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Abstract: Recently, a dynamic development of intermittent renewable energy sources (RES) has been
observed. In order to allow for the adoption of trading contracts for unplanned events and changing
weather conditions, the day-ahead markets have been complemented by intraday markets; in some
countries, such as Poland, balancing markets are used for this purpose. This research focuses on
a small RES generator, which has no market power and sells electricity through a larger trading
company. The generator needs to decide, in advance, how much electricity is sold in the day-ahead
market. The optimal decision of the generator on where to sell the production depends on the relation
between prices in different markets. Unfortunately, when making the decision, the generator is not
sure which market will offer a higher price. This article investigates the possible gains from utilizing
forecasts of the price spread between the intraday/balancing and day-ahead markets in the decision
process. It shows that the sign of the price spread can be successfully predicted with econometric
models, such as ARX and probit. Moreover, our research demonstrates that the statistical measures of
forecast accuracy, such as the percentage of correct sign classifications, do not necessarily coincide
with economic benefits.
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1. Introduction

Over the last decade, many countries have experienced a dynamic development of intermittent
renewable energy sources (RES), among which wind and solar play a central role. From 2005 to
2014, RES generation in the EU (28 countries) increased by 87.8%, from 495.7 GWh to 930.9 GWh.
In 2016, it reached 29.6% of the total gross electricity generation. Increasing input of RES affects both
the electricity market and the distribution system. On one hand, it results in the reduction of CO2

emissions and the decrease of wholesale electricity prices [1–4]. On the other hand, expanding RES
creates new challenges for market participants. Electricity generated by wind or photovoltaic (PV)
depends strongly on weather conditions and, hence, is volatile and difficult to forecast; see [5] for a
comprehensive discussion. In some countries, such as Germany, RES generation is granted priority
during the dispatch and receives a fixed feed-in tariff. As a result, the day-ahead prices are more prone
to extreme behavior, such as spikes or negative values [6]. Finally, RES generation increases the risk of
system imbalance, because an inelastic demand needs to be covered by a stochastic supply.

Nowadays, a major share of electricity is sold on power exchanges, such as Nord Pool or European
Energy Exchange (EEX) in Europe, India Energy Exchanges (IEX) in Asia, and Pennsylvania New
Jersey Maryland Interconnection LLC (PJM) or New York Independent System Operator (NYISO)
in the US, where day-ahead contracts dominate. The day-ahead prices, which in Europe are also
called ’spot prices’, are set around noon on the day preceding the delivery. In order to allow for
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adoption of trading contracts in the case of unplanned events and changing weather conditions, the
day-ahead markets are complemented by intraday and balancing markets. The intraday markets,
typically organized by power exchanges, take the form of auctions (e.g., in Spain) or continuous trading
(e.g., in Germany). They allow purchasing and selling of electricity throughout the whole day, up to a
few minutes before the physical delivery. The final balancing of the demand and supply is achieved
through the balancing markets, which are controlled by system operators and aim at securing the
system stability. However, in some countries, such as Poland, they are used for short term transactions,
instead of the intraday markets.

The structural changes in electricity markets influence the decision process of generation utilities.
This research focuses on a small RES generator, which has no market power and, hence, is a price
taker. This type of a utility typically sells electricity through a larger trading company. The generator
needs to decide, in advance, how much electricity will be sold in the spot market. If it offers a
quantity smaller than the actual production, then the excess generation is traded in the intraday or the
balancing market. On the contrary, if the offered quantity is larger than the actual one, then the RES
generator needs to purchase the electricity to meet the day-ahead contracts. The optimal decision of the
generator on where to sell the production depends on the relation between prices in these markets [7,8].
Unfortunately, when making the decision, the generator faces the uncertainty about the production
and the price levels. Hence, it is not sure if it is able to produce the proposed quantity and which
market offers a higher price. This article addresses the second question and investigates the possible
gains from utilizing forecasts of the price spread between the day-ahead and the intraday/balancing
market in the decision process.

There is a rich literature on forecasting electricity prices; see [5] and [9,10] for comprehensive
reviews of point and probabilistic forecasts, respectively. However, the majority of articles focus on
day-ahead prices, since they have the longest history and are perceived as a benchmark for various
financial instruments. A variety of prediction methods were proposed, ranging from linear, univariate
time series models [11], neural networks [12], and Lasso regressions [13], to multivariate models [14,15]
and forecast averaging [16,17]. The literature indicates that RES generation is one of the most important
drivers of the spot price level [1,4,18] and distribution [19]. The intraday prices have not been studied
as intensively as their day-ahead counterparts. There are a few articles which analyzed the intraday
markets in Germany [13,20,21], Spain [12], and the US [4]. They linked the intraday prices with RES
forecast errors [18,22,23]. Unfortunately, typically the research focuses only on short-term forecasts
and, hence, assumes the knowledge of the day-ahead prices [4].

This article extends the literature in various directions. First, we consider the point of view of a
small generator, which needs to choose an optimal trading strategy by comparing predicted prices
in different markets. Hence, the day-ahead and the intraday/balancing prices have to be forecasted
jointly. We show that the sign of the price spread, which is crucial for the decision process, can be
successfully predicted with econometric models. Second, we examine different model specifications,
which vary in terms of the aggregation level (hourly versus daily data), the choice of exogenous
variables, the lag structure, and the length of the estimation window. We show that although the
disaggregated, hourly data provides more information, it does not lead to more efficient forecasts than
the aggregated, daily approach. Moreover, the results indicate that the fundamentals—in particular,
RES generation—impact not only the level of prices but also the price spread, and that they are useful
in formulating an optimal trading strategy. Finally, we demonstrate that the statistical measures of
forecast accuracy, such as the classification power, do not necessarily coincide with economic gains.
Similar to [13,24], we encourage a deeper look at the financial benefits of prediction methods.

The rest of the paper is structured as follows. In Section 2, we describe the data used for modeling
the Polish and the German electricity markets. In Section 3, we introduce the econometric methods
employed in the analysis and discuss forecast evaluation. We present the results in Section 4. Finally,
in Section 5, we conclude the study.
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2. Data

This article analyzes two distinct electricity markets: Germany and Poland. Although they
are both located in Europe and are neighbors, they differ in terms of the generation structure and
the market organization. Germany is well known for its success in RES penetration, which—at the
time of this article—accounts for 40.2% of total electricity production (see https://www.energy-
charts.de). At the same time, Polish electricity generation is based on coal, with RES reaching
only 8.4% (see https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-miesieczne-z-
funkcjonowania-rb/raporty-miesieczne). In both countries, RES has priority during the dispatch.
Second, the German and Polish markets are designed differently, which could affect the decision
process of market participants [8]. The intraday market in Germany is based on the pay-as-bid
principle, which has been complemented by intraday auctions. In Poland, the balancing market,
which is considered as the main market for contract adjustments, uses a double price approach.
The practice shows, however, that a single market-clearing price is preferred by the market operator
and, hence, the double prices have never been applied. Finally, in Germany, negative prices are allowed
in both day-ahead and intraday markets, whereas, in Poland, until 2019 the balancing prices were
restricted to be positive and to stay within an interval of 70–500 PLN/MWh (which is equivalent to
17.5–125 EUR/MWh). A recent regulation, which came into power on 1 January 2019, changed the
lower and the upper bounds to −50,000 PLN/MWh and 50,000 PLN/MWh, respectively.

The data used in this research is hourly and spans the period from 1 January 2016 to 31 December
2017. The data for Poland consists of day-ahead and balancing market prices (both in Polish zloty,
PLN). The prices are complemented by exogenous variables: The forecasted energy demand, the
forecasted wind generation, and the forecasted available energy reserves. The intraday prices are not
included in the analysis, as the market is not liquid. The German data is comprised of energy prices
(in Euros) in the day-ahead and intraday markets. The intraday prices are calculated as the weighted
average of all intraday contracts for the given hour. The exogenous variables are: The forecasted total
load, which can be treated as a proxy for the forecasted demand, and the forecasted wind generation.
Data sources and units are summarized in Table 1.

Table 1. Data sources.

Data Notation Units Source
Poland

Day-ahead prices P0 PLN/MWh TGE S.A., https://www.tge.pl
Balancing prices P1 PLN/MWh PSE S.A., http://www.pse.pl
Forecasted demand X1 MWh PSE S.A., http://www.pse.pl
Forecasted wind generation X2 MWh PSE S.A., http://www.pse.pl
Forecasted reserves X3 MWh PSE S.A., http://www.pse.pl

Germany
Day-ahead prices P0 EUR/MWh EPEX SPOT, http://www.epexspot.com
Intraday prices P1 EUR/MWh EPEX SPOT, http://www.epexspot.com
Forecasted load X1 MWh https://transparency.entsoe.eu
Forecasted wind generation X2 MWh https://transparency.entsoe.eu

Time paths of electricity price, together with the price spread, computed as the excess of the
intraday/balancing price over the spot price, are presented in Figures 1 and 2. First, it can be observed
that the day-ahead prices are less volatile than the intraday/balancing prices, especially for Poland.
Moreover, both time series are characterized by positive spikes, with Germany exhibiting sudden
drops with prices falling below zero. Spikes are also observed in the spread series, indicating that they
are not perfectly synchronized between markets. The basic descriptive statistics of electricity prices are
presented in Table 2. They confirm that balancing and intraday prices are, on average, higher and more
volatile than day-ahead prices, with the difference being more pronounced for Poland. Finally, it could

https://www.energy-charts.de
https://www.energy-charts.de
 https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-miesieczne-z-funkcjonowania-rb/raporty-miesieczne
 https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-miesieczne-z-funkcjonowania-rb/raporty-miesieczne
https://www.tge.pl
http://www.pse.pl
http://www.pse.pl
http://www.pse.pl
http://www.pse.pl
http://www.epexspot.com
http://www.epexspot.com
https://transparency.entsoe.eu
https://transparency.entsoe.eu
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be noticed that the spread in Germany has a much lower variance than any of the prices, whereas, in
Poland, the spread is more volatile than spot prices.

Table 2. Mean and standard deviation (Std. dev.) of the energy prices.

Country Market Mean Std. dev.

Poland
Day-ahead 158.51 33.424
Balancing 165.717 61.138

Spread 7.198 45.009

Germany
Day-ahead 31.580 12.293

Intraday 31.754 13.057
Spread 0.174 4.494

In order to evaluate the forecasting possibilities of the price difference, the sample is divided into
estimation and validation periods. The validation window contains the last 365 observations, from
1 January 2017 to 31 December 2017 (see Figures 1 and 2). In this research, a rolling estimation window
approach was adopted, with its length ranging from a month (30 days), a quarter (91 days), half a year
(182 days), to a year (365 days).
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Figure 1. Day-ahead prices, balancing prices, and price spread for Poland with estimation and
validation periods.
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Figure 2. Day-ahead prices, intraday prices, and price spread for Germany with estimation and
validation periods.

3. Forecasting Methods and Forecast Evaluation

In order to model market preference, let us define a decision variable Yht, which equals one when
the generator decides to sell the electricity for hour h and day t in the intraday market, and zero
otherwise. Let us consider two benchmark strategies: The first one assumes that the utility sells all
generated electricity in the day-ahead market. In such a case, Yht = 0 for all h and t. The second
one assumes that the generator enters only the intraday/balancing market and, hence, it is always
the case that Yht = 1. We refer to them as naïve day-ahead and naïve intraday/balancing strategies,
respectively. Here, we compare them with a data driven approach, which assumes that the decision
depends on the relationship between the day-ahead (P0

ht) and the intraday/balancing price (P1
ht)

Yht =

{
1 if P1

ht > P0
ht,

0 if P1
ht ≤ P0

ht.
(1)

As the price difference ∆Pht = P1
ht − P0

ht is not known in advance, the generator needs to base its
decision on the predicted spread

Ŷht =

{
1 if ∆P̂ht|t−1 > 0,

0 if ∆P̂ht|t−1 ≤ 0
, (2)

where ∆P̂ht|t−1 is a forecast of ∆Pht, computed using the information available on day t− 1. In this
research, two alternative ways of forecasting Yht are considered. First, autoregressive models with
exogenous variables (ARX) are examined, which either (1) separately model the level of prices P0

ht
and P1

ht and then compute ∆Pht, or (2) describe directly the price spread, ∆Pht. In the regression,
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information on predicted market fundamentals and past levels of prices is used. The forecast, Ŷht, is
based on the sign of the predicted spread ∆P̂ht. Second, probit models are used, which describe directly
the distribution of the binomial variable Yht defined by (1). Similar to ARX models, the probability
Prob(Yht = 1) is conditioned on exogenous variables and lagged prices. A more detailed description
of the models is presented in Sections 3.1 and 3.2.

When the aggregated, daily models are considered, then the endogenous and exogenous variables
are constructed as the daily averages of the corresponding hourly variables. The decision variable
Yt becomes

Yt =

{
1 if P1

t > P0
t

0 if P1
t ≤ P0

t
, (3)

which implies that the generator adopts the same strategy throughout the day, and hence Y1t = ... =
Y24t = Yt.

In the remaining part of the article, the following notation is used:

• Dt denotes a (4× 1) vector of deterministic variables: A constant and dummy variables for
Mondays, Saturdays, and Sundays/Holidays,

• Xht represents a vector of exogenous variables, which is a subset of {X1,ht.X2,ht, X3,ht} for Poland
and {X1,ht, X2,ht} for Germany. Variables Xi are defined in Table 1.

• Xt, P0
t , and P1

t are daily averages of the corresponding hourly variables: Xht, P0
ht, and P1

ht,
respectively.

3.1. Autoregressive Models

ARX is a linear model, which links the current level of an endogenous variable with its past values
and a vector of exogenous variables. It has been widely applied in the literature and has proved useful
in forecasting electricity prices; see [5] for a discussion. Here, two model specifications are considered.
First, the prices P0

ht and P1
ht are modeled separately

P0
ht = αDt + βXht + ∑

i∈L∪{1}
θiP0

ht−i + εht, (4)

P1
ht = αDt + βXht + ∑

i∈L
θiP1

ht−i + γP0
ht−1 + εht. (5)

Then, the spread ∆Pht is computed as their difference: ∆Pht = P1
ht − P0

ht. Alternatively, the price spread
is modeled directly, according to the following formula

∆Pht = αDt + βXht + ∑
i∈L

θi∆Pht−i + γP0
ht−1 + εht. (6)

In both model specifications, α and β are vectors of coefficients corresponding to the deterministic
and exogenous variables, respectively, while θi are the autoregressive parameters and εt are the
residuals. Lags i belong to the pre-defined set L. Unfortunately, on day t − 1, not all prices P1

ht−1
are known yet, nor the spreads ∆Pht−1. For this reason the lag i = 1 is excluded from set L, except
when modeling P0

ht. In order to compensate for this, the previous day’s price P0
ht−1 is added to

Equations (5) and (6).
Since the main interest of the generator is the optimal choice of the market, the results of

regressions (4)–(6) are used to predict Ŷht. According to Equation (2), the utility sells in the
intraday/balancing market, Ŷht = 1, when the predicted spread ∆P̂ht is positive. Otherwise, it chooses
the day-ahead market, Ŷht = 0.

For aggregated, daily models, the hourly observations in Equations (4)–(6) are replaced by their
daily averages: Xt, P0

t , P1
t , and ∆Pt. The structure of the models remains unchanged. As a result,

the decision variable Yt, defined by (3), is equal to one when ∆P̂t > 0, and zero otherwise.
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Parameters α, β, θi, and γ are estimated with the least-squares (LS) method. For each hour, h,
separately, the model is fitted such that the sum-of-squares of the differences between the observed
and predicted values is minimized.

3.2. The Probit Model

The probit model is used to describe directly the probability distribution of the binary variable
Yht. The model is formulated as follows:

Prob(Yht = 1|Ωt−1) = Φ

(
αDt + βXht + ∑

i∈L
θi∆Pht−i + γP0

ht−1

)
, (7)

where Φ(x) is the standard normal cumulative distribution function, α is a (1× 4) vector of parameters
describing the impact of deterministic variables, and β summarizes the effect of the exogenous
variables. Finally, θi are the autoregressive parameters, with lags i belonging to the pre-defined set L,
as in Equations (4)–(6). In order to utilize all the information available on day t− 1, the effect of P0

ht on
the probability is added by use of the parameter γ.

Parameters α, β, θi, and γ are estimated separately for each hour, h, using the maximum likelihood
method. Due to the lack of a closed-form solution for the maximization problem, the parameters are
estimated numerically, using the Nelder-Mead algorithm [25]. Calculations are conducted in the R
environment. The initial parameters for the procedure are estimated by a least-squares method and
the number of iterations is limited to 10, 000.

With parameter estimates α̂, β̂, θ̂i, and γ̂ obtained within the rolling calibration window,
the forecast of Yht is defined as

Ŷht =


1 if Φ

(
α̂Dt + β̂Xht + ∑

i∈L
θ̂i∆Pht−i + γ̂P0

ht−1

)
> µ,

0 if Φ

(
α̂Dt + β̂Xht + ∑

i∈L
θ̂i∆Pht−i + γ̂P0

ht−1

)
≤ µ

, (8)

where µ ∈ (0, 1) is the threshold parameter. Typically, the threshold is chosen to equal µ = 0.5.
However, the results indicated that µ = 0.4 or µ = 0.3 provide more accurate and profitable forecasts
(see Section 4 for details).

For aggregated, daily models, Formula (7) becomes

Prob(Yt = 1|Ωt−1) = Φ

(
αDt + βXt + ∑

i∈L
θi∆Pt−i + γP0

t−1

)
, (9)

with the parameters defined as above. The forecasts Ŷt are obtained, as in (8), by comparing the
forecasted probability with the threshold µ.

3.3. Forecast Evaluation

The literature proposes various methods, which could be used to evaluate the accuracy of binomial
variable forecasts. First, one could compute the classification power, denoted here by p:

p =
1

HT

H

∑
h=1

T

∑
t=1

1{Yht=Ŷht}, (10)

where H = 24, T = 365, and 1{s} stands for an indicator variable, which takes value one when s is
true, and zero otherwise. This measure shows how often the forecast coincides with the true value.
Second, two measures of the predictive power could be computed:
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q0 =
∑H

h=1 ∑T
t=1 1{Yht=Ŷht=0}

∑H
h=1 ∑T

t=1 1{Ŷht=0}
, and (11)

q1 =
∑H

h=1 ∑T
t=1 1{Yht=Ŷht=1}

∑H
h=1 ∑T

t=1 1{Ŷht=1}
. (12)

The first measure describes the probability that Yht = 0 when Ŷht = 0. Similarly, q1 indicates
the probability that Yht = 1 when Ŷht = 1. It should be noticed that, for the day-ahead strategy, the
classification power p = q0 and it is equal to the unconditional probability Prob(Yht = 0). Analogously,
for the second naïve strategy, which always selects the intraday/balancing market, we have p = q1 =

Prob(Yht = 1).
The classical, statistical approach of prediction evaluation provides an interesting description of

the forecast performance, but may not reflect the main concerns of the generator, which are the profit
and the risk. Therefore, the analysis is complemented by two measures related to financial outcomes of
the adopted strategy. The potential gains and losses induced are computed relative to the benchmark
strategy. This implies that the hourly profit, πht, becomes

πht = ŶhtP1
ht + (1− Ŷht)P0

ht − P0
ht = Ŷht∆P1

ht. (13)

Using Equation (13), one could compute the daily profit πt = ∑24
h=1 πht and the total yearly profit

π = ∑T
t=1 πt. In order to describe the financial aspects of the decision, we use the total yearly profit, π

and the 5% Value at Risk (VaR) associated with daily profits πt.

4. Results

The results for the Polish and German markets are analyzed from the perspective of forecast
accuracy (p, q0, and q1) and financial profitability (π). The risk associated with each of the forecasting
methods is measured with the 5% VaR of daily profits. Various model specifications are examined,
which differ in terms of the aggregation (daily versus hourly data), the choice of the exogenous variables
X, the lag structure L, and the length of the calibration window. Finally, the data-driven approach is
compared with the second naïve strategy, which assumes selling only in the intraday/balancing market.

4.1. Poland

The results for the Polish electricity market are summarized in Tables 3 and 4. Table 3 shows the
classical measures of prediction accuracy. The results for the top three model specifications for each
forecasting approach are presented and compared with the naive strategies. It should be emphasized
that the balancing market provided higher prices than the day-ahead market in 51.2% of cases. First,
the aggregated, daily models were considered. The most accurate were the ARX models, which
separately described the day-ahead and balancing prices. They correctly predicted the sign of the
spread in 57.3% of the cases. The best probit model had a classification accuracy of 55.3%. Note
that the best ARX model specification was more successful in forecasting high spot prices than high
balancing prices (q0 = 0.606 > 0.563 = q1). When the disaggregated models were considered, it was
observed that there were no substantial differences between model types and model specifications. The
classification powers were significantly lower than those of the aggregated models, and the highest
one reached 53.2%. This still exceeded the naïve, balancing market strategy, but the gains for data
driven strategies were much less pronounced.
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Table 3. A summary of the forecast accuracy for Polish data. Note that the results for only the top three,
best-performing model specifications, in terms of classification power p, are reported in each group.

No. X L T p q0 q1
Aggregated, daily models

ARX, P0
t and P1

t
1 [2] [2 7] 365 0.573 0.605 0.563
2 [2 3] [2 7] 365 0.564 0.580 0.560
3 [] [2 7] 365 0.562 0.607 0.553

ARX, ∆Pt
1 [2] [2 ... 7] 365 0.553 0.557 0.552
2 [] [2 ... 7] 365 0.548 0.550 0.547
3 [] [2 7] 365 0.548 0.561 0.545

Probit, ∆Pt
1 [2] [2 ... 7] 30 0.553 0.535 0.566
2 [3] [2 ... 7] 30 0.548 0.526 0.563
3 [1] [2] 91 0.540 0.609 0.535

Disaggregated, hourly models
ARX, P0

ht and P1
ht

1 [2] [2 ... 7] 365 0.532 0.530 0.534
2 [2] [2 7] 365 0.531 0.531 0.531
3 [1 2] [2 ... 7] 365 0.528 0.523 0.531

∆Pht
1 [1 2] [2] 182 0.530 0.528 0.531
2 [2 3] [2] 182 0.529 0.526 0.531
3 [1 2 3] [2] 182 0.529 0.526 0.530

Probit, ∆Pht
1 [1 2] [2 ... 7] 91 0.528 0.548 0.521
2 [1 2 3] [2 ... 7] 91 0.526 0.541 0.520
3 [1 3] [2 ... 7] 91 0.525 0.542 0.519

Naive, day-ahead market strategy
- - - 0.488 0.488 -
Naive, balancing market strategy

- - - 0.512 - 0.512

Note: ARX is the autoregressive model with exogenous variables; X stands for the subset of exogenous
variables; L defines the lag structure; T is the length of the calibration window; measures p, q0, and q1 are
defined by (10)–(12). The forecast threshold is µ = 0.3.

The financial gains from choosing the data driven trading strategy are presented in Table 4. Two
measures, total yearly profits, π, and 5% VaR of daily profits, are presented in the last two columns.
First, it can be observed that all the best performing models declassified the benchmarks. The highest
yearly profit from selling 1 MWh was 84, 191 PLN, which was equivalent to around 19, 809 EUR (in the
year 2017, the PLN exchange rate oscillated around 1 EUR = 4.25 PLN). At the same time, selling the
whole production in the balancing market gave 82,576 PLN (19,430 EUR). Since the naive, balancing
market strategy brought substantial profits, it was difficult to beat it. This is reflected by the fact that
only seven out of 15 presented models gave profits exceeding 82,576 PLN. Profits from selling in the
balancing market were burdened with some risk. The VaR showed that in 5% of days, the generator
potentially lost, depending on the model specification, between 695 PLN and 829 PLN (163–195 EUR).

When the performance of different models was analyzed, it was observed that, similar to
classification power, the most profitable forecasts were provided by ARX models, which separately
described prices in the two competing markets. However, it should be noticed that in majority of cases,
the model specifications selected with the p measure did not coincide with those bringing the highest
profits, as measured by π. This was particularly valid for probit models, for which only one of the
most accurate models was chosen as the top profit yielding model.

Finally, the choice of the exogenous variables, lag structure, and the length of the calibration
window were compared, based on the results presented in Tables 3 and 4. The results indicated that
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the forecasts of the ARX models were more accurate when the parameters were estimated using a
full year of observations. On the contrary, the best forecasting probit model utilized only 91 days of
data. Similar results were obtained when analyzing the profit level. The lag structure used in the
best performing models showed that there was no need to include all lags, L = [2, ..., 7], and it was
more efficient to choose L = [2, 7] or L = [2]. Finally, when the choice of the exogenous variables was
considered, the outcomes indicated that the most important variable in predicting the price spread
sign was the forecasted wind generation, X2. It was included in the majority of the best performing
models and model specifications.

As mentioned in Section 3.2, the forecasts based on probit models depend on the assumed level of
threshold µ. The total profits, π, for different levels of thresholds are presented in Figure 3. The models
are first ranked according to their forecast efficiency and then the profits, conditional on the threshold
level, are presented. It seems that probit models underestimated the probability Prob(Yht = 1), and
decreasing the threshold from 0.5 to 0.2 − 0.4 led to an increase of the overall profits. Therefore,
Tables 3 and 4 show the results for µ = 0.3.

Table 4. The comparison of profits and risks for Polish data. Note that the results for only the top
three, best-performing model specifications in terms of total yearly profit π, relative to the day-ahead
strategy, are reported in each group.

No. X L T p π VaR5%
Aggregated, daily models

ARX, P0
t and P1

t
1 [2] [2 7] 365 0.573 84,191 −815
2 [2 3] [2 7] 365 0.564 83,605 −815
3 [1 2] [2 7] 365 0.562 83,454 −815

ARX, ∆Pt
1 [] [2 7] 365 0.548 82,134 −818
2 [2] [2] 365 0.548 81,118 −823
3 [] [2] 365 0.545 80,713 −829

Probit, ∆Pt
1 [1] [2] 91 0.540 83,450 −824
2 [2] [2 ... 7] 365 0.529 83,114 −824
3 [] [2 ... 7] 365 0.526 83,100 −824

Disaggregated, hourly models
ARX, P0

ht and P1
ht

1 [2] [2] 365 0.526 75,232 −710
2 [2 3] [2] 365 0.524 73,778 −695
3 [1 2] [2] 365 0.523 73,718 −695

ARX, ∆Pht
1 [2] [2] 365 0.528 78,173 −723
2 [1 2 3] [2] 365 0.527 77,610 −685
3 [] [2] 365 0.519 77,194 −704

Probit, ∆Pht
1 [1 2] [2] 182 0.517 82,722 −809
2 [1] [2] 182 0.514 82,289 −809
3 [2] [2] 365 0.509 82,231 −824

Naive, balancing market strategy
- - - 0.512 82,576 −829

Notice: X stands for the subset of exogenous variables; L defines of the lag structure; and T is the length of
the calibration window. The forecast threshold is µ = 0.3.
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Figure 3. Profits achieved by probit models for the Polish data, ranked from the worst to the best, for
different threshold values.

4.2. Germany

The German electricity market is one of the most mature in Europe. The intraday market is liquid
and allows for adjustment of the trade contracts to varying conditions; for example, intermittent RES
generation. Although the electricity prices in the intraday market are, on average, higher than on
the day-ahead market (see Table 2), only in 48.9% of cases the price spread ∆Yht is positive. Also, the
average price levels seem similar in the two analyzed markets, which makes spread forecasting a
demanding exercise.

The accuracy of the proposed prediction methods for the German market is summarized in Table 5.
Contrary to previous results, the highest classification power was achieved by probit models estimated
for aggregated data. The probability of a correct decision exceeded 50% only slightly and reached
54.2% for the top ARX models. The performance of the ARX models was slightly worse, and the best
specification gave correct classification in 53.4% of cases. It was observed that, for the top models, the
predictive power was q0 > q1, indicating that the models falsely predicted that intraday prices were
higher than the day-ahead ones.

The results, in terms of total profits and risk, are presented in Table 6. First, it should be noticed
that the naïve, intraday strategy led to a low profit, only 676 EUR a year, and a VaR of −156 EUR. This
result was significantly improved by applying a data-driven approach. All of the presented models
increased the profit and, at the same time, decreased the risk measured by VaR. Among them, probit
models using the aggregated, daily data dominated by a wide margin. The third-best probit model,
with a very short, 30 day calibration window and no exogenous variables, gave a yearly profit of 2880
EUR, which was higher than the best outcome of any other model type. The best probit model used a
182 day calibration window and total load as exogenous, leading to a yearly profit of 3100 EUR.

Similar to the Polish market, the two ways of evaluating forecasts—statistical and financial—did
not coincide. This shows that, from the perspective of the generator, the most profitable model did
not necessarily correctly classify all the observations. The reason for this discrepancy is the fact that
profits were mainly driven by spikes and price differences, which were large in magnitude. At the
same time, most of the observed spreads were close to zero, and hence were less influential on the
financial outcome.

When model specification is considered, outcomes confirmed some of the results obtained for the
Polish market. First, the top models, in terms of profits, had a reduced lag structure, with L = [2] or
L = [2, 7]. Second, the ARX models performed well for a long, yearly calibration window, whereas
probit models provided the best forecasts for medium-length window sizes. Finally, it seems that both
exogenous variables—total load and wind generation—affected the spread forecasts significantly. The
best ARX model used information on both X1 and X2. When probit models are considered, the most
profitable one included only the total load.
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The effect of the threshold on the performance of probit models is illustrated in Figure 4. It can
be observed that the highest profits were obtained for µ = 0.4, for which the results are presented in
Tables 5 and 6.
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Figure 4. Profits achieved by probit models for German data, ranked from the worst to the best, for
different threshold values.

Table 5. A summary of the forecast accuracy for German data. Note that the results for only the
top three, best-performing model specifications, in terms of classification power p, are reported in
each group.

No. X L T p q0 q1
Aggregated, daily models

ARX, P0
t and P1

t
1 [2] [2 ... 7] 365 0.534 0.606 0.489
2 [] [2 7] 91 0.529 0.585 0.483
3 [1] [ 2 7] 91 0.529 0.581 0.482

ARX, ∆Pt
1 [] [2 7] 91 0.534 0.586 0.487
2 [2] [2 7] 91 0.529 0.584 0.482
3 [] [2] 91 0.529 0.581 0.480

Probit, ∆Pt
1 [1] [2 7] 91 0.542 0.612 0.495
2 [2] [2] 30 0.537 0.596 0.490
3 [1] [2 ... 7] 91 0.534 0.600 0.488

Disaggregated, hourly models
ARX, P0

ht and P1
ht

1 [2] [2] 365 0.523 0.544 0.510
2 [2] [2 7] 365 0.519 0.534 0.507
3 [1 2] [2] 365 0.518 0.537 0.506

ARX, ∆Pht
1 [2] [2 7] 365 0.530 0.553 0.515
2 [1 2] [2 7] 365 0.528 0.549 0.514
3 [2] [2] 365 0.527 0.550 0.513

Probit, ∆Pht
1 [2] [2 7] 91 0.523 0.550 0.507
2 [1 2] [2] 91 0.520 0.549 0.505
3 [2] [2] 91 0.519 0.547 0.504

Naive, day-ahead market strategy
- - - 0.511 0.511 -

Naive, intraday market strategy
- - - 0.489 - 0.489

Notice: X stands for the subset of exogenous variables; L defines the lag structure; T is the length of the
calibration window; and measures p, q0, and q1 are defined by (10)–(12). The forecast threshold is µ = 0.4.
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Table 6. The comparison of profits and risks for German data. Note that the results for only the top
three, best-performing model specifications, in terms of total yearly profit π, relative to the day-ahead
strategy, are reported in each group.

No. X L T p π VaR5%
Aggregated, daily models

ARX, P0
t and P1

t
1 [1 2] [2 7] 365 0.521 2645 −107
2 [2] [2 ... 7] 365 0.534 2372 −111
3 [2] [ 2 7] 365 0.521 2235 −111

ARX, ∆Pt
1 [] [2] 91 0.526 1522 −108
2 [2] [2] 365 0.521 1465 −125
3 [1] [2] 182 0.499 1454 −110

Probit, ∆Pt
1 [1] [2] 182 0.501 3100 −116
2 [2] [2 ... 7] 365 0.504 3016 −119
3 [] [2] 30 0.526 2880 −120

Disaggregated, hourly models
ARX, P0

ht and P1
ht

1 [1] [2] 182 0.505 1208 −96
2 [2] [2] 365 0.523 1140 −87
3 [1] [2 ... 7] 365 0.503 919 −88

ARX, ∆Pht
1 [2] [2 7] 365 0.530 1566 −89
2 [2] [2 7] 91 0.518 1563 −97
3 [1 2] [2 7] 365 0.528 1478 −85

Probit, ∆Pht
1 [1] [2] 91 0.511 1684 −101
2 [2] [2] 182 0.514 1673 −112
3 [1] [2 7] 91 0.512 1664 −104

Naive, intraday market strategy
- - - 0.489 676 −156

Notice: X stands for the subset of exogenous variables; L defines of the lag structure; and T is the length of
the calibration window. The forecast threshold is µ = 0.4.

5. Conclusions

In this article, we focused on predicting the sign of the spread between the day-ahead and the
intraday/balancing market prices. Two types of econometric models were examined: ARX and probit
models. In both modeling approaches, the dependent variable is linked to past prices and to a set of
exogenous variables. Various model specifications were considered, depending on the data aggregation
level, lag structure, length of the calibration window, and the set of exogenous variables.

First, the impact of aggregation level on the forecast performance was analyzed. We showed
that inclusion of more information does not result in higher profits or more accurate classifications.
The aggregated, daily models provided forecasts which outperformed their disaggregated, hourly
counterparts. This outcome shows that the noise included in the hourly data could lead to incorrect
trading strategies and, hence, decrease potential profits.

Second, different lag structures, L, were compared. We showed that it is reasonable to account
for a weekly seasonality by including lag i = 7. On the other hand, the most efficient specifications
restricted the number of lags included in the model, and chose L = [2,7].

The performance of various model specifications was evaluated for different lengths of the
calibration window. This issue has been recently discussed in the literature [26,27]. In particular,
Marcjasz et al. [27] showed the impact of the sample size on forecasting accuracy. They indicated
that it is sometimes more efficient to use a shorter estimation window, because it can adjust better to
the nonlinear behavior of the variables. The results presented in this article confirm these findings
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and show that, for some models, a short (monthly or quarterly) window size is optimal, in terms of
accuracy and profits.

When the choice of exogenous variables was considered, the results indicated that the relationship
between the day-ahead and intraday/balancing prices depends on the behavior of fundamental
variables. It can reflect two phenomena: Inefficient forecasts of the fundamentals and strategic
behavior of market participants. In the first case, generators utilize additional information, which
is not included in the forecasts, but could be correlated with them. This leads to the dependence
of the price difference on the predicted total load/demand or wind generation. Second, market
players—conventional generators and trading companies—can strategically choose their imbalances
and, hence, decide on a position in the intraday/balancing market in order to optimize their profits
and reduce their risk (see [8,24]).

Finally, the presented results encourage a discussion on the most accurate forecast evaluation
method. We show that traditional measures do not coincide with financial measures and, hence, may
fail to address questions important for practitioners. Therefore, choosing a model which is best, in
terms of classification or prediction power, could be misleading and result in lower profits. Some
issues, such as the choice of the optimal economic measure or an adjustment of the estimation method
to account for financial gains, are left for further analysis.
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