the Hungarian
market with the HIRA model in the second interval. The charts show the hourly price forecasts and
realized electricity prices for the period from May 2017 to October 2017 and from November 2017 to
April 2018.
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from May 2017 to October 2017.

4.4. Results of Simulation in Third Iteration of the HIRA Method

In the third interval (d, 10:30 a.m.), the latest weather forecasts were available and consequently
more precise electricity consumption forecast, production of renewable energy sources, results of
auctions of cross-border transmission capacities, results of electricity prices on neighboring markets,
as well as the results of continuous electricity trading on trading platforms.

As in previous iterations a sensitivity analysis for new input parameters was carried out in order
to determine the influence of every individual input parameter on electricity price. The results of
the analysis are shown in Appendix C. According to the proposed method, the following parameters
comprise 99% of the influence on price formation:

• Price in the continuous market
• Wind power plants production
• Thermal power plants on coal production
• Price of cross-border transmission capacities at the Hungarian-Austrian and Hungarian-Romanian

border

The price forecasting process was carried out in the same way as in the previous iteration but
used additional input data as well as updated (latest) forecasted data from the previous interval.
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Figure 19. Forecasted and actually realized hourly prices in second forecasting interval for period from
November 2017 to April 2018.

The results of electricity price forecasts are shown in Table 5. For standard products, base and
peak energy results are very good because the error in absolute amount is less than 1.00 EUR, and the
percentage error is less than 2%. The absolute hourly price forecast error for the observed period
is around 3.00 EUR, i.e., 2.10% to 5.48%, which is also very good. This level of forecasting error is
acceptable for practical use. With good electricity price predictions additional value can be added to
the portfolio in terms of hydro-thermo coordination from a utility perspective or in terms of arbitrage
between two markets (e.g., OTC vs spot market) from a power trader’s perspective.

Price forecasting results show that the electricity price forecast error increases with higher volatility
(Figure 20). A linear interpolation line showing the dependence of the price forecast error on the
standard deviation of the price has a smaller inclination angle than in the previous intervals, which can
be explained by increasing the number of input parameters and input data for forecast calculations,
which results in a higher forecasting accuracy.
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Table 5. Simulation results for electricity price forecast calculated with similar day method in the 3rd
forecasting interval.

Period
Price

Volatility
(EUR/MWh)

Hourly Forecasting
Error

Peak Load
Forecasting Error

Base Load Forecasting
Error

MAPE MAPE MAPE

(EUR/MWh) % (EUR/MWh) % (EUR/MWh) %

May 2017 13.23 2.35 5.86% 0.59 1.26% 0.37 0.89%
June 2017 13.43 2.60 6.79% 0.71 1.42% 0.71 1.60%
July 2017 16.10 3.52 7.20% 0.94 1.39% 0.58 1.05%

August 2017 26.32 5.48 9.55% 2.17 2.96% 0.37 0.65%
September 2017 12.06 3.68 11.37% 0.82 1.55% 0.47 1.04%

October 2017 20.98 4.58 8.40% 1.78 2.62% 0.89 1.48%
November 2017 24.56 4.32 8.30% 1.26 1.93% 0.29 0.56%
December 2017 20.55 3.19 10.70% 0.71 1.31% 0.66 1.58%

January 2018 14.12 3.07 9.17% 0.64 1.55% 0.66 1.85%
February 2018 12.72 2.10 5.64% 0.80 1.91% 0.56 1.55%

March 2018 18.33 2.31 4.55% 0.40 0.88% 0.35 0.84%
April 2018 11.70 2.75 7.90% 0.66 1.77% 0.70 2.05%Energies 2019, 12, x FOR PEER REVIEW  28 of 35 
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Figure 20. Correlation between forecast error and price volatility in third forecasting interval.

Figures 21 and 22 show the results of using the HIRA model for forecasting electricity prices in
the Hungarian market in the third interval. The charts show the hourly price forecasts and realized
electricity prices for the period from May 2017 to October 2017 and from November 2017 to April 2018.
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5. Conclusions

The goal of this article was to present an innovative approach for electricity price forecasting in
short-term wholesale electricity markets. Even though higher precision of price forecasts is expected
with a greater amount of available historical data, existing models for electricity price forecasting are
not suitable for a large number of input parameters and show weaknesses and poor results. These
challenges are especially present in markets with a high share of renewable energy sources, where as a
result of market structure, prices show high volatility.

As a response to these challenges, this paper proposes a HIRA model for electricity price forecast.
In the first phase, by detecting key parameters, the HIRA model is adapted to the characteristics of
targeted market specificities, in order to achieve the highest accuracy of the forecast. In the second
phase, a hybrid method for price forecasting combines a statistical method of similar days and neural
networks for handling of a large number of input parameters. The HIRA model can work in a
time-dependent domain with a variable number of input parameters. The model is designed to be
used in an arbitrary number of iterations and thus dynamically responds to changes in input data in
terms of changes of data values as well as changes in data availability (changes of the number of input
parameters). The number of iterations is determined by the time frames when input data are available.
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A similar day forecast method is used when fewer number of input parameters are available. In case of
a large number of input data, a neural network is used to determine the sensitivity of the price on each
of the input parameters, thereby eliminating input parameters that are not relevant for the electricity
price forecast. With a large number of input parameters, the hybrid method that combines similar days
and neural network is used for forecasting electricity prices.

To verify the HIRA model, a simulation of electricity price forecasting using the model was carried
out on the Hungarian electricity market HUPX. Using real input data, the forecasting simulation was
performed in three time frames with different input data available. By using a similar day method,
forecasting results for standard electricity products base load and peak load were acceptable, but
hourly price forecast results were unsatisfactory. Hybrid method forecasting results are demonstrated
in two forecasting iterations, where by increasing the number of input parameters, the forecast error in
each interval decreased.

The proposed HIRA model for short-term electricity price forecasting has shown exceptional
robustness. When forecasting the price of standard products, such as the price of base load energy,
the price forecasting error was practically unchanged regardless of the complexity of the forecasted
data. The HIRA price forecasting model has proven to be applicable in practice and provides price
forecasts adapted to market characteristics, responsive to market changes in real-time, thus enabling
timely decision-making and efficient management of the portfolio exposed to the spot market.

With additional automation of input data fetching, the HIRA model could be used to forecast
prices on the intraday market where forecast data for intraday market could increase accuracy of price
forecasting for the day ahead market [17].
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Appendix A

I Forecasting with similar days
II Forecasting with similar days and neural network (SD + NN)
III Forecasting with similar days, neural network and price spike detection (SD + NN + PS)
Results are presented in Table A1 below

Table A1. Performances of the proposed hybrid model for hourly electricity price forecasting.

Forecasting
MAPE MAE RMSE Volatility Number of Price Spikes

Model

December 2010

SD 12.81% 7.48 9.38

18.3 100SD + NN 8.50% 7.32 10.43

SD + NN + PS 6.79% 6.45 10.42

January 2011

SD 11.36% 6 7.44

15.95 86SD + NN 12.20% 7.33 9.53

SD + NN + PS 10.39% 6.89 9.08

February 2011

SD 19.12% 9.38 8.91

14.22 101SD + NN 7.84% 5.48 7.24

SD + NN + PS 5.87% 4.59 6.55
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Table A1. Cont.

Forecasting
MAPE MAE RMSE Volatility Number of Price Spikes

Model

March 2011

SD 4.88% 4.84 6.05

9.67 59SD + NN 3.73% 4.01 5.31

SD + NN + PS 3.62% 3.89 4.51

April 2011

SD 10.86% 5.69 6.98

11.73 119SD + NN 7.52% 5.29 6.91

SD + NN + PS 5.03% 4.58 6.31

May 2011

SD 7.51% 5.85 6.55

12.01 141SD + NN 6.96% 5.45 6.1

SD + NN + PS 6.11% 5.12 5.95

June 2011

SD 13.05% 5.49 6.41

13.2 74SD + NN 12.90% 5.55 6.81

SD + NN + PS 5.55% 4.3 5.5

Average

SD 10.63% 5.9 7.14

14.05 681SD + NN 8.49% 5.75 7.08

SD + NN + PS 6.20% 5.26 6.92

Appendix B

Table A2. Sensitivity analysis results for input parameters in the second iteration.

Summary

Net Information

Name Net Trained on Data Set #1 (2)
Configuration GRNN Numeric Predictor
Location This Workbook
Independent Category Variables 1 (dan)

Independent Numeric Variables

16 (sat, Day-ahead Total Load Forecast, Actual Total Load,
Hydro Run-of-river and poundage, Other, Other renewable,
Waste, Wind Onshore, AT-HU PRICE, AT-HU ALLOCATED,
HU-AT PRICE, HU-AT ALLOCATED, HU-HR PRICE, HU-HR
ALLOCATED, HR-HU PRICE, HR-HU ALLOCATED)

Dependent Variable Numeric Var. (cijene Mađarska)

Training

Number of Cases 230
Training Time 0:00:01
Number of Trials 199
Reason Stopped Auto-Stopped
% Bad Predictions (30% Tolerance) 0.0000%
Root Mean Square Error 0.2835
Mean Absolute Error 0.1667
Std. Deviation of Abs. Error 0.2293

Testing

Number of Cases 58
% Bad Predictions (30% Tolerance) 1.7241%
Root Mean Square Error 3.531
Mean Absolute Error 2.646
Std. Deviation of Abs. Error 2.338
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Table A2. Cont.

Summary

Data Set

Name Data Set #1
Number of Rows 288
Manual Case Tags NO

Variable Impact Analysis

sat 48.1652%
Other renewable 12.0154%
Other 12.0069%
dan 11.3220%
Day-ahead Total Load Forecast 8.6546%
HU-AT PRICE 5.0771%
AT-HU ALLOCATED 1.4259%
Actual Total Load 0.7565%
Waste 0.2196%
AT-HU PRICE 0.2096%
HU-HR ALLOCATED 0.0372%
HR-HU ALLOCATED 0.0354%
HR-HU PRICE 0.0299%
HU-AT ALLOCATED 0.0149%
Hydro Run-of-river and poundage 0.0131%
Wind Onshore 0.0097%
HU-HR PRICE 0.0072%

Appendix C

Table A3. Sensitivity analysis results for input parameters in the third iteration.

Summary

Net Information

Name Net Trained on Data Set #1
Configuration GRNN Numeric Predictor
Location This Workbook
Independent Category Variables 1 (dan)

Independent Numeric Variables

24 (sat, Day-ahead Total Load Forecast, Actual Total Load,
Biomass, Fossil Brown coal/Lignite, Fossil Gas, Hydro
Run-of-river and poundage, Hydro Water Reservoir, Nuclear,
Other, Other renewable, Waste, Wind Onshore, AT-HU PRICE,
AT-HU ALLOCATED, HU-AT PRICE, HU-AT ALLOCATED,
HU-HR PRICE, HU-HR ALLOCATED, HR-HU PRICE,
HR-HU ALLOCATED, cijene Slovačka, cijene Rumunjska,
cijene Slovenija)

Dependent Variable Numeric Var. (cijene Mađarska)

Training

Number of Cases 230
Training Time 0:00:00
Number of Trials 80
Reason Stopped Auto-Stopped
% Bad Predictions (30% Tolerance) 0.0000%
Root Mean Square Error 0.1803
Mean Absolute Error 0.1225
Std. Deviation of Abs. Error 0.1323
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Table A3. Cont.

Summary

Testing

Number of Cases 58
% Bad Predictions (30% Tolerance) 0.0000%
Root Mean Square Error 1.533
Mean Absolute Error 0.9554
Std. Deviation of Abs. Error 1.199

Data Set

Name Data Set #1
Number of Rows 288
Manual Case Tags NO

Variable Impact Analysis

cijene Rumunjska 57.0579%
cijene Slovačka 32.6009%
AT-HU PRICE 3.8831%
cijene Slovenija 2.2742%
HR-HU PRICE 1.3399%
Wind Onshore 0.6396%
Hydro Run-of-river and poundage 0.4177%
Fossil Gas 0.3241%
HU-HR PRICE 0.2628%
Other renewable 0.2124%
Other 0.1970%
Fossil Brown coal/Lignite 0.1000%
HU-AT PRICE 0.0997%
Hydro Water Reservoir 0.0800%
dan 0.0779%
Biomass 0.0777%
Waste 0.0673%
AT-HU ALLOCATED 0.0621%
sat 0.0493%
Actual Total Load 0.0433%
Day-ahead Total Load Forecast 0.0422%
HU-HR ALLOCATED 0.0345%
HR-HU ALLOCATED 0.0343%
HU-AT ALLOCATED 0.0202%
Nuclear 0.0018%
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