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Abstract: This work compares the Micro-trips (MT), Markov chains–Monte Carlo (MCMC) and
Fuel-based (FB) methods in their ability of constructing driving cycles (DC) that: (i) describe the
real driving patterns of a given region and (ii) reproduce the real fuel consumption and emissions
exhibited by the vehicles in that region. To that end, we selected four regions and monitored
simultaneously the speed, fuel consumption and emissions of CO2, CO and NOx from a fleet of
15 buses of the same technology during eight months of normal operation. The driving patterns
exhibited by drivers in each region were described in terms of 23 characteristic parameters (CPs)
such as average speed and average positive kinetic energy. Then, for each region, we constructed
their DC using the MT method and evaluated how close it describes the observed driving pattern
in each region. We repeated the process using the MCMC and FB methods. Given the stochastic
nature of MT and MCMC methods, the DCs obtained changed every time the methods were applied.
Hence, we repeated the process of constructing the DCs up to 1000 times and reported their average
relative differences and dispersion. We observed that the FB method exhibited the best performance
producing DCs that describe the observed driving patterns. In all the regions considered in this study,
the DCs produced by this method showed average relative differences smaller than 20% for all the
CPs considered. A similar performance was observed for the case of fuel consumption and emission
of pollutants.

Keywords: fuel-based method; Micro-trips method; Markov Chains and Monte Carlo method;
driving patterns; fuel consumption; vehicle emissions

1. Introduction

As summarized in Figure 1, recent studies have shown that both fuel consumption and emissions
in the real world are between 8% and 60% larger than those reported by manufacturers. Those
differences cause inaccuracies in the vehicle emission inventories and mislead the efforts of the
government authorities oriented towards the vehicles’ fuel consumption and pollutants emission
reductions. They also twist the fair evaluation of the energy and environmental performance of the
vehicles and interfere with the healthy competition among automotive companies for producing
greener vehicles. We hypothesize that the incorrect representation of the local driving patterns of the
type-approval DC is the major source of the differences observed. Thus, there is a need for DCs that
truly represent the local driving patterns.
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the local driving patterns of the type-approval DC is the major source of the differences observed. 
Thus, there is a need for DCs that truly represent the local driving patterns. 

 
Figure 1. Relative differences of the values reported by manufacturers with respect to the real 
fuel consumption or real CO2 emissions as function of the vehicles’ model year. Sources: (a) [1], 
(b) [2], (c) [3], (d) [4], (e) [5], (f) [6], (g) [7], and (h) [8]. Dotted lines shows the tendency obtained 
from the data of reference (f) which are shown as red dots. References e-h include diesel and 
gasoline. 

A driving cycle (DC) is a speed vs. time series that describe or represent the driving pattern 
in a given region of interest [9]. DCs are mainly used by manufactures and environmental 
authorities to evaluate the fuel consumption and pollutant emissions from vehicles as part of the 
regulatory process to introduce new vehicle technologies into the market [1,2]. When the DC is 
used for regulatory purposes, we refer to it as a type-approval DC. Currently, the Federal Test 
Procedure (FTP) 75, Urban Dynamometer Driving Schedule (UDDS), New European Driving 
Cycle (NEDC), and Worldwide harmonized Light vehicles Test Cycles (WLTC) are some of the 
most widely type-approval DCs used by manufactures to report fuel consumption and emissions 
from their vehicles [10–13]. 

Driving pattern is a term used to refer to the way drivers drive in a given region [14]. 
Although it is not explicitly stated, authors describe the driving patterns in terms of a set of 
Characteristic Parameters (CPs) also known as Performance Values (PVs) [9,15]. They are 
parameters or variables that result from any combination of speed and time, such as mean speed, 
mean positive acceleration. DCs are also described by characteristic parameters. In this 
manuscript we use CP for the characteristic parameters that describe driving patterns and CP* 
for the characteristic parameters that describe DCs. There is a tacit agreement that a DC correctly 
describes a driving pattern when its CP*s are equal or close to the CPs that describe the driving 
pattern. The level of similitude is usually measured through the relative difference between them. 
Previous studies have proposed values between 5% and 15% as acceptable differences [15,16]. 
However, the selection of the CPs and their thresholds values of similitude depend on the 
researcher’s criteria or on empirical results. 

The correct representation of the local driving pattern through a DC depends mainly on 
three factors: a) the quantity and quality of the vehicles’ operation data used to describe the 
driving pattern, b) the CPs used as criteria during the construction process of the DC, and c) the 
DC construction method [17]. Next, we explore each one of them. 

Currently, advances in information and vehicles technologies allow the monitoring of large 
samples of vehicles at high frequency (~1 Hz) with high quality and without interfering with their 
normal use. The preferred alternative is the direct reading of the Engine Control Unit (ECU). The 
ECU takes decisions on the engine operation based on the values reported by the sensors included 
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consumption or real CO2 emissions as function of the vehicles’ model year. Sources: (a) [1], (b) [2],
(c) [3], (d) [4], (e) [5], (f) [6], (g) [7], and (h) [8]. Dotted lines shows the tendency obtained from the data
of reference (f) which are shown as red dots. References e-h include diesel and gasoline.

A driving cycle (DC) is a speed vs. time series that describe or represent the driving pattern in
a given region of interest [9]. DCs are mainly used by manufactures and environmental authorities to
evaluate the fuel consumption and pollutant emissions from vehicles as part of the regulatory process
to introduce new vehicle technologies into the market [1,2]. When the DC is used for regulatory
purposes, we refer to it as a type-approval DC. Currently, the Federal Test Procedure (FTP) 75, Urban
Dynamometer Driving Schedule (UDDS), New European Driving Cycle (NEDC), and Worldwide
harmonized Light vehicles Test Cycles (WLTC) are some of the most widely type-approval DCs used
by manufactures to report fuel consumption and emissions from their vehicles [10–13].

Driving pattern is a term used to refer to the way drivers drive in a given region [14]. Although
it is not explicitly stated, authors describe the driving patterns in terms of a set of Characteristic
Parameters (CPs) also known as Performance Values (PVs) [9,15]. They are parameters or variables
that result from any combination of speed and time, such as mean speed, mean positive acceleration.
DCs are also described by characteristic parameters. In this manuscript we use CP for the characteristic
parameters that describe driving patterns and CP* for the characteristic parameters that describe DCs.
There is a tacit agreement that a DC correctly describes a driving pattern when its CP*s are equal or
close to the CPs that describe the driving pattern. The level of similitude is usually measured through
the relative difference between them. Previous studies have proposed values between 5% and 15%
as acceptable differences [15,16]. However, the selection of the CPs and their thresholds values of
similitude depend on the researcher’s criteria or on empirical results.

The correct representation of the local driving pattern through a DC depends mainly on three
factors: (a) the quantity and quality of the vehicles’ operation data used to describe the driving pattern,
(b) the CPs used as criteria during the construction process of the DC, and (c) the DC construction
method [17]. Next, we explore each one of them.

Currently, advances in information and vehicles technologies allow the monitoring of large
samples of vehicles at high frequency (~1 Hz) with high quality and without interfering with their
normal use. The preferred alternative is the direct reading of the Engine Control Unit (ECU). The ECU
takes decisions on the engine operation based on the values reported by the sensors included by the
manufacturer in the vehicle to monitor the instantaneous operational variables such as engine speed
(in revolutions per minute), fuel consumption, engine load, etc. Thus, vehicle operation data collected
from a large sample of vehicles operating in the region of interest, during long periods and different
seasons can be used to correctly describe the driving patterns on that region.

There is not an agreement on the set of CPs that fully describe a driving pattern [18]. The mean
speed, the idling time percentage and the Speed-Acceleration Frequency Distribution (SAFD) are
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the CPs most frequently used [9,15]. Those CPs are not necessarily the CPs that most influence the
vehicle’s fuel consumption [14].

Finally, there is no a standard or unified method to construct DCs. Presently, the Micro-trips (MT)
and the Markov chains–Monte Carlo (MCMC) methods are the most common approaches [19]. These
methods are stochastic in nature and therefore they are repeatable but no reproducible, which means
that they produce a different DC every time they are applied.

Even though fuel consumption is not a CP, as it does not describe a driving pattern, Huertas
et al. [20] theorized that by guaranteeing similitude in terms of fuel consumption, similitude in
pollutants emissions and representativeness of the driving patterns are implicitly achieved. Thanks to
the advance in vehicle technology, nowadays it is possible to monitor, at low cost, in a large sample of
vehicles, the instant vehicle fuel consumption rate through the ECU. This feature enables the possibility
of constructing driving cycles based on the fuel consumption criterion [20]. We will refer to it as the
fuel-based method (FB method).

Thus, this work aims to evaluate how well the DCs produced by the MT, MCMC and the FB
methods represent local driving patterns. It also aims to evaluate the level of accuracy and precision that
can be expected when they are used to measure real fuel consumption and pollutant emissions from
vehicles. As an intermediate step, we developed a methodology to assess the representativeness of the
DC produced by each method of constructing DC and a procedure to ensure the correct implementation
of those methods. We highlight the novelty and the relevance to our work of using fuel consumption
and the emissions of pollutants linked to the assessment of the representativeness of the DCs.

2. Materials and Methods

Aiming to compare the MT, MCMC and FB methods, we implemented them in the same region
and compared the DCs obtained by each method in relation to their ability (i) to describe the driving
patterns of that region and (ii) to reproduce the fuel consumption and emissions exhibited by the
vehicles in that region. To that end, we followed the activities described in Figure 2. To gain generality
in our conclusions we repeated the process in four regions of different characteristics. The monitoring
campaigns were described in a companion paper [14]. For the reader’s convenience, next, we will
summarize each of those activities.

Energies 2019, 12, x FOR PEER REVIEW 3 of 16 

Energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 
 

by the manufacturer in the vehicle to monitor the instantaneous operational variables such as 
engine speed (in revolutions per minute), fuel consumption, engine load, etc. Thus, vehicle 
operation data collected from a large sample of vehicles operating in the region of interest, during 
long periods and different seasons can be used to correctly describe the driving patterns on that 
region. 

There is not an agreement on the set of CPs that fully describe a driving pattern [18]. The 
mean speed, the idling time percentage and the Speed-Acceleration Frequency Distribution 
(SAFD) are the CPs most frequently used [9,15]. Those CPs are not necessarily the CPs that most 
influence the vehicle’s fuel consumption [14]. 

Finally, there is no a standard or unified method to construct DCs. Presently, the Micro-trips 
(MT) and the Markov chains–Monte Carlo (MCMC) methods are the most common approaches 
[19]. These methods are stochastic in nature and therefore they are repeatable but no 
reproducible, which means that they produce a different DC every time they are applied. 

Even though fuel consumption is not a CP, as it does not describe a driving pattern, Huertas 
et al. [20] theorized that by guaranteeing similitude in terms of fuel consumption, similitude in 
pollutants emissions and representativeness of the driving patterns are implicitly achieved. 
Thanks to the advance in vehicle technology, nowadays it is possible to monitor, at low cost, in a 
large sample of vehicles, the instant vehicle fuel consumption rate through the ECU. This feature 
enables the possibility of constructing driving cycles based on the fuel consumption criterion [20]. 
We will refer to it as the fuel-based method (FB method). 

Thus, this work aims to evaluate how well the DCs produced by the MT, MCMC and the FB 
methods represent local driving patterns. It also aims to evaluate the level of accuracy and 
precision that can be expected when they are used to measure real fuel consumption and 
pollutant emissions from vehicles. As an intermediate step, we developed a methodology to 
assess the representativeness of the DC produced by each method of constructing DC and a 
procedure to ensure the correct implementation of those methods. We highlight the novelty and 
the relevance to our work of using fuel consumption and the emissions of pollutants linked to the 
assessment of the representativeness of the DCs. 

 
Figure 2. Illustration of the methodology followed to compare three alternatives to construct 
representative driving cycles. 

Figure 2. Illustration of the methodology followed to compare three alternatives to construct
representative driving cycles.



Energies 2019, 12, 665 4 of 15

2.1. Selected Regions

We considered four regions located at different altitudes and with different levels of traffic flow.
Table 1 describe the characteristics of those regions.

Table 1. Description of the regions considered in this work. Taken from Huertas et al. [14].

Features Units General Urban1 Urban2 Mountain

Location - TOL-MEX Mexico City TOL -

Description

Combination of
the Urban1,
Urban2 and
Mountain.

Flat, densely
populated
region inside
Mexico City

Flat region
located in the
outskirts of the
Toluca City

Topography
includes significant
altitude changes
(>500 m)

Number of lanes - 3–4 3 3 4
Facility - Combined Local roadway Arterial Freeway
LoS * - B to F F E B–C
Level of traffic - Low–High High Medium Low–Medium
Length km 71.6 11.5 18.8 41.3
Speed limit km/h 60–110 60 60 110
Ave road grade % 4.0 1.4 1.8 5.6
Max road grade % 15.0 5.2 9.0 15.0
Max altitude masl 3313 2258 2637 3313
Min altitude masl 2200 2255 2611 2200

* LoS: Level of service. LoS is “the level of quality of a traffic facility and represents a range of operating conditions,
generally in terms of service measures such as speed and travel time, freedom to maneuver, traffic interruptions,
and comfort and convenience”. Number of passenger cars per mile per lane: A: 0–11, B: 12–18, C: 19–26, D: 27–35, E:
36–45 and F: >45, [21].

2.2. Monitored Vehicles and Instrumentation

We looked for a fleet of buses with the same emission control technology and with similar
maintenance conditions in order to eliminate the effects of their variations in our results. The fleet of
transit buses selected for this study was provided by the passengers’ transportation company Flecha
Roja. Buses were manufactured between 2012 and 2014. They use diesel-fueled engines (Cummins
ISM 425, six cylinders, and 10.8 L) that comply with USEPA 1998 regulation for buses newer than 2004.
Engines include EGR but they do not include catalytic converters (Selective Catalytic Reduction-SCR
nor Diesel Oxidation Catalysts-DOC). They neither include particulate matter filters (DPF). These
engines deliver 2102 Nm and 425 HP. Each bus has a capacity of 49 passengers and 13,850 kg of gross
vehicle weight. The buses are 12.85 m long, 3.6 m tall and 2.6 m wide.

Table 2 shows the technical characteristics of the instruments used in this work. We obtained fuel
consumption measurements, at a frequency of 1 Hz, using the engine manufacturer interface to read
these data directly from the Engine Computer Unit (ECU). The ECU controls the fuel injected into each
engine’s combustion chamber by controlling the time the fuel injector remains open at each engine
stroke. We confirmed the accuracy of these data by comparing them with results obtained following the
standard procedure to determine the vehicle’s fuel consumption [22,23]. The corresponding correlation
analysis showed a determination coefficient (R2) greater than 0.9 and calibration slope of 1.06.

We used a high-precision GPS to monitor vehicle´s position (latitude, longitude and altitude) as
a function of time. Current technology in GPS is inaccurate measuring altitude. Hence, we took actual
altimetry measurements and developed an algorithm to correct frequent errors in the GPS reported
altitude [20].

Emissions measurements of CO, CO2, NO, and NO2 were carried out using a Sensors Inc. (Saline, MI,
USA) PEMS, SEMTECH ECOSTAR model, with two modules, the SEMTECH-FEM and SEMTECH-NOx.
The SEMTECH-FEM module measures CO and CO2 emissions using a non-dispersive infrared gas
analyzer with a resolution of 10 ppm and a range of 0–8% for CO, and a resolution of 0.01% and range of
0–20% for CO2. The SEMTECH-NOx module measures NO and NO2 using a non-dispersive ultraviolet
gas analyzer with a range of 0–3000 ppm and 0–500 ppm, respectively, and a resolution of 0.3 ppm for
both gases. Mentioned measurement methods are recommended by the USEPA [24].
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Table 2. Technical characteristics of the instruments used in this work [14].

Variable Instrument Technical Characteristics

Instantaneous fuel
consumption

Engine
manufacturer

Reported by ECU based on fuel injection time
Frequency: 1 Hz

Position: latitude,
longitude and altitude GPS/Garmin 16x

Position: 3–5 m, 95% typical
Frequency: 1 Hz
Speed: 0.05 m/s RMS steady state

Technique Range Resolution

CO2

PEMS/SEMTECH
ECOSTAR

Non-Dispersive Infrared 0–20% v/v 0.01% v/v
CO Non-Dispersive Infrared 0–8% v/v 10 ppm v/v
NO Non-Dispersive Ultra Violet 0–3000 ppm v/v 0.3 ppm v/v
NO2 Non-Dispersive Ultra Violet 0–500 ppm v/v 0.3 ppm v/v
Flow Measurement Exhaust Flow Meter - 0.1 kg/h

Following manufacturer´s instructions, we conducted leak checks and did zero and span
calibrations prior to each test using NIST traceable calibration gases. We also used the automatic
self-calibration option that this PEMS technology provides to control possible zeroing issues with the
CO and NOx PEMS´s sensors. Self-calibrations occurred after every hour of continuous operation.

2.3. Vehicle Monitoring Campaign

We monitored 15 buses that were in service and were driven by the company’s regular drivers
while we obtained real on-road driving data at a frequency of 1 Hz, minimizing any disruption to
regular vehicle operation. We carried out one monitoring campaign per region. Each campaign
included trips carried out during different seasons of the year, different days of the week, and at
different hours of the day.

Data quality was checked in three phases. During the first phase, trips with more than 5% of
missing data were disregarded. The second phase identified outlier data for each trip. In this phase,
we also checked for potential drifting problems of the CO and NOx sensors by observing the evolution
of CO and NOx data. Additionally, we checked that, measurements of CO and NOx concentrations
came back to zero. We also plotted the 1-s CO and NOx concentration frequency distribution and
checked for potential positive or negative offsets. Finally, we plotted 1-s fuel rate vs. CO+CO2 mass
emission rate and checked for negligible offsets.

The last phase consisted on synchronizing the data from the vehicle’s ECU with the emissions
data reported by the PEMS. Data synchronization was obtained by dephasing each data set until
maximum correlation was observed between variables that according to physics should be correlated,
such as fuel consumption, engine speed, and emissions. After data quality analyses, we kept 138 trips
with simultaneous measurements of position, altitude, speed, fuel consumption, and mass emission
of pollutants.

2.4. Implementation of the MT, MCMC and FB Methods

We followed the most common approaches to implement the MT and MCMC methods. In the MT
method, the trips sampled are partitioned into segments of trips bounded by vehicle speed equal to 0 km/h.
These segments are called “micro-trips”. Micro-trips are often clustered as function of their average speed
and average positive acceleration. Then, a set of micro trips are quasi-randomly selected based on the
frequency distribution of the clusters, and later spliced together producing a candidate DC [25–27].

In the case of MCMC method, the speed vs. time data of the trips sampled are encoded into
operational states of speed-acceleration dyads [4,12]. The occurrence frequency of the operational
states is recorded in a state matrix. Using the same speed vs. time data a probability transition matrix
is built by computing the frequency of moving from state Xi to state Xi+1. Then, the Monte Carlo
technique is used to quasi-randomly select a collection of consecutive states that conform a state’s
vector. Subsequently, this vector is decoded in terms of speed vs time producing a candidate DC [12,15].
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In both methods, the similarity between the candidate DCs and the observed driving pattern is
evaluated using the relative differences between some selected CPs (Table 3). The CPs and the number
of CPs selected depend on the researcher criteria. If the level of similarity is within the pre-established
thresholds (relative difference <5%), the candidate DC is selected as the representative DC. Otherwise,
the process is repeated. The resulting DCs change each time any of these methods is applied, due to
their stochastic nature. This means that these methods are repeatable but not reproducible.

We also implemented the FB method. In this approach, the average specific fuel consumption
(SFC) of the trips sampled is computed. Then, the trip with the SFC closest to the average SFC is
selected as the representative DC. The duration of the selected DC cannot be controlled, but the trip
based method is repeatable and reproducible.

2.5. Test to Verify the Correct Implementation of the DC Construction Method

Before comparing the results of the three methods to construct DCs, a verification step was
performed to identify potential errors in the implementation of each method.

The implementation of the FB method was verified by comparing the results of the method
implemented in this work with the results obtained by Huertas et al. [20]. In the case of the MT
and MCMC methods, we started by specifying the values for the following input parameters: cycle
duration, list of CPs used as criteria for the construction of the local DC, and the threshold used for the
relative differences between the CPs. Table 3 shows the input parameters used.

To verify the correct implementation of the MT and MCMC methods, we designed the following
test: use a unique and simple trip as input to the method for constructing DC and verify that the
resulting DC is the same as the input trip. A different result will indicate that the method or the
implementation of the method is unable of capturing the known driving pattern. Initially, we designed
the artificial trip shown in Figure 3a. In consist of a single micro-trip with a starting idling time of
10 s, a constant acceleration (0.28 m/s2), a cruise speed of 80 km/h and a constant des-acceleration
(−0.28 m/s2). Then we used it as substitute for the set of monitored trips that each method uses as
input data. As all the input trips were exactly the same, the MT and the MCMC methods must produce
the expected input trip as the resulting DC. As an example, Figure 3a shows the result reported by the
MCMC method. These results confirmed our correct implementation of these two methods.

Table 3. Input parameters used in the three methods of constructing DC.

Criteria MT MCMC FB

Cycle time (min)

General 105 ± 2 ~105*
Urban 1 25 ± 2 ~25*
Urban 2 29 ± 2 ~29*
Mountain 35 ± 2 ~35*

CPi or criteria used to
construct the local DC Average speed, % idling Average speed, % idling SFC

Acceptable relative difference
between CP∗

i and CP 5% 5% Min
∣∣SFCc − SFC

∣∣
Other considerations

Categorization of
micro-trips based on
average speed and

average acceleration

Speed and acceleration
discretization -

G: General, U1: Urban 1, U2: Urban 2, M: Mountain.

As a second phase of the test, we created the artificial trip shown in Figure 3b, and repeated the
process. In this case, the trip consisted of three micro-trips, each with different acceleration ramps and
cruise speeds. As an example, this figure displays the result reported by the MT method. It shows the
ability of the methods to capture driving patterns and our correct implementation of the methods. For
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the description of the driving patterns, it is acceptable that the resulting DC exhibits changes in the
sequence that the consecutive micro trips show up.
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2.6. Methodology Used to Compare the MT, MCMC and FB Methods

As stated before, the objective of this work is to compare the MT, MCMC and FB methods in their
ability of producing DCs that (i) describe the driving patterns of a given region and (ii) represent the
fuel consumption and emissions exhibited by the vehicles in that region.

The introduction section explained that driving patterns and DC are described by a set of CPs, and
that a DC represents a driving pattern when its CP∗

i match the CPi of the driving pattern. Therefore,
for each CP considered in this study we computed the relative difference (RDi) among CPs according
to Equation (1). Table 4 shows the CPs considered in this study.

RDi =

∣∣∣∣CP∗
i − CPi

CPi

∣∣∣∣ (1)

Equation (1) was also used to evaluate the relative differences of the vehicle’s fuel consumption
and its NOx, CO and CO2 emissions. For the case of the MCMC method, the fuel consumption
and emissions associated to the resulting DC cannot be computed because each speed-acceleration
operational state exhibited excessively large variations of fuel consumptions and emissions.

Equation (2) was used to calculate the relative differences between SAPDs. As stated before, the
SAPD is an alternative way of describing driving patterns:

RDSAPD =
∑m

i=1 ∑r
j=1

∣∣∣P∗
ij − Pij

∣∣∣
2

(2)

where P∗
ij is the probability that the vehicle travels at speed i and acceleration j according to the DC

selected by any of the methods, and Pij is the same variable for the driving pattern. r and m are the
number of bins used for the discretization of the speed and acceleration, respectively. The maximum
value that can reach the absolute difference between P∗

ij and Pij is 2.
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Table 4. CPs that describe the driving patterns, fuel consumption and emission of pollutants, observed in regions G (General), U1 (Urban 1), U2 (Urban 2) and
M (Mountain). Average relative differences (in percentage) observed between CPs of driving pattern and driving cycle, after 500 iterations. Boxes highlighted in green
correspond to CPs with average relative differences below 10%. The numbers highlighted in italic and blue, indicates that the corresponding CP was used by the
specified method as the assessment criteria for the construction of the DC. N/A: Not applicable.

Characteristic Parameters (CPs) Observed Driving Pattern
Average Relative Differences after 500 Iterations

FB MT MCMC

Name Symbol G U1 U2 M G U1 U2 M G U1 U2 M G U1 U2 M

Speed
Maximum speed Max S 28.4 22.3 26.2 27.9 2.0 1.4 3.1 1.7 3.7 3.4 5.1 2.3 4.0 6.0 8.7 3.7
Average speed Ave S 11.9 7.3 10.0 17.0 20.6 0.0 0.0 0.0 2.4 2.5 2.5 3.8 2.6 2.5 2.4 2.5
Standard deviation of speed SD S 8.9 6.9 7.7 9.1 4.1 0.0 3.2 3.1 3.1 11.2 5.5 8.7 5.5 12.3 8.0 17.1

Acceleration

Maximum acceleration Max a+ 1.3 1.3 1.3 1.3 0.0 0.0 0.0 0.0 32.3 32.4 27.8 7.1 24.8 45.6 34.8 26.2
Maximum deceleration Max a− −2.1 −2.1 −2.1 −2.1 0.0 0.0 0.0 0.0 19.8 20.0 19.1 36.1 22.5 18.6 19.4 11.2
Average acceleration Ave a+ 0.4 0.5 0.4 0.4 0.7 1.7 4.0 0.0 2.6 3.4 4.9 3.1 77.1 42.4 59.6 141.3
Average deceleration Ave a− −0.5 −0.5 −0.5 −0.4 1.4 0.0 10.7 6.9 3.1 6.0 7.2 10.3 69.7 46.5 60.8 121.5
Standard deviation of acceleration SD a+ 0.2 0.2 0.2 0.2 0.0 5.0 6.5 1.2 3.0 7.9 20.3 25.0 35.1 17.5 32.1 47.3
Standard deviation of deceleration SD a− 0.4 0.4 0.4 0.4 1.9 5.1 3.4 4.5 3.7 12.3 12.8 28.3 17.3 13.8 14.3 19.3

Operational modes
(% of time)

Idling % idl 9.3 15.1 13.6 0.7 7.7 61.3 6.9 0.6 2.4 2.5 2.5 3.0 2.5 2.5 2.6 3.3
Acceleration % a+ 30.2 32.9 33.8 25.4 7.9 9.1 6.3 9.9 3.2 3.3 5.0 5.2 36.7 23.5 34.5 49.8
Deceleration % a− 25.6 29.3 29.1 24.1 4.9 13.8 2.0 2.3 4.1 3.1 6.0 5.4 33.7 26.4 34.9 49.9
Cruising % cru 34.7 22.7 25.9 46.2 12.9 10.2 23.5 3.4 5.4 3.9 10.1 12.9 57.1 67.2 74.6 61.2

Dynamics

Number of accelerations per km Accel/km 7.3 8.6 6.1 7.1 17.9 0.0 4.1 4.8 6.3 19.0 9.6 7.2 26.8 71.9 163.8 13.6
Root mean square of acceleration RMS 0.4 0.5 0.5 0.3 3.1 5.1 6.9 8.0 3.5 5.4 5.8 5.4 21.3 12.1 12.6 34.4
Positive kinetic energy PKE 0.2 0.4 0.3 0.2 10.6 9.0 11.6 0.0 4.7 5.2 6.4 6.6 5.0 5.8 6.1 7.5
Speed-acceleration prob distribut SAPD 0.0 0.0 0.0 0.0 7.5 2.3 2.2 9.8 3.6 6.2 5.6 9.3 7.2 27.1 8.7 35.9
Vehicle specific power VSP 8.3 4.8 7.0 11.9 29.8 0.0 0.0 12.9 8.8 3.2 7.3 18.0 N/A N/A N/A N/A
Kinetic intensity KI 0.6 0.8 0.7 0.5 0.0 2.7 14.6 5.2 9.3 38.1 10.1 21.2 N/A N/A N/A N/A

Fuel consumption
and emissions

Specific fuel consumption SFC 0.4 0.4 0.4 0.4 0.0 0.0 11.3 9.8 7.6 5.5 8.1 23.0 N/A N/A N/A N/A
Emission index of CO2 EF CO2 792.0 839.0 749.2 775.9 10.3 10.6 0.8 5.9 7.0 6.4 6.9 17.3 N/A N/A N/A N/A
Emission index of CO EF CO 25.7 37.2 39.4 14.2 6.6 0.0 20.5 16.0 8.8 8.3 14.2 8.8 N/A N/A N/A N/A
Emission index of NOx EF NOx 4.5 5.0 3.9 4.7 12.5 0.0 4.2 12.1 6.8 7.8 8.5 14.9 N/A N/A N/A N/A
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A major complication of this evaluation process is that the MT and MCMC methods produce
different results every time they are used. To overcome this complication, we repeated the DC
construction process several times and observed the average of the RDi obtained (ARDi). Figure 4a
shows, as an example, the ARDi obtained for the speed related CPs after 100, 500, and 1000 iterations
of applying the MT method. Similarly, Figure 4b shows the ARDi obtained for the CPs related to the
percentage of time in different modes of operation after 100, 500, and 1000 iterations of applying the
MCMC method. Both figures also show the confidence interval of variation of the ARDi.
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Figure 4a,b show that after 500 iterations the ARDi and their confidence intervals remain constant.
Pairwise hypothesis tests on the difference of means and the difference of variances confirmed this
observation with a significance value of α = 0.05 for all ARDi. Thus, from this point on we will only
report ARDi after 500 iterations. The comparison of the FB, MT and MCMC methods of constructing
DCs was complemented with a dispersion analysis of the RDi. We observed the variation of the RDi
during the first 500 iterations. Some of the RDi exhibited an asymmetric distribution. Thus, we decided
to use the inter-quartile range (IQR) as a metric for dispersion and to present the results in terms of
whiskers and boxes plots.

3. Results and Discussion

Initially, we used the data from the 46 trips sampled in each region and obtained the average
values for the 23 CPs that describe the respective driving pattern, fuel consumption and emission of
pollutants. Table 4 shows the results obtained.

Then, we evaluated the ability of the three methods of producing DCs that represent the observed
driving patterns. For the case of the general region, Figure 5a,b show the ARDi and the interquartile
range of the RDi exhibited by the DCs obtained by the MT and MCMC methods, respectively, after
repeating the application of each method 500 times. Figure 5c shows the same information for the case
of the FB method. As mentioned before in this last case, results are the same every time the method is
applied and therefore ARDi = RDi for all CPs. In Figure 5a,b, the ARDi are shown as blue dots, the
IQRi by boxes, and the outliers by red “+” signs. The CPs used by each method as criteria for the
construction of the DC are marked with (*).

A low ARDi (<10%) indicates that the method produced DCs that represent the driving pattern.
The potential range of variation of the ARDi is from zero to infinity and therefore ARDi <10% indicates
a high level of similitude. Table 4 presents the values of ARDi obtained for the 23 CPs. In this table, the
ARDi below 10% are highlighted in green.
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Since the set of CPs that describes a driving pattern is still undefined, the method´s ability of
producing DCs that capture the local driving pattern is judged as the number of CPs where the
ARDi < 10%. However, in this evaluation it is important to:

• Do not include the CPs used as the assessment criteria by the method under consideration to
construct the DC because those CPs by design should be smaller than 5%.

• Consider as an independent case the SAPD due to the high relevance of this metric for some
researchers and because its range of variations is from 0 to 200%.

For the general region, Table 4 and Figure 5a show that the FB method had 14 out of 19 CPs
with ARDi < 10%, while the MT had 15 out of 17, and the MCMC only had four out of 15 CPs under
this threshold.

The same analysis was repeated for the case of the Mountain, Urban 1 and Urban 2 regions.
Figure 6 shows that the results obtained for these three regions are similar to the results observed for
the general region. Table 4 quantifies, in terms of ARDi, the performance of each method in the four
regions considered in this study. Considering all the regions, the FB method showed 83% of the ARDi
under 10%, while the MT showed 69% and the MCMC 20%, excluding the CPs used as assessment
criteria. The average of the ARDi of the 19 CPs in the four regions was 5.8%, 10.1% and 34.9% in the
FB, MT and MCMC methods, respectively.

On average over the four regions, the FB method constructed DCs with RDi smaller than 19.1%.
The maximum RDi were observed for the percentage of idling time in the Urban 1 region and VSP
in the General region that reached an RDi of 61.3% and 29.8%, respectively. The best performance of
the FB method was observed in the mountain region where all RDi were below 16%. The FB method
showed the most stable performance among the three methods in the four regions considered in
this study.

The MT method (Figure 5a) produced DCs that represent well all CPs. Kinetic energy intensity
and max des-acceleration were the CPs that showed the smallest agreement with ARDi of up to 38.1%
and 36.1%, respectively. Compared to the general region, the MT method deteriorated its performance
for the case of the region with highly congested traffic (Urban 1), where the CP associated to the kinetic
energy intensity showed an ARDi of 38.1% with a large dispersion (RDi of up to 59%). Its performance
worsens for the case of the mountain region where only 10 out of 17 CPs were below the 10% threshold
for the ARDi.

The MCMC method showed the worst performance in producing DCs that represent local DC.
It showed the smallest numbers of ARDi below the 10% threshold and the maximum range of variation
of the RDi. The CPs with the largest ARDi were the number of accelerations per kilometer and the
average positive acceleration reached ARDi of 163.8% (in the Urban 1 region) and 141.3% (in the
mountain region), respectively, and with outliers for the corresponding RDi larger than 100% (not
shown in Figure 5b). We also expected that this method produced DCs with the SAPD close to the
SAPD of the driving pattern observed in each region, in consideration to its approach of constructing
DCs. However, its performance was worse than the other two methods in this metric. On average over
the four regions, it showed an ARDi of 19.7% vs an ARDi of 5.5% for the FB method and 6.2 for the
MT method.

Previous results demonstrate the outstanding performance of the FB and MT methods producing
DCs that represent the observed local driving patterns. Next, we will describe their performance
reproducing fuel consumption and emissions of pollutants. By design, the FB method reproduced
fuel consumption in all regions (RDi < 11% and on average 5.3%). Figures 5c and 6c and Table 4 show
that this method reproduced the CO, CO2 and NOx emissions with an RDi < 20%. The average RDi
was 8.3%. This performance was followed closely by the MT method. On average, the MT method
produced DCs that reproduced fuel consumption with an average ARDi of 11.1% and an average ARDi
of 9.6% for the CO, CO2 and NOx emissions, in the four regions considered in this study.
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As described before, the methodology used in this work does not allow to evaluate the
performance of the MCMC method reproducing fuel consumption nor emission from the vehicles.

Previous results demonstrate that the FB method showed the best performance obtaining DCs
that represent the driving patterns, the fuel consumption and emissions from the vehicles in the four
regions considered in this study. Previous results also confirm that by using local DC instead of the
type-approval DC, the differences between the fuel consumption and emissions from vehicles reported
by manufactures and those observed in the normal use of the vehicles can be reduced substantially
(<11% depending on the method used for constructing the local DC).

4. Conclusions

We hypothesized that the incorrect representation of the local driving patterns contained in the
type-approval driving cycles used by manufacturers to report fuel consumption and emissions from
vehicles, is one of the major sources of the differences observed between those values and the observed
in the normal use of the vehicles. Thus, there is a need for local driving cycles (DCs) that truly represent
local driving patterns and that could be used during the type-approval tests. However, there is not
a unified method to construct those local DC. As an intermediate step, this work compared three
common methods of constructing local DCs in their ability of producing DCs that: (i) represent the
local driving patterns and (ii) reproduce the fuel consumption and emissions exhibited by the vehicles
in that region. The methods studied were the Micro-Trips (MT), the Markov Chains-Monte Carlo
(MCMC) and the Fuel-Based (FB).

To that end, we implemented those methods in four regions with different topographies, different
altitudes, and featuring well-maintained roads with different Level of Services (LoS). We monitored
during a prolonged period of time (~8 months) the operation of a fleet of 15 busses with the same
emission control technology and with similar maintenance conditions in order to eliminate the effects
of their variations in our results. We measured simultaneously fuel consumption, CO, CO2 and NOx

emissions, speed, and location at 1 Hz.
Driving patterns and DCs can be described by characteristic parameters (CPs) such as mean

speed, mean positive acceleration, among others. Hence, a DC represents a local driving pattern of
a given region when its CPs are equal to the CPs that describe the driving pattern in that region. The
level of similarity is measured by the relative differences among them. Since the MT and the MCMC
are repeatable but no reproducible, we repeated the implementation of those methods up to 1000 times
and reported the average relative differences (ARDi) of the obtained CPs.

Results demonstrated that the FB method showed the best performance obtaining DC that
represent the driving patterns, the fuel consumption and emissions from the vehicles in the four regions
considered in this study, followed closely by the MT method. The MCMC method has difficulties
producing representative DCs. In all regions, the FB method exhibited 83% of the CPs with ARDi
under 10%, while the MT and MCMC presented 69% and 20%, respectively. By design, the FB method
reproduced fuel consumption in all regions (ARDi ~ 5.3%). Furthermore, this method also reproduced
the CO, CO2 and NOx emissions with ARDi of 8.3%. This performance was followed closely by the
MT method. On average, the MT method produced DCs that reproduced fuel consumption with an
ARDi of 11.1% and of 9.6% for the CO, CO2 and NOx emissions.

Previous results also confirm that by using local DC instead of the type-approval DC, the
differences between the fuel consumption and emissions from vehicles reported by manufactures and
the observed in the normal use of the vehicles can be reduced substantially (<11% depending on the
method used for constructing the local DC).

Besides providing a methodology to assess the representativeness of driving cycles and the
performance of the methods to construct them, this works contributes suggesting alternatives to
strengthen the MT method and a procedure to test the correct implementation of any method to
construct driving cycles. Our work can also be used to identify the minimum set of CPs that fully
describe driving patterns, and the design of a method to construct driving cycles for mountain regions.
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However further work is required to extend the scope of our conclusions to several vehicle technologies
and to identify alternatives of implementing the resulting DC in chassis dynamometers.
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List of Symbols and Acronyms

ARDi Average relative difference of the characteristic parameter i
CP Characteristic parameter
DC Driving cycle
ECU Engine control unit
FB Fuel based
IQRi Inter-quartile range of RDi
MCMC Markov Chain–Monte Carlo
MT Micro–trips
RDi Relative difference of the characteristic parameter i
SAPD Speed acceleration probability distribution
SFC Specific fuel consumption
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