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Abstract: The economic viability of renewable energy generation is vital for sustainability.
Ensuring that optimal operation is always achieved, using energy management systems and control
algorithms, is essential in this endeavor. Here, a new real-time pricing scheme, the Danish flexible
pricing scheme, illustrates how residential PV and battery systems can optimize the electricity bill
of households, without changing consumption behavior or providing grid services in exchange.
This means that the only addition is PV production, storage, and control. A case study is constructed
from Danish household consumption data, irradiance measurements, and recorded spot prices.
With the input data, the pricing scheme, and the energy flow, simulation models are computed in
MATLAB, thereby validating the algorithmic potential and finding the best strategy for charging
and discharging the energy storage unit. Different methods are compared to list the viable options
and evaluate them, based on the economic feasibility for the household. Furthermore, a discussion
of the system implementation is also included to highlight technical difficulties, co-integration
opportunities, short-comings, and advantages present in the case study. In conclusion, it is possible
to make renewable energy generation, and storage, viable for a Danish residential household under
the new pricing scheme.

Keywords: real-time pricing; behind-the-meter storage; residential photovoltaic; energy management;
renewable energy

1. Introduction

Concerns about the implications of energy production, transmission, and consumption with respect
to the environmental challenges that the world is currently faced with have sparked tremendous
research into sustainable alternatives and the consequences if changes are not made with sufficient
determination [1–3]. A shift in the energy mix, from fossil fuels to renewable energy sources (RES), has
been made a priority, and the aftermath presents several challenges to the energy industry. Many of the
RES are inherently distributed energy resources (DES), which means that the production of energy is
moved from centralized to decentralized power plants, of varying sizes and controllability. Therefore,
problems naturally arise when the electrical grid is forced to change [4]. Some of the challenges that this
presents are natural [5,6], as new initiatives arise and technological advancements are weaved into the
mix [7]. Others are inherent to the nature of intermittent sources [8] or related to the power electronic
interfaces of wind power systems (WPS), photovoltaic power (PV) plants, among others [9]. A crucial
variable is the levelized cost of energy [10], as the economic motivation is prominent.

From the consumers’ perspective, the electricity market is mostly a supply of energy, traded for
monetary value. This has been coupled with real-time pricing (RTP), to prioritize RES [11–13]. In
turn, technical advancements in consumer technology and systems have been made to utilize RTP
schemes, including behind-the-meter storage (BTMS) systems, where energy storage is installed locally
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to minimize the electricity bill of the consumers [14–18]. As the RTP schemes become more widespread,
so will BTMS. A country that is in the process of installing smart-meters and introducing an RTP
scheme is Denmark.

2. The Flexible Pricing Scheme

In Denmark, the electricity market has many operators influencing the energy mix and pricing for
consumers, which also complicates the market pricing procedure. A brief overview is presented to
introduce this, with emphasis on the most influential actors.

The Danish transmission system operator (TSO) is Energinet. Its role is to run the transmission
grid, ensure energy balance in the grid, and create the framework for a well-functioning electricity
market. Datahub is responsible for data integrity and validity, reporting to the European electricity
exchange, Nord Pool, owned by the European TSOs. Operators responsible for balancing trade energy
on the exchange, which is supplied by plant owners, bought by suppliers, and re-sold to consumers.
The energy is transported through the transmission grid and then through a distribution grid, owned by
various grid companies, to the consumer. Despite this market structure, with hourly-quoted RTPs,
the Danish residential consumers pay a fixed price for electricity (DKK/kWh) along with various
tariffs, taxes, subscriptions, and profits to the involved operators in the electrical energy market.

In December 2017, the Danish Energy Agency and Energinet began imposing a new price
structure, called the flexible pricing scheme (FPS) (DA: Flexafregning). Within this, the fixed price
for electricity will be substituted by the hourly-quoted (flexible) spot price from Nord Pool, an RTP
scheme. Consumers are thereby incentivized to adopt more environmentally-friendly consumer habits
by favouring an energy mix of inexpensive RES instead of fossil fuels [19]. Additionally, modifications
in consumer behaviour, seen from the grid, can be dynamically incentivized through price changes.

The FPS was first introduced in December 2017 by two Danish grid companies, Radius
(in the Copenhagen area) and NRGI Net (in the Eastern Jutland area). A requirement for the FPS is
remote electricity meters, installed in the households. The FPS is planned to be fully implemented on a
national scale by 2020.

A new pricing scheme has the potential to influence consumer behaviour, but will also inherently
alter which energy investment options are economically viable and to what degree.

While there are options for consumers to change behaviour dependent on external factors and
scheduling schemes [20,21], there will still be a segment of them who cannot or does not wish to
change their consumption behaviour. RES and BTMS with intelligent control, linked to Nord Pool spot
prices, could be a viable option, with the FPS. This involves implementing an energy management
algorithm, which considers the behaviour of the residential household load, as seen from the grid—
producing/selling energy when prices are high, and consuming/buying energy when prices are
low. The general idea has been investigated in the literature, in relation to other countries and
cases [22–27]. This paper investigates BTMS with unchanged energy consumption behaviour in
Denmark for residential consumers. It furthermore addresses the technological challenges associated
with it and discusses the economic validity of the solution.

The current pricing scheme and FPS are summarized in Tables 1 and 2, respectively. Please note
that ∆E = Σconsumption − Σproduction. From the tables, these two schemes primarily differ in two
ways: (1) prices for electricity are either fixed or tied to the hourly-quoted spot price, and (2) the
surplus subsidiary is lowered from 600 to 250 DKK/MWh. These changes are significant because
the residential energy balance under the FPS now relates to the instantaneous balance of energy, and
not only to the annual accumulated values, net-transfer. This motivates a monitoring and control
system for households to minimize the electricity bill. It is difficult to provide a simplified example
for calculating the difference in the electricity bill for a household with PV under the new and old
pricing schemes. This is due to a large dependence on the correlation between price-production,
price-consumption, and the instantaneous overlap between production and consumption. These
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factors influence the results so highly that a simplification cannot be representative, i.e., simulations
should be made in each case to calculate the difference.

Table 1. Current pricing scheme for residential PV systems in Denmark [28,29].

Item Applicable to Price [DKK/MWh]

Consumption min (∆E, 0) 481
Local grid tariff ΣConsumption 250

Transmission tariff min (∆E, 0) 104
PSO tariff min (∆E, 0) 216

Tax min (∆E, 0) 1138
Surplus subsidiary min (−∆E, 0) 600

Table 2. Flexible pricing scheme for residential PV systems in Denmark [28,29].

Hourly Price [DKK/MWh]

Consumption Spot price + 10% revenue + 25% VAT
Production Spot price

Yearly Applicable to Price [DKK/MWh]

Local grid tariff ΣConsumption 250
Transmission tariff min (∆E, 0) 104

PSO tariff min (∆E, 0) 216
Tax min (∆E, 0) 1138

Surplus subsidiary min (−∆E, 0) 250

3. Danish Case Study

A case study of a randomly-selected Danish household in the Thisted area was used to assess the
economic validity. The household did not have electric heating or any renewable energy production,
so the energy consumption time series data were purely from home appliances (lighting, cooking,
refrigeration, cleaning, etc.). A plot of the time series is shown in Figure 1. On a yearly basis, the
household had a consumption of 3.900 kWh. To simulate the PV system, a time series of measured
irradiance has been converted to energy production from the data sheet values of a 6-kWp system.
PV power (including inverter) is, simply, related to irradiance, r, panel area, A, and system efficiency,
η, through,

P = η · A · r, (1)

which states that power can be calculated by the incident irradiance per area times the actual area,
including a measure of efficiency for conversion. From the PV panel data sheet values and inverter
efficiency of 90% (low estimate for worst case), the system efficiency is calculated from (1) as:

η =
6 kWp

41 m2 · 1000 W/m2 · 90% = 13.17%. (2)

As the panel efficiency has been determined, energy production within a given hour (t2 − t1)
can be calculated by integrating irradiance, yielding the maximum possible energy output, and then
multiplying by the system efficiency to obtain the output,

E =
∫ t2

t1

P dt = 13.17% ·
∫ t2

t1

r dt. (3)

The PV energy production time series is shown in Figure 1. This amounts to 5.100 kWh per year,
making the household a net-producer seen from the grid. Energy storage is added to the system in the
form of a 13.5-kWh, AC-coupled stand-alone Li-ion battery system (storage and inverter), with a power
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rating of 5 kWp and a round-trip efficiency of 90% (5% for charging and discharging, respectively).
The residential energy system is schematically depicted in Figure 2.

Figure 1. The three time series from the case study, used in the simulations and analysis.

Prices of energy are recorded by Datahub and are available online for the Danish grid, DK1,
synchronized with western Europe. This time series is also shown in Figure 1. The PV, storage,
and combined PV with storage systems pose an investment for the consumer, which must be accounted
for when solutions are compared. Therefore, investment, annual service, and annuity are incorporated
into the analysis, for each of the three cases, shown in Table 3. The annual interest was assumed to be
3.95%, based on Danish credit institutions.

Figure 2. Overview of the energy flow in the case study.

Table 3. Structure of the economic investment for the different systems.

Financing of the Energy Systems

PV Storage PV + Storage

Investment (DKK) 83.000 62.700 145.700
Service (DKK) 10.667 7.963 18.647

Annuity (Years) 10 10 10
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Simulations were done with a MATLAB script that loops through each hour of the past year and
records the system behavior, consumption, production, and spot price to calculate the yearly electricity
bill as a metric for performance. This is done for a select set of configurations,

1. Only consumption (current pricing scheme);
2. Only consumption (FPS);
3. Consumption with FPS and PV;
4. Consumption with FPS, PV, and storage (simple);
5. Consumption with FPS, PV, and storage (optimal).

These were all compared based on their relative economic viability (investment and reduction in
electricity bill). As shown above, this was done in relation to two energy management algorithms for
battery storage: simple and decision tree-based (referred to as “optimal”, due to the decision process).

4. Energy Management Algorithms

For comparison, two algorithms are covered in the following subsections.

4.1. Simple Strategy

The first is simply to charge the battery with PV power when there is excess production (as
opposed to selling it to the grid) and discharging the battery when PV production cannot cover
consumption (instead of drawing from the grid). When the battery is depleted, energy is supplied
from the grid, without regards to the prices. When PV power is available, but the battery is fully
charged and the load is met, energy is sold to the grid.

4.2. Optimal Decisions

The second attempts to calculate an optimal decision flow for the battery charge, with respect
to the electricity bill, within a prediction horizon (N). This is done by assuming that the controller
has a finite number of choices each hour (to simplify the control objective), corresponding to the
hourly price changes, in this case five. These are: (1) do not use the battery (always applicable);
(2) discharge the battery to the grid (battery charge > 0 kWh); (3) discharge battery to the household
(battery charge > 0 kWh); (4) charge battery from the grid (battery charge < 13.5 kWh); (5) charge
battery from PV (battery charge < 13.5 kWh). Realistically, not all of these options are available in every
time-step since the battery can be fully charged or discharged, and PV energy may not be available.
However, the optimal algorithm works by constructing the full decision tree with all available options
every hour of the prediction horizon and then selecting the outcome with the lowest electricity bill,
providing the controller with a decision for every hour. If all options are available for all time-steps
(no leaf/terminal nodes in the decision tree), the number of nodes is n = ∑N

i=0 5i, where N is the
prediction horizon, i.e., number of hours.

For a case of five options and a prediction horizon of 12 h, the number of nodes becomes
approximately 300 million, which is not computationally feasible. Therefore, prediction horizons of
less than 12 h will be used in this paper.

An example of a decision tree is shown in Figure 3. Each node contains information about
the parent (decision in the previous time-step), the current decision (status quo, discharge-grid,
discharge-house, charge-Grid, charge-PV), battery state-of-charge (SoC), electricity bill, and
accumulated energy transferred to and from the grid. This allows the nodes at the final time-step to be
inspected for an optimal solution and then back-tracing the decisions that yield that particular outcome.

The procedure is repeated every hour, to ensure that the controller is always using the most
recent data and using the optimal decision to match the real-time price progression. Additionally,
the algorithm needs a second part, to feed in the necessary data every hour, namely N-hour forecasts
of prices, PV production, and consumption, which are beyond the scope of this paper. As they will
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introduce uncertainty and thereby reduce the accuracy of the optimal solution, a short discussion of
this is presented in the following section.

Figure 3. An example of a decision tree for the optimal energy management algorithm.

5. Forecasting of Time Series

As previously mentioned, this paper does not address the issues of uncertainty imposed by
forecasting prices, residential load, and PV production. As these will inevitably influence the viability
of the solution, they are briefly mentioned in this section, with references to other work in the literature.

There are many different approaches to forecasting these variables, such as support vector
machines (SVM) with kernel functions or soft margins, various deep learning neural networks (NN),
and seasonal auto-regression integral moving average exogenous (SARIMAX) time series models,
to name a few. In this particular case, the seasonal trend is more important than the absolute value,
i.e., a large error can be tolerated, as long as the volatility and seasonality are accurately represented in
the forecasting model. Therefore, it is difficult to draw conclusions, based on previous work where only
the average error over the entire prediction horizon was reported. Mohsenian-Rad and Leon-Garcia
reported a 17% average forecasting error for a 24-h prediction horizon using a weighted average price
predictor. They simulated that this results in a 1.5% increase in cost for the consumer [12]. However,
the results are difficult to generalize.

Other work with forecasting, such as Khan and Jayaweeara, reported a mean absolute percentage
error (MAPE) of around 10% for yearly aggregated consumer forecasts, with k-means machine
learning for classification of customer segments and a neural network for forecast regression [21].
Anbazhagan and Kumarappan [30] studied electricity price forecasting errors, which generally range
from approximately 5% to 36%. In comparison, [31] reported short-term electric load forecasting with
between 1% and 3% error.

As the forecasting error is dependent on methodology, pricing scheme, modeling, computational
effort, and data availability, it is difficult to make an assessment of the impact on the economic viability
for the consumer in this particular case study. A deviation of 1 to 2% can be tolerated, but this will also
depend on the prediction horizon. Therefore, it is suggested that predictions be incorporated into a
future analysis, if possible.
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6. Simulation and Results

Running the simulations yielded profiles for battery charge, production, and consumption
throughout the year. However, the most important metric was the final electrical bill. This number
represents the system performance, along with investment cost. Table 4 summarizes the results.

Table 4. Results from the simulated model. “Bill” is the yearly household electricity bill, and “Total”
includes annual investment service (interest and back-payment). FPS, flexible pricing scheme.

Config. Pred. Bill (DKK) Total (DKK)

CPS - 9.192 9.192
FPS - 8.151 8.151

FPS + PV - 830 11.497
FPS + PV + simp. - −3.490 15.157
FPS + PV + opt. N = 5 −9.405 9.242
FPS + PV + opt. N = 6 −9.951 8.696
FPS + PV + opt. N = 7 −10.410 8.237
FPS + PV + opt. N = 8 −10.673 7.974
FPS + PV + opt. N = 9 −10.962 7.685
FPS + PV + opt. N = 10 −11.142 7.505

A notable difference can be seen between the current pricing scheme and the new FPS. This is
due to three things: (1) the fixed price used, (2) RTP level, and (3) price-consumption correlation.
In this case, the consumer was predicted to have a reduction of the electricity bill of 1.041 DKK,
without taking any action. The addition of 6 kWp PV significantly reduced the electrical bill even
further (830 DKK), but not enough to off-set the investment as the total yearly cost (11.497 DKK) was
higher than without PV (8.151 DKK). With the FPS, PV, and a 10-h prediction horizon, the addition of
storage substantially reduced the electricity bill, towards a monetary gain. Again, this is not enough to
counteract the investment with the simple energy management algorithm. With the optimal algorithm,
a clear trend can be seen when the prediction horizon is increased from N = 5 h to N = 10 h. Breaking
even was achieved when N = 8, and the electricity bill was further decreased as the horizon was
increased. Simulations for N = 10 took approximately five days for a computer with 32 GB RAM and
six 3.60-GHz CPU cores. Therefore, results for N = 11, 12, . . . have not been obtained.

The best option, listed here, was FPS incl.PV and storage with a 10-h prediction horizon.
From Table 4, the difference between this and FPS without an energy management system
was 8.151 − 7.505 = 0.646 DKK/year, with loan service over the first 10 years. After the initial
10 years, the loan is paid back, and the earnings would be 8.151 − (−11.142) = 19.293 DKK/year,
not including repairs, maintenance, and replacement. For a 20-year period (10 years with loan service
and 10 years without), the total difference between FPS and FPS with a PV and storage system would
be 10 · (8.151 − 7.505) + 10 · (8.151 − (−11.142)) = 199.390 DKK. This is significant for its viability,
as it poses an opportunity for the consumers to not only break even, but also to have a reasonable
return on their investment.

7. Limitations and Further Work

From the previous section, it is evident that the methods presented here pose an opportunity
for PV and storage in the residential sector, under the new Danish FPS. As the prediction horizon
was increased, the algorithm approached a yearly optimum, for the energy management scheme,
and minimized the household electricity bill. However, the results presented here are based on
assumptions and are subject to constraints that limit the potential to extrapolate and scale indefinitely.
These assumptions and limitations are discussed below.

Firstly, the time series forecasting has been omitted for simplicity. However, this part has
the potential to influence the viability significantly. Perfect forecasting is impossible to achieve
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in practice, and even though the progression of the time series is more important than the exact values,
this should be addressed.

The second is data availability. Residential consumers may not have historical data records of
energy consumption and/or PV production. The algorithm must therefore run, without data, while
the necessary inputs are gathered. As data become available, the performance can be improved with
higher fidelity forecasting estimates. Price data are available on Datahub, and the system therefore,
only, needs an Internet connection to access the vast records of historical price developments.

Another issue is the integration with other controllers in the system. Since this algorithm provides
the overall guideline for what action is preferred within the hour, another controller must be designed
to actuate this. If the choice is to charge the battery from PV, the intra-hour controller must standby,
prepared to route power from the PV system, whenever power comes on-line, and reroute power when
the battery is fully charged. Additionally, this paper has assumed no overlap between PV production
and household consumption. Even though the pricing scheme refers to instantaneous energy balance
and power transfer, this is not a realistic case. The intra-hour controller must also account for this,
possibly by using the battery as a buffer, to achieve the overall command objective.

The optimal energy management problem described here is continuous in nature, but is discretized
into five available options, per hour. This is done to simplify the solution process; however, other
choices may lead to better solutions with higher pay-offs.

Computational requirements by the system processor and memory are currently quite high, as a
real-time system must finish the optimization routine within the hour to avoid process overrun.
Since there is an obvious trade-off between economic viability/profit, prediction horizon, and
computational effort, a reduction in algorithmic complexity and processor/memory requirements
will enable the system to generate better solutions and possibly increase profits beyond the current
prediction. With respect to this, it would be desirable to have an operable heuristic alternative to
the brute-force approach described herein, since this is where the bulk of the effort is spent, i.e., the
bottleneck.

Another assumption lies in the representative nature of the available data. The correlation
between price and consumption time series is imperative. A high positive correlation merits the
investment into storage and PV, as the average price of energy is relatively high. Conversely, a high
negative correlation leads to a relatively low average price of energy, meaning that this solution has
less merit. It is still possible to produce from PV, store it, and sell the energy when prices are high,
yet it cannot be coupled with a lower price for consumption, which neutralizes half of the control
advantage. The consumption and price time series used in this case study have a cross-correlation
coefficient of 0.775, with a p-value of 0.8·10−12 (with the null-hypothesis that there is no correlation,
i.e., the correlation is statistically significant). The result of this is that the household is a good case for
the application of this energy management system.

Additionally, an important assumption behind the motivation for this work is that the consumers
intend to maintain their consumption habits, regardless of the electricity price developments. This
assumption in itself may be valid to some extent; nevertheless, initiatives such as smart-grid,
smart-appliances, and electric vehicle (EV) charge controllers open up the possibility of additional
flexibility for the residential energy management system, as consumption can be, partially, used to
decrease costs even further. Consequently, this adds another layer of complexity, though the overall
methodology described in this paper could still be valid or used to form the basis for further work.

Lastly, for a given household, with a fixed pricing scheme, there is an optimal size for PV and
storage systems. Analogously, it would be desirable to develop an approach to determine the optimal
storage capacity and PV system with the FPS. Factors such as price-consumption correlation, base load,
and consumption variance could influence how the system is scaled and can maximize investment
return. Additionally, other options for renewable energy production and storage technologies could
also be included in the analysis as these also have the potential to influence the economic viability.
It is also possible that some cases cannot support production, as it does not off-set the investment,
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and storage is the only addition that makes economic sense. Therefore, a full analysis of all possible
scenarios will reveal what solution is best in the given case. For a complete analysis and evaluation
of the economic impact, from the installation of PV and storage, it is also prudent to briefly mention
the household market price [32]. In the Danish market, this is positively correlated with the Energy
Certificate rating [33], which is improved by renovations with renewable energy installation. Therefore,
a monetary gain, besides reduction in the electrical bill, is also added in the form of an increase in
property value. The exact value of this is complicated to assess and goes beyond the scope of this
paper, but it is worth mentioning that it also has an impact on the economic viability.

8. Conclusions

Changes in the energy sector are occurring in more ways than one. The electrical energy mix
is shifting from fossil fuels to renewable; decentralized generation is being favored over centralized
generation; and different economic initiatives such as RTP enable BTMS solutions. This is also seen
in Denmark with the new FPS being implemented over the next few years. To capitalize on this
and support the integration of renewable energy sources in the residential sector, a case study has been
formulated and analyzed, including energy management. The choice of algorithm has potential to
influence the viability of PV and storage, without altering consumer behavior or installing any other
smart technology in the household. This is done by predicting PV production, residential consumption,
and energy spot prices a certain number of hours in advance and then calculating the best course
of action for the storage unit to charge, discharge, supply the load, sell energy to the grid, or buy
when prices are low. As the prediction horizon increases, the algorithm minimizes the electricity bill,
thereby increasing the profits. It remains inconclusive whether this off-sets the uncertainty of the
predictions or where the optimal prediction horizon lies, as further work is needed to verify the results
conclusively and implement the algorithm. By focusing not on renewable energy or CO2 emissions,
but rather relying on the market economics, this methodology is shown to make storage and RES
viable for Danish households in the foreseeable future.
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