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Abstract: In Taiwan, over 45% of the energy in common buildings is used for the air-conditioning
system. In particular, the chiller plant consumes about 70% of the energy in air-conditioning system.
The electric energy consumption of air-condition system in a clean room of semiconductor factory
is about 5-10 times of that in a common building. Consequently, the optimal chiller loading in
energy saving of building is a vital issue. This paper develops a new algorithm to solve optimal
chiller loading (OCL) problems. The proposed two-stage differential evolution algorithm integrated
the advantages of exploration (global search) in the modified binary differential evolution (MBDE)
algorithm and exploitation (local search) in the real-valued differential evolution (DE) algorithm for
finding the optimal solution of OCL problems. In order to show the performance of the proposed
algorithm, comparison with other optimization methods has been done and analyzed. The result
shows that the proposed algorithm can obtain similar or better solution in comparison to previous
studies. It is a promising approach for the OCL problem.

Keywords: energy saving; multi-chiller system; optimal chiller loading; two-stage differential evolution

1. Introduction

The air-conditioning systems of large-scale commercial buildings in Taiwan account for about
32%-54% of Taiwan’s electrical energy consumption, and chiller plants consume more than 70% of
the overall energy consumed by air-conditioning systems [1]. In systems where multiple chillers are
operated in parallel (multi-chiller systems), each chiller can operate independently; adjusting the
chiller operation schedule to provide the venue with a stable refrigeration ton (RT) load and a flexible
maintenance schedule [1] is a common practice in large commercial buildings. Because multi-chiller
systems are composed of chillers of varying features or even of various types of chillers, the question
of how to adjust appropriate numbers of operating chillers and operational control points so that each
chiller operates at optimal efficiency is crucial for saving energy in air-conditioning systems.

In recent years, many articles have discussed the optimal chiller loading (OCL) problem.
Chang [2,3] proposed using a branch-and-bound method and a Lagrangian multiplier method to
solve OCL problems. In addition to traditional numerical methods, numerous heuristic optimization
methods have been used to solve OCL problems. Optimal chiller loading that consumed less energy
than that of Chang [2,3] was obtained by genetic algorithms (GAs) [4]. Chang et al. [5] applied an
evolutionary strategy (ES) to OCL problems and found a lower power consumption with higher
precision for chillers than found previously. Particle swarm optimization (PSO), which uses the
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social behavior of entities for evolutionary computing, was applied to OCL problems [6]. PSO was
more efficient than binary GA and real-valued GA in solving OCL problems. Differential evolution
(DE), which uses the characteristics of intergroup differences for evolution, was also used in OCL
problems [7]; according to the literature, its results were superior to that of PSO. Coelho et al. [8]
proposed using a differential cuckoo search approach to improve the original cuckoo search approach,
so that the performance of a differential cuckoo search for OCL problems could be superior to those of
GA, PSO, and DE.

Exploration (global search) and exploitation (local search) are the two critical factors that influence
evolutionary optimization methods; the balance of the two directly affects the results and efficacy
of searches for optimal solutions. Tan et al. [9] dynamically adjusted evolutionary computations to
maintain the balance between scope and convergence of multi-objective optimization. Binkley et al. [10]
used PSO for multimodal optimization; when the velocity of the particle swarm was lower than a
threshold, the designed quantity was reduced and the particles were restarted to maintain the diversity
of the multimodal design space. Epitropakis et al. [11] combined the mutation mechanisms of different
DE algorithms, first using exploration and then a high-convergence mechanism to search for optimal
solutions. Bao [12] proposed a two-phase hybrid optimization algorithm involving an ant colony
algorithm (ACO) and a simulated annealing (SA) optimization algorithm to solve complex optimization
problems. Beghi et al. [13] used a multiphase GA for the management of a multi-chiller system to
reduce power consumption and operational costs. Cheng and Tran [14] used a two-phase DE algorithm
project to obtain an optimized schedule of time and cost.

This study proposes a two-stage DE algorithm to solve OCL problems. The framework includes
DE with two different types of variables: the first stage uses a modified binary differential evolution
(MBDE) algorithm [15,16] for exploration; the second stage uses a real-valued DE algorithm for
exploitation. A binary encoding method enabled greater exploration than a real-valued encoding
algorithm [17] would have allowed; thus, in the process of searching for the optimal solution, the
proposed method was able to quickly find the optimal solution. After the proposed MBDE completes
stage 1, the optimal solution discovered by MBDE in stage 1 undergoes conversion into real numbers
and is then introduced into the real-valued DE of stage 2 for optimal exploitation. Through the
integration of the aforementioned two stages, the proposed two-stage algorithm, which integrates the
advantages of binary MBDE and real-valued DE, has excellent exploration and exploitation capabilities.
Its design enhances its operational efficacy and its evolutionary methods enhance the results of its
searches for optimal solutions.

The remainder of this paper is structured as follows. Section 2 describes the intricacies of the OCL
problem, its objective function, and its restrictions. Section 3 explains the evolutionary mechanism and
the features of the two-stage DE algorithm. Section 4 compares the results of the proposed method
with those of different methods for various examples. Conclusions are drawn in Section 5.

2. Introduction to Multi-chiller System

Multi-chiller systems can provide flexible operation, reserve capacity, and less frequent system
shutdowns for maintenance. Those systems composed of two or more chillers are widely used in
the air-conditioning systems of large buildings. In a multi-chiller system, each chiller can operate
independently and provide different refrigeration capabilities; the chillers operate efficiently according
to different or similar performance curves to meet a wide range of RT requirements in HVAC (heating,
ventilation and air conditioning) system. The architecture of the multi-chiller system is as shown in
Figure 1 below.
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Figure 1. Multi-chiller system architecture.

Generally, the maximum capacity of a chiller is designed to meet the maximum peak load demand,
but because of actual venue requirements and change of seasons, maximum peak load generally only
occurs in summer, and the system operates at low partial load mode during the remaining time.
Therefore, if the designed capacity is too large, the system consumes excessive power. The partial load
rate (PLR) of the chiller can be expressed as (1):

chiller load

PLR = chiller rated load M

The power consumption of a chiller and its PLR share a certain relationship; according to the
chiller power consumption equation of [8] as shown in (2) and (3):

P; = a; +b; x PLR; +¢; x PLR? )

P = a; + b x PLR; + ¢; x PLR? + d; x PLR? &)

Equations (2) and (3) are chiller power consumption for Example 1 and Example 2 introduced
from literate [8]. In (2) and (3), the coefficients a;, b;, c;, and d; define the relationship between power
consumption and PLR for the chillers in Examples 1 and 2; this analysis was based on [8]. The PLR
ranged between 0.0 and 1.0.

The overall objective of OCL optimization was to find the optimal partial loading rate of each
chiller of the multi-chiller system that satisfied the cooling requirements of the venue but also
minimized overall power consumption. Therefore, the objective function of the proposed OCL
optimization was defined as shown in (4):

n
Objrunction = Minimize Z P; 4)
i=1

In (4), the parameter i signifies the ith chiller; 7 is the total number of chillers in the multi-chiller
system; P; is defined as the power consumption (kW) of the ith chiller. The object of Equation (4) is to
find the lowest total power consumption in the multi-chiller system.

OCL problems have two types of restrictions [8] during solving; the first restriction is that the
total output of RT must be equal to the RT required by the venue, as shown in (5). Q; signifies the rated
RT capacity of the ith chiller; CL is the total RT required by the venue. This is the basic constraint for
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OCL problems. If the total RT generated by all chillers is smaller or larger than the RT requirement, the
people who stay in the venue will feel not very comfortable.

n
Y PLR; x Q; =CL 5)
i=1

The second restriction is that the partial loading of each chiller cannot be less than 30% [8],
as defined in (6):
PLR; > 0.3 6)

3. Two-Stage Differential Evolution Algorithm

The proposed two-stage DE algorithm is an optimization method that integrates MBDE and DE;
it has superior exploration and convergence rates during searches for optimal solutions.

3.1. Differential Evolution Algorithm

The DE (differential evolution) algorithm was proposed by Price and Storn in 1995 [18]. First, the
initial real-number entities were randomly generated; the mutation operator used random numbers
to select different entities to generate vector differences to serve as search directions, which were
multiplied by a weight to obtain the size of the search, thus forming new search vectors. Then, through
crossover, assessment, and selection, the process was iterated until the termination condition was met.
The three main steps of the DE algorithm are: mutation, crossover, and selection.

3.1.1. Mutation Operator

The purpose of the DE mutation operator is to generate different mutated vectors. Those
vectors are generated by (7) and (8), where G represents the current iteration and G+1 represents the
next iteration.

Vigi1 = Xic +F x (X6 — Xi3,0) 7)

Vic+1 = Xpest,c + F X (Xp2,6 — Xi3,6) 8)

From the group that ranges from Entity 1 to Entity P, randomly select two entities from whole
DE group, the vectors X, ¢ and X;3 ¢, perform subtraction between these two entities to find the
difference vector, then multiply it by a given weight F. Finally, add the global best vector Xj,; g or the
self vector X; ¢ to obtain the next generation of mutated vectors V; g1

3.1.2. Crossover Operator

After an individual entity applies the mutation mechanism to generate a mutated vector,
the crossover operator is used to generate trial vectors; the probability Cr of the crossover operator can
range from 0.0 to 1.0. D represents the total design elements (or variables) in one vector. Regarding the
randomly generated R, if the value of R is greater than Cr, then the jth element of original vector X;;
is selected; if the value of R is smaller than Cr, then the jth element of mutated vector Vj; g1 is selected
as the jth element of trial vector Uj; .1 for the next generation. The crossover operator is formulated
as shown in (9):

if R< Gy, Ujigr1 =Vjigt1 if R>Cr, Ujigy1 = Xjic j=12....... D )

3.1.3. Selection Operator

The selection operator is a convergence mechanism of the DE algorithm; it calculates the value
of the objective function of the original vector X;; and the trial vector U; .1, and compares the
advantages and disadvantages of the objective function. The vector with the higher (or better) objective
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function value becomes the next generation’s original vector X; .1, then the vector with the highest
objective function value of all original vector is selected as the global best vector Xp,s .

3.2. Modified Binary Differential Evolution (MBDE) Algorithm

A modified DE algorithm [15,16] was proposed by Wu and Tseng in 2010. The real number
encoding of the original DE algorithm was changed to a binary encoding, and a modified mutation
operator was used for evolution. The method was also applied in engineering optimization
problems [19]; the mechanism of the MBDE was the same as that of the original DE.

3.2.1. Mutation Operator

The mutation equation for MBDE obtained by the original DE mutation operator [18] uses logical
operators to compute binary strings as shown in (10) and (11). X; ¢ is original vector and X, ; selects
one entities randomly from the whole DE group. Xp, g represents the global best vector. This binary
mutation uses the logical operator XOR (exclusive or) to divide the binary string into two groups,
“0” and “1” strings. The “0” string group represents common characteristics between two entities;
the set weight F2 and randomly generated value are compared; when the randomly generated value is
smaller than F2, then the bit “0” or “1” is mutated to “1” or “0”. Alternatively, when the randomly
generated value is greater than F2, then the bit remains unchanged. The “1” string group represents
different characteristics between two entities; the given weight F1 and randomly generated value are
compared; when the randomly generated value is smaller than F1, then the bit “0” or “1” is converted
to “1” or “0”; alternately, when the randomly generated number is greater than F1, the bit remains
unchanged. Finally, the two strings are combined to form the next generation of mutated vectors
ViG+1; the flowchart of the modified binary mutation operator is depicted in Figure 2.

Vict1 = F1(Xic ® Xp1,6) + F2/(Xic ® X,c) (10)

Vic+1 = F1(Xi G © Xpest,c) + F21(Xi 6 © Xpest,c) (11)

Weight F1 tends to be greater than F2 because there is a higher probability that the characteristic
of the optimal solution is a common characteristic, therefore a lower probability is used to maintain
common characteristics, and a higher probability is used to change different characteristics.

CELTITT- - CEELT:

N
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Clel el I CL T I T
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Figure 2. Modified binary mutation operator [15].
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3.2.2. Crossover Operator

The binary crossover operator of the modified binary DE algorithm is similar to the crossover
operator of the DE algorithm. For the mutually equal jth design variable, a randomly generated
value and the set crossover rate are compared; if the randomly generated value is greater than the
crossover rate, then the original vector is selected as the next-generation trial vector. Alternately, if the
randomly generated value is smaller than the crossover rate, then the mutated vector becomes the
next-generation trial vector, as shown in Figure 3.

=1 XX o XX v
=2 b XX | 5t .I A5t !
=3 XX o xx w
' XX ' v " ANy I
} XX | - XX 4 7 v ,
XX ' v ¢ W
1=N-1 XX 4 & w "l ' v ‘
=N XX ; XX . w .
Target vector, x,g Tnal vector, 1, g+- Mutated vector, v, 6+

Figure 3. Binary crossover operator [15].

3.2.3. Selection Operator

The operation of selection is similar to the assessment and selection of DE. After binary mutation
and binary crossover, the objective function F(X; ;) of the original vector is compared with the objective
function F(U; 1) of the trial vector, and the best vector is selected as the next-generation objective
vector X;c+1. The vector with highest objective function value among all DE group is selected
as the global best vector Xj,,; c for mutation operator. The evolutionary computational system
repeats Sections 3.2.1-3.2.3 iteratively until the termination condition is met.

3.3. Two-Stage Differential Evolution Algorithm

The two-stage DE algorithm solves OCL problems in two stages. In stage 1, the solving of MBDE
begins after the PLR of each chiller has been encoded to binary, restrictions have been considered, and
the objective equation has been defined. The character of binary encoding has low numerical precision
but has favorable diversity when searching for an optimal solution [17]. After stage 1 has been solved,
the resultant real-number encoding is taken into stage 2 of DE for exploitation. The overall architecture
of the two-stage DE algorithm is illustrated in Figure 4.
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Figure 4. Flowchart of two-stage DE.

4. Results, Analyses and Discussions

The OCL problems in [8] can serve as test examples for the proposed two-stage DE algorithm.
Examples 1 and 2 are OCL problems for a six-chiller system and a four-chiller system. The parameters
were set as follows: the population was 20; the mutation operator used (8) for DE and (11) for MBDE;
the DE mutation rate and crossover rate were 0.5; the MBDE crossover rate was 0.5; the mutation rates
F1 and F2 were 0.5 and 0.005, respectively. The aforementioned parameters were set in reference to the
recommendations of [15,18]. The total number of iterations was configured to fit the required number
of calculations of the example. The number of iterations in of case study 1 was 1000; it was 40 in case
study 2.

4.1. Case Study 1

This multi-chiller system was composed of six chillers. The objective was to calculate the lowest
power consumption combinations of this six-chiller system under different RT requirements. The venue
RT requirements in Example 1 were of five types: 6858 (90%); 6477 (85%); 6096 (80%); 5717 (75%);
and 5334 (70%). Equation (2) defines the power consumption of this chiller system. The rated RT
of each chiller and the power consumption parameters (a;, b;, c;) are listed in Table 1. The present
study used a comparison method similar to those of other studies [8]; the total number of function
evaluations was 20,000 for each run; 30 runs were executed, after which the mean, standard deviation
(SD), maximum, and minimum values were computed in the manner of previously published articles
in the literature.

Table 2 summarizes the optimization results of the proposed method with DCSA (differential
cuckoo search approach) [8], showing that for both the minimum value and SD, all values of the optimal
solution found by the two-stage DE algorithm under different CL conditions that were very close to
those of DCSA. When CL was 80%, 75%, and 70%, the proposed method executed 20,000 function
evaluations (2000 function evaluations for phase 1 and 18,000 function evaluations for phase 2) to



Energies 2019, 12, 622 8 of 12

achieve better results than DCSA. Table 3 compared the optimal solutions of two-stage DE algorithm
with those of other methods; when CL was 90% and 80%, a solution similar to that of DCSA was
found; the solution was superior to than that of SA [20] and PSO [6]. Under other CL conditions (85%,
75%, and 70%), the results of the proposed two-stage DE algorithm were superior to those of other
studies [6,8,20]. The convergence of two-DE algorithm for case study 1 is shown in Figure 5.

Table 1. Power consumption coefficient and rated RT information for case study 1.

Chiller a; b; ci Rated RT
1 399.345 —122.12 206.30 1280
2 287.116 80.04 700.48 1280
3 —120.505 1525.99 —502.14 1280
4 —19.121 898.76 —98.15 1280
5 —95.029 1202.39 —352.16 1280
6 191.75 224 .86 524.04 1280

Table 2. Case study 1: comparison with DCSA.

CL Algorithm MIN (kW) Average (kW) Max (kW) SD

6368 (90%) Two-stage DE 4738.575 4733.575 4738.575 3.919 x 107°
’ DCSA 4738.575 4738.575 4738.575 5313 x 1077

6477 (85%) Two-stage DE 4421.649 4421.649 4421.650 6.355 x 1075
’ DCSA 4421.649 4421.650 4421.650 2.301 x 1074

6096 (30%) Two-stage DE 4143.706 4143.709 4143.714 3.211 x 107*
’ DCSA 4143.706 4143.710 4143.709 4299 x 1074

5717 (75%) Two-stage DE 3838.208 3838.217 3838.225 6.702 x 1074
’ DCSA 3840.055 3840.458 3843.766 9.428 x 1071

5334 (70%) Two-stage DE 3507.270 3507.278 3507.302 1.356 x 1073
’ DCSA 3507.270 3507.715 3511.760 1.036

Table 3. Case study 1: comparison with methods proposed by other studies.

CL Chiller No.  SA[20] Power (kW) PSO[6] Power (kW) DCSA [8] Power (kW) Two Stage DE Power (kW)

i PLR; of PLR; of PLR; of PLR; of
1 0.7789 0.8026 0.812726 0.81273
2 0.7587 0.7799 0.749619 0.749554

6898 3 0.9791 0.9996 1.000000 1.000000

(90%) 4 0.9781 4777.03 0.9998 4739.53 1.000000 4738.575 1.000000 4738.5750
5 0.9820 0.9999 1.000000 1.000000
6 0.9265 0.8183 0.838559 0.838621
1 0.8051 0.7606 0.727731 0.720409
2 0.6056 0.6555 0.656132 0.634290

6477 3 0.9689 1.0000 1.000000 1.000000

(85%) 4 0.9941 4453.67 1.0000 4423.04 1.000000 4421.649 1.000000 4421.6486
5 0.9866 1.0000 1.000000 1.000000
6 0.7432 0.6835 0.716524 0.746387
1 0.5635 0.6591 0.642735 0.642368
2 0.5743 0.5798 0.562645 0.562711

6096 3 0.9675 0.9991 1.000000 0.999999

%) " 09708 417873 09979 4147.69 1000000 4143706 0999999 41437064
5 0.9845 0.9921 1.000000 0.999999
6 0.7338 05710 0.594490 0.594798
1 0.6140 07713 0.843697 0.843243
2 0.4429 0.7177 0.783794 0.783222

5717 3 0.9891 0.3000 0.000001 0.000000

(75%) 4 0.8867 3925.51 0.9991 3921.07 1.000000 3840.055 0.999999 3838.2079
5 0.9841 1.0000 1.000000 0.999999
6 0.5875 0.7187 0.883049 0.882499
1 0.6265 0.6418 0.749969 0.758176
2 0.7403 0.6621 0.682477 0.689668

5334 3 0.3093 0.3301 0.000012 0.000000

(70%) 4 0.9546 3675.34 0.9906 3642.55 1.000000 3507.270 1.000000 3507.269
5 0.9511 0.9990 1.000000 1.000000
6 0.6250 0.5806 0.776363 0.760606




Energies 2019, 12, 622 90f12

5300

5100
4900
8

90%

85% 80%

75%

70%

4700
4500
4300
4100
3900 \‘—_.‘
3700
3500

Power Comsumption (kW)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Number of function evaluations

Figure 5. Convergence of two-stage DE for case study 1.
4.2. Case Study 2

This multi-chiller system was composed of four chillers. The objective of this example was
the same as that of Example 1, namely, to find the lowest power consumption combination for this
four-chiller system at different RT requirements. The RT requirements of the venue were of six types:
2610 (90%); 2320 (80%); 2030 (70%); 1740 (60%); 1450 (50%); and 1160 (40%). Equation (3) defines
the power consumption of the chiller, the rated RT of each chiller and their power consumption
parameters (a;, b;, c;, d;) are listed in Table 4. The study referenced the comparison methods of
relevant articles [4,6-8], and 800 function evaluations were allowed in each run, and 30 runs were

executed. The mean, SD, maximum, and minimum values were calculated for comparison with those
of other studies.

Table 4. Case study 2: Power consumption coefficient and rated RT information.

Chiller a; b; c; d; Rated RT
1 104.09 166.57 —430.13 512.53 450
2 —67.15 1177.79 —2174.53 1456.53 450
3 384.71 —779.13 1151.42 —63.2 1000
4 541.63 413.48 —3626.5 4021.41 1000

Table 5 proves that in addition to the power consumption of the proposed two-stage DE algorithm
being relatively similar to that of DCSA at CL = 80%, under other CL conditions (70%, 60%, 50%,
and 40%), the results of the proposed optimization method using 800 function evaluations (80 function
evaluations for phase 1 and 720 function evaluations for phase 2) were also superior to that of DCSA [8].
In particular, at CL = 50% and CL = 40%, the SD results validated that the proposed two-stage DE
algorithm was more stable than DCSA. The results of comparisons with other methods [4,6-8] are
listed in Table 6, they prove that the proposed two-stage DE algorithm could find a power consumption
combination that was similar to or lower than those of other methods (GA [4], PSO [6], DE [7], CSA [8])
under most CL conditions. The convergence of two-DE algorithm for case study 2 is shown in Figure 6.
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Table 5. Case study 2: comparison with DCSA.
CL Algorithm MIN (kW) Average (kW) Max (kW) SD
2610 (90%) Two-Stage DE 1857.297 1858.031 1859.626 1.317 x 101
¢ DCSA 1857.299 1857.315 1857.401 2.329 x 102
2320 (80%) Two-Stage DE 1458.334 1458.344 1458.931 2.130 x 102
? DCSA 1455.665 1455.810 1458.478 5303 x 107!
2030 (70%) Two-Stage DE 1178.138 1178.928 1182.952 0.2006
° DCSA 1178.137 1181.067 1199.495 4.803
1740 (60%) Two-Stage DE 942.050 976.182 1001.170 49418
? DCSA 942.183 972.076 1008.493 25.721
1450 (50%) Two-Stage DE 752.963 759.612 792.907 1.851
° DCSA 753.004 765.340 824.347 17.429
1160 (40%) Two-Stage DE 583.938 630.990 661.460 3.985
° DCSA 583.923 644.933 726.016 44.015
Table 6. Case study 2: comparison with the methods proposed by other studies.
CL Chiller No. GA [4] Power (kW) DE[7] Power (kW)  PSO[6] Power (kW) DCSA[8] Power (kW) Two Stage DE Power (kW)
i PLR; of PLR; of PLR; of PLR; of PLR; of
1 0.990000 0.99000 0.990000 0.990988 0.990491
2610 2 0.950000 0.91000 0.910000 0.905473 0.905503
(90%) 3 1ooooo0 186218 yg00000 185730 1000000 185730 100000 1857299 1.000000 1857.297
4 0.740000 0.760000 0.760000 0.756593 0.756791
1 0.860000 0.830000 0.830000 0.828756 0.822981
2320 2 0.810000 0.810000 0.810000 0.805457 0.801856
8% 3 0880000 72 oooo000 145566 ggoopop 149566 ggogran 1455665 0.885369 1455733
4 0.6900D0 0.690000 0.690000 0.687883 0.685549
1 0.660000 0.730000 0.730000 0.773478 0.725289
2080 2 0.760000 0.740000 0.740000 0.739801 0.739752
(70%) 3 0760000 118380 g7o0000 17814 g7p0000 M7 g7o1146 1178137 0.722185 1178.138
4 0.640000 0.650000 0.650000 0.627878 0.648549
1 0.600000 0.600000 0.600000 0.767678 0.745135
740 2 0.700000 0.660000 0.660000 0.004531 0.000000
60%) 3 0510000 100162 560000 998.53 0.560000 998.53 0746317 042183 0.748647 942.059
4 0.590000 0.610000 0.610000 0.646189 0.656017
1 0.600000 0.610000 0.610000 0515832 0.599201
1450 2 0.360000 0.000000 0.000000 0.000001 0.000000
G0%) 4 0.440000 907.72 0.570000 82007 4570000 82007 gg10547 753004 0.571431 752.963
4 0.580000 0.610000 0.610000 0,607328 0.656017
1 0.330000 0.000000 0.000000 0,000000 0.000000
160 2 0.320000 0.000000 0.000000 0.000014 0.000012
40%) 3 0.320000 856.30 0.560000 651.07 0.560000 651.07 057039 83923 0.556082 583.938
4 0.540000 0.600000 0.600000 0.589625 0.603912
2500
2300 90% 80% 70%
2100
E 1900
g 1700
= 1500
]
Z 1300
=
S moo
< 900
- B Sy
& 700 — ‘
500 :
0 100 200 300 400 500 600 700

Number of function evaluations

Figure 6. Convergence of two-stage DE for case study 1.
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5. Conclusions

The proposed two-stage DE algorithm integrates the characteristics of binary and real-valued
DE algorithms; it has excellent exploration and convergence rates for optimal solutions. Regarding
case studies 1 and 2, the comparisons of the proposed method with other methods indicate that the
proposed two-stage DE algorithm is suitable for optimization of the power consumption configurations
of multi-chiller systems. In addition to being able to obtain solutions similar to or better than those of
referenced studies, the degree of variance of the optimal solution in each search was better than those
of other studies, further validating that the performance and stability of the proposed two-stage DE
algorithm are better than those of other methods. The proposed algorithm can be used to solve similar
optimization problems.
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