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Abstract: In the past two decades, wind power’s share of the energy mix has grown significantly in
Brazil. However, nowadays planning electricity operation in Brazil basically involves evaluating the
future conditions of energy supply from hydro and thermal sources over the planning horizon. In this
context, wind power sources are not stochastically treated. This work applies an innovative approach
that incorporates wind power generation in the Brazilian hydro-thermal dispatch using the analytical
method of Frequency & Duration. The proposed approach is applied to Brazil’s Northeast region,
covering the planning period from July 2017 to December 2021, using the Markov chain Monte Carlo
method to simulate wind power scenarios. The obtained results are more conservative than the
one currently used by the National Electric System Operator, since the proposed approach forecasts
1.8% less wind generation, especially during peak periods, and 0.67% more thermal generation.
This conservatism can reduce the chance of water reservoir depletion and, also an ineffective dispatch.

Keywords: net demand; wind power forecasting; long-term forecasting; intermittent sources; Markov
chain Monte Carlo

1. Introduction

The depletion of traditional energy sources, such as water and fossil fuels, as well as concerns
about the sustainability, safety and reliability of energy supply systems, has caused intense growth of
wind power generation worldwide. In Brazil, in the last two decades wind energy share in the e energy
mix has grown significantly, reaching 8.1% (13 GW) of installed capacity in July 2018, with 536 projects
in operation [1]. Official expectations for 2026 indicate an increase of approximately 215%, reaching
28 GW of installed capacity [2] and another 229 enterprises in operation. Regarding the participation in
the energy generation, in March 2006 wind power was responsible for only 0.075 GWh, 0.002% of the
total generation, while in September 2017 this figure reached 5 TWh, representing 11% of the country’s
electricity generation that month.

Since Brazil is a country with continental dimensions, the Brazilian electricity sector (BES) is
divided into four interconnected submarkets, corresponding to the country’s geographic regions:
North, Northeast, South and Southeast/Midwest. Figure 1 shows the high concentration (80%)
of wind farms in the Northeast, a consequence of the presence of strong winds in the region
and the complementarity between wind and water sources [3], in contrast to what happens in
the Southeast/Midwest, which has only 0.55% of the projects. Most of the plants already under
construction or planned for construction are also located in the Northeast, totaling 207 new ventures in
the region of the 216 nationwide.
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disadvantage, considering that for hydroelectric generation it is possible to minimize this variation 
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In order to model the wind data at a particular site, an extensive historical series is necessary. If 
these datasets are not available, stochastic simulation techniques are required. The first important 
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check the adequacy of an autoregressive moving average (ARMA) model to provide this simulation 
[15]. Castino et al. [16] applied Markov chain and discrete autoregressive models to forecast wind 
series using information on wind speed and direction. Alexiadis et al. [17] predicted wind speed and 
power via artificial neural networks (ANN) and autoregressive models, showing that the first 
presents better accuracy. Papaefthymiou and Klöckl [18] presented a Markov chain Monte Carlo 
(MCMC) approach for the direct generation of synthetic time series of wind power output. Pinson 
[19] emphasized the importance of considering wind power generation as a stochastic process, and 
Zhang et al. [20] proved that wind power generation can be modeled as a stochastic process, since it 
is both nonlinear and unstable. Jung and Broadwater [21] presented a literature review of wind speed 
and power forecasting, involving spatial, probabilistic and offshore correlation, showing that the 
formulations cannot be compared since each model depends on the location (spatial correlation). 
Iversen et al. [22] proposed a modeling framework for wind speed based on stochastic differential 
equations. Landry et al. [23] described the probabilistic wind power forecasting method that was 
used to win the wind track of the Global Energy Forecasting Competition in 2014 (GEFCom2014). 
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Despite the increase of wind power generation, the Brazilian electrical system is basically formed
by hydroelectric and thermal plants, which together represented approximately 70% of the country’s
total generation in 2017 [4–6]. Nowadays, planning the BES operation basically involves evaluating
the future conditions of energy supply from hydro and thermal sources over the planning horizon
to minimize the expected value of the operation cost during the planning period [7–9]. This cost
is formed by the fuel costs plus penalties for failure of load supply, under operational and security
constraints [10–12]. The other generation sources, including wind power, are discounted from energy
demand in a deterministic way. That is, the current dispatch model does not consider wind generation’s
stochastic behavior. Suomalainen et al. [13] showed that in a system highly influenced by seasonal
hydraulic generation, the high penetration of wind sources causes large impacts on the dispatch
models. This is because wind generation mainly depends, on wind speed, a renewable and abundant
resource, but one that is volatile. From an operational perspective, this volatility is a disadvantage,
considering that for hydroelectric generation it is possible to minimize this variation through reservoir
management [14].

In order to model the wind data at a particular site, an extensive historical series is necessary.
If these datasets are not available, stochastic simulation techniques are required. The first important
work dealing with simulation of wind speed data was published in 1996 and used statistical tests to
check the adequacy of an autoregressive moving average (ARMA) model to provide this simulation [15].
Castino et al. [16] applied Markov chain and discrete autoregressive models to forecast wind series
using information on wind speed and direction. Alexiadis et al. [17] predicted wind speed and power
via artificial neural networks (ANN) and autoregressive models, showing that the first presents better
accuracy. Papaefthymiou and Klöckl [18] presented a Markov chain Monte Carlo (MCMC) approach
for the direct generation of synthetic time series of wind power output. Pinson [19] emphasized the
importance of considering wind power generation as a stochastic process, and Zhang et al. [20] proved
that wind power generation can be modeled as a stochastic process, since it is both nonlinear and
unstable. Jung and Broadwater [21] presented a literature review of wind speed and power forecasting,
involving spatial, probabilistic and offshore correlation, showing that the formulations cannot be
compared since each model depends on the location (spatial correlation). Iversen et al. [22] proposed
a modeling framework for wind speed based on stochastic differential equations. Landry et al. [23]
described the probabilistic wind power forecasting method that was used to win the wind track of the
Global Energy Forecasting Competition in 2014 (GEFCom2014). Aguilar et al. [24] developed a hybrid
methodology using Singular Spectrum Analysis (SSA) and Conditional Kernel Density Estimation to
achieve accurate probabilistic forecasts of wind output, and Cheng et al. [25] proposed an ensemble
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model for probabilistic wind speed forecasting. Ekström et al. [26] presented an improved method for
the detailed statistical modeling of wind power generation based on a vector autoregressive model.

Besides wind generation, modeling and forecasting, this work aims to integrate these results
in the current hydro-thermal dispatch model, without the need of any structural change in the
optimization model, by updating the calculation of the non-dispatched plants. In order to reach
the proposed objective and to consider the wind time series’ stochastic behavior, the Frequency
and Duration (F&D) methodological principle is used, combining via Markov chain Monte Carlo
method the states of generation and load capacity to determine those ones of net demand and the
corresponding probabilities. The F&D method is widely used to evaluate the static capacity adequacy
for a given generation system, with the first application dating from 1968 [27]. This paper is based on
the method developed by Leite da Silva et al. [28], which represents generation units by multistate
models and load by hourly data. It also shows that not only the availability of the reserve states
can be evaluated by discrete convolution, but also their frequencies. The methodology proposed
here can be applied to other countries that face similar problems, that is, expanding reliance on
intermittent sources while complementing the main sources, in addition to a centralized long-term
operational planning without the possibility of modifying the equations of the optimization model, as,
for example, Chile [29] and Nordic countries [30]. The Climate Forecast System Reanalysis combined
with technical turbine information was used to obtain the historical time series from each wind farm,
detailed in Section 3.1. All the statistical analysis and simulations were developed in R Statistical
Software [31]. The optimization model was developed by the Stochastic Dual Dynamic Programming
(SDDP) model [32]. In this sense, the novelty of this paper is the inclusion, via a stochastic approach,
of the wind power generation into the optimal operation of the hydrothermal Brazilian system,
resulting in the so called wind-hydro-thermal dispatch. Given that the wind power penetration is
rather new in Brazil and is growing very fast, the lack of historical data is a real technical challenge for
the implementation of such procedure.

The remainder of this paper is organized as follows: Section 2 presents a step-by-step framework
to reach the goals described previously. Section 3 describes the results obtained, comparing our
scenarios and the real datasets, as well as the wind power calibration outcome, and, finally the net
demand calculation. Section 4 provides conclusions and future research directions.

2. Material and Methods

The introduction section emphasizes the growing trend of wind power generation in the Brazilian
electricity mix and the need to consider the stochastic behavior of this source in the electric operation
planning model. To meet this need, we propose a methodology that can be divided into three
dependent procedures: historical measurements, Markov chain Monte Carlo (MCMC) modeling and
the net demand approach.

Figure 2 presents a graphical framework with a description of all the calculations. In the first
stage, each plant is associated with a wind speed history, obtained through measurements stations,
and that speed is converted into wind power through the combination of turbine technical parameters.
The data are calibrated from observed wind generation values. In the second stage, future scenarios of
wind generation for each power plant are simulated using the Markov chain Monte Carlo method.
In order to build the wind power generation of an entire submarket, the start-up date of each plant is
considered. In the third stage, the expected energy load is considered with hourly frequency, being
constructed through load profiles and future values. The calculation of the net demand is done through
the combination of possible states of energy load and wind generation and probabilities are associated
with each state. After obtaining the expected values of wind generation and net demand, it is necessary
to include these data in the Brazilian hydro-thermal dispatch by replacing the wind energy values
considered by the BES with the values obtained through the proposed approach. Such dispatch is
based on an optimization model, where the income inflow is the stochastic variable. The objective
function intends to minimize the sum of immediate and future cost of fuel and energy deficit, under
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operational and security constraints. The future cost is a convex combination of the expected value of
the future cost function and the Conditional Value at Risk (CVaR) of that function, in order to insert
risk aversion [33].
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It should be noted that there are other solutions for the inclusion of wind energy, and other so-called
intermittent sources, directly in the dispatch optimization. Examples are the work of Papavasiliou et al. [34],
who developed the multistage stochastic programming formulation; Jurasz et al. [35], who developed a
mixed-integer nonlinear mathematical model; Morillo et al. [36], who included the expected production
of wind energy in the objective function; and Raby et al. [29], who considered wind power as a new
thermal plant. However, one of the main objectives of this work is to propose an approach that
considers the variability of the wind series, but does not change the optimization model’s formulation.
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2.1. Historical Measurements

In the proposed methodology the first stage is related to the historical measurements, where
the first step consists of obtaining a full year history of hourly wind speed series at the selected
location. This information can be accessed through the Climate Forecast System Reanalysis (CFSR) [37]
maintained by the National Centers for Environmental Prediction (NCEP). Through the CFSR it
is possible to obtain the desired information according to geographic coordinates, with a spatial
resolution of 0.25◦ by 0.25◦. Thus, the association of a wind speed series to a wind farm was carried
out by searching for the measurement point that minimizes the distance between them.

As a consequence of the difference in height between the measurement of wind speed (10 m)
and the height of the turbines, it is necessary to consider a height correction factor [38], given that
the greater the height the greater the wind speed generally it. This can be calculated by the natural
logarithm ratio of the turbine height and the point at which wind measurement is performed, as in
Equation (1):

HFi =
log(HTi)

log(HMi)
(1)

where HFi is the height correction factor, HTi is the turbine height and HMi is the measurement height
associated with wind farm i. So, the final wind speed, WSh,d,m,i, associated with the wind farms is the
result of multiplying the height correction factor by the original wind speed, OWSh,d,m,i:

WSh,d,m,i = HFi ×OWSh,d,m,i (2)

where h is the hour, d is the day and m is the month.
According to Papaefthymiou and Klöckl [18], simulated wind power is more adequate than wind

speed. There are two reasons for this (i) it avoids errors calculations in the conversion of speed to
power; and (ii) the number of states is smaller, since the wind power is only observed for a given range
of wind speed values. So, here we use the wind power series to simulate the future wind generation.

A convenient way to obtain the output power of a given wind turbine is through its power curve,
which relates the resulting power of the turbine to a specific wind speed. Turbine manufacturers
provide the power curves in tabular or graphic form. However, a generic equation that accurately
represents this curve is needed in many problems involving wind power. The work of Kusiak et al. [39]
identified that proper selection of power curve models is essential for predicting power and online
monitoring of turbines accurately. Such models can be classified as discrete, deterministic/probabilistic,
parametric/nonparametric and stochastic. Sohoni et al. [40] present a literature review of the existing
methods for approximation of the power curve and the advantages and disadvantages involved in
each one.

A parametric model defines the relation between input and output through a set of mathematical
equations with a finite number of parameters. The transformation of wind speed into wind power
(WPAh,d,m,i) is made by a parametric model of the power curve of wind turbine expressed in
Equation (3):

WPAh,d,m,i =


0

q(v)
Pr

WSh,d,m,i
〈
vci, WSh,d,m,i

〉
vco

vci < WSh,d,m,i < vr

vr ≤WSh,d,m,i ≤ vco

(3)

where vci is the initial velocity at which wind starts generating power, and vr is the cutting velocity,
starting from which to the final velocity vco, the power generated will be the same and equal to the
rated power Pr of the turbine. For any velocity less than the initial one vci and greater than the final
velocity vco, there is no power generated. The relation between the resulting power and the wind speed
between the initial velocity (vci) and the cutting velocity (vr) is nonlinear and is represented by q(v) in
Equation (3). However, this relation can be approximated by different functions, polynomial or not.
In this work, we selected the method based on the Weibull distribution (Equation (4)) [41,42], where
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the parameter k is the shape and is obtained by adjusting the maximum likelihood of the Weibull
distribution function to the wind speed data from each month.

q(v) =

(
vkm

ci

vkm
ci − vkm

r
+

WSh,d,m,i
km

vkm
co − vkm

ci

)
Pr (4)

So far, all the wind speed considered is converted into wind power (WPAh,d,m,i), considering the
turbine capacity factor. In this sense, the calibration year was the one when the data were obtained.
That is, the calibration factor will be calculated from the observed monthly wind generation values and
also the calculated monthly wind generation values, as in Equation 5, where WPh,d,m,i is the calibrated
wind power, WPAm,i is the total wind power calculated for month m and wind farm i and Om,i is the
observed wind generation at month m and wind farm i:

WPh,d,m,i = WPAh,d,m,i ×
Om,i

WPm,i
(5)

2.2. Stochastic Wind Power Simulation

The procedure developed in this study to stochastically simulate the wind power data is based on
Almutairi et al. [43]. The first step involves the application of the K-means clustering technique [44] to
transform the wind power data (WPh,d,m,i) into a finite number of states (WPSh,d,m,i). For the K-means
technique, given a number k of clusters and Mk initial centroids, the distance Dk,c from each wind
power value WPc to each Mc is calculated and all of the wind power values are assigned to the nearest
centroid. New cluster centroids are calculated using the average of the wind power data in cluster
k and the distances are recalculated. This process is repeated until the centroids remain fixed after a
number of iterations. At the end, the calculated wind power values are replaced by the centroids of the
cluster to which they belong, as explained in Equation (6), where ck is the centroid value of cluster k:

WPSh,d,m,i =


c1, if WPh,d,m,i ∈ c1

c2, if WPh,d,m,i ∈ c2
...

ck, if WPh,d,m,i ∈ ck

(6)

The second step corresponds to the creation of transition matrices, kxk, (Pind), by month, where k
is the number of states calculated in the previous step. The transition probability (pa,b) from state a to
b, for all indices 1 ≤ (a, b) ≤ k, can be calculated by Equation (7):

pa,b =
na,b

∑k na,b
(7)

where na,b is the number of transitions from a to b. After obtain the transition probabilities for all each
state is possible to construct the transition matrix for each month, as described in Equation (8):

Pind =


p1,1 p1,2 · · · p1,k
p2,1 p2,2 . . . p2,k

...
...

. . .
...

pk,1 pk,2 · · · pk,k

 (8)
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Once the individual transition matrix Pind based on individual state probabilities is obtained,
the cumulative probability transition matrix Pcum can be created, so that its last column is equal to one
for every row and month (Equation (9)):

Pcum =


p1,1 p1,1 + p1,2 · · · p1,1 + p1,2 + . . . + p1,k
p2,1 p2,1 + p2,2 . . . p2,1 + p2,2 + . . . + p2,k

...
...

. . .
...

pk,1 pk,1 + pk,2 · · · pk,1 + pk,2 + . . . + pk,k

 (9)

The third and last step uses the cumulative Markov chain transition matrices and a uniform
distribution to simulate the hourly wind power values for the T-years horizon

(
WSIMh,d,m,y,i,s

)
.

This procedure is described in detail in Almutairi et al. [43] and is summarized here. The initial state z
is randomly selected, and a value between [0, 1] is generated from a uniform distribution; the next
wind power state is determined by comparing the value of the random number with the elements of
the zth row of the cumulative probability transition. If the randomly generated number is greater than
the cumulative probability of the preceding state, but less than or equal to the cumulative probability
of the succeeding state, the succeeding state is chosen to represent the next state. This procedure is
repeated in order to simulate wind power data (by hour):

WSIMh,d,m,y,i,s = ck i f ck−1 < puni f [0, 1] ≤ ck (10)

where WSIMh,d,m,y,i,s is the simulated wind power for hour h, day d, month m, year y (∑ y = T), wind
farm i and scenario s; ck is the value of state k and puni f [0,1] is the value randomly generated from a
uniform distribution.

2.3. Net Demand Calculation

The main task of this study is the inclusion of the wind power generation in the Brazilian
hydro-thermal dispatch by considering its stochastic nature. For this purpose, it is crucial that all
the required information for each wind farm be available. To create the wind generation data by
submarket, it is first necessary to consider the starting date of operation in the wind power simulated
in the previous step and then sum the wind farms corresponding to each submarket (Gh,d,m,y,j,s),
as detailed in Equations (11) and (12):

Gh,d,m,y,i,s =

{
0, if d < dinitial , m < minitial , y < yinitial
WSIMh,d,m,y,i,s otherwise

(11)

Gh,d,m,y,j,s = ∑
i∈j

Gh,d,m,y,i,s (12)

where, dinitial , minitial and yinitial are the day, month and year of the starting date of operation,
respectively; and j is the submarket.

To start the net demand calculation, the hourly load data are needed for the same horizon of the
wind power generation. Due to the difficulty in finding official hourly load data in Brazil, a normalized
standard load profile of the kind min-max (LPm,h,j,t, where t is type of day) was created for the months,
hours and type of day (weekdays, Saturdays and Sundays/holidays), and this is applied to the monthly
load MLm,y,j (MW Average) expected by the government for each year of the horizon, resulting in the
hourly load data, explained in Equation (13):

Lh,d,m,y,j = LPm,h,j,t × Nt ×MLm,y,j (13)

where Nt is the number of days according to the type of day that are in each month and year. After that,
the K-means algorithm is used again to discretize both the wind power generation and load series into
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states (LSh,d,m,y,j and GSh,d,m,y,j,s), see Equations (14) and (15), where cL
k and cG

k are the centroids value
of cluster k for the load and wind generation time series:

LSh,d,m,y,j =


cL

1 , if Lh,d,m,y,j ∈ cL
1

cL
2 , if Lh,d,m,y,j ∈ cL

2
...

cL
k , if Lh,d,m,y,j ∈ cL

k

(14)

GSh,d,m,y,j,s =


cG

1 , if Gh,d,m,y,j,s ∈ cG
1

cG
2 , if Gh,d,m,y,j,s ∈ cG

2
...

cG
k , if Gh,d,m,y,j,s ∈ cG

k

(15)

In addition, in a subsequent step, the Markov chain transition matrices for each month (and
scenario) are created, following the same steps described in Equation (8). The need to recalculate
the states and transition matrices for the wind generation series comes from the fact that the series
originated in the previous step has changed with the input of the starting dates of operation and the
transformation into submarkets.

To be able to combine generation and load states in net demand states, it is necessary to associate
a single probability to each state, and since in Markov chain theory the steady-state probabilities
can be considered the long-term behavior of the system, after the effect of the initial conditions have
decreased (i.e., in an equilibrium situation), this is the probability that represents the occurrence of
each state. Then, the fourth step in this stage calculates the steady-state probabilities of each load and
generation series for each month and year

(
LSSPm,y,j and GSSPm,y,j,s

)
.

According to Leite da Silva et al. [28], to find the model parameters of a combination S =

S(1)− S(2), let ca and pa denote the parameters associated with state a of component S(1) and cb
and pb be the parameters for state b of component S(2). Suppose that the combination of states a
and b gives state z of system S. Assuming that states a and b are statistically independent, then the
parameters of S associated with state z are cz = ca − cb and pz = pa × pb. Since the net demand can
be characterized as the difference between the load and the generation, the penultimate step of this
procedure combines the load and generation model parameters to derive the net demand states and
probabilities (NDSm,y,j,s and NDSSPm,y,j,s) as in Equations (16)–(18):

NDSm,y,j,s = LSSPm,y,j − GSSPm,y,j,s (16)

PNDS
(

NDSm,y,j,s
)
= PLSSP

(
NDSm,y,j,s + GSSPm,y,j,s

)
× PGSSP

(
GSSPm,y,j,s

)
(17)

NDSSPm,y,j,s = NDSm,y,j,s × PNDS
(

NDSm,y,j,s
)

(18)

The final output of this system is a value for each month and year in the forecasted period, and to
do that the last step of the process is to calculate the expected values between the states and the
probability associated with the net demand, resulting in a net demand value for each month and year,
see Equation (19):

NDm,y,j = ∑
s

NDSSPm,y,j,s (19)

3. Results

In this section, the proposed methodology is applied to the Brazilian Northeast region in order to
forecast the wind power generation from July 2017 to December 2021. The year 2016 is used as the base
year, so the wind speed series extracted from CFSR are hourly from 1 January to 31 December (2016)
and the standard load profile is built based on the hourly load for 2016, obtained from the National
System Operator.
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The Northeast region is composed by the states of Alagoas, Bahia, Ceará, Maranhão, Paraíba,
Piauí, Pernambuco, Rio Grande do Norte and Sergipe, and has the longest coastline of the country’s
regions (3000 km). According to the National Electric Energy Agency (Agência Nacional de Energia
Elétrica—ANEEL), in July 2017 there were 209 wind farms in operation, accounting for 3.6 GW of
installed capacity, 172 under construction or due to start construction in the near future, totaling
an addition of approximately 4 GW in this region in the following years. Of these 172 wind farms
under construction, only 74 will be in operation within the study horizon, totaling 283 undertakings
considered for all future calculations.

Figure 3 shows a map of the Northeast region and the location of wind farms. Note there is a
concentration along the coast, but a considerable number are also located in the interior.
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3.1. Obtaining the Historical Measurements Per Wind Farm

As mentioned above, the wind speed series were obtained from the CFSR system and the
measured point to be used is the closest one to each wind farm. Following this, only 6 measurement
points were needed and the maximum distance found was approximately 12 km. Table 1 shows the
latitude and longitude of each measurement station of the CFSR system.

Table 1. Latitude and longitude of CFSR measurement stations.

Station Latitude Longitude

NASA 1362 −4.40 −39.07
NASA 1628 −5.21 −36.20
NASA 2046 −6.64 −40.91
NASA 2192 −7.05 −36.82
NASA 2622 −8.48 −39.07
NASA 3427 −11.14 −41.93
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A survey of the turbine models installed at each wind farm revealed that only 7 turbine
manufacturers serve this region with 12 models. Table 2 presents the manufactures, models and
technical parameters.

Table 2. Manufacturers, models and technical information.

Manufacturer Model Hub Height (m)
Cut-in Wind
Speed (m/s)

Rated Wind
Speed (m/s)

Cut-Off Wind
Speed (m/s)

Rated
Power (kW)

Acciona AW-3000/116 120 3 10.6 20 3000
Alstom ECO-122/2700 139 3 10 25 2700
Alstom ECO-86/1670 80 3 10 25 1670
Gamesa G106/2500 93 2 12 24 2500
Gamesa G97/2000 120 3 14 25 2000

GE 1.6-100 100 3.5 11 25 1600
GE 1.85-82.5 80 3 13 25 1850
GE 1.7-103 96 3 10 23 1700
GE 1.68-100 100 3.5 11 25 1680

Siemens SWT-2.3-101 100 3 12 20 2300
Weg AWG 110/2.1 120 2.5 11 20 2100

Wobben E92/2350 138 2 13 25 2350

In this same step, the height correction factor is calculated, considering that the measurements are
made 10 m above ground. The maximum wind turbine height found was 139 m and the minimum
was 80 m, so the height correction factor varies from 1.90 to 2.14.

Therefore, by combining the Weibull distribution and the wind speed time series obtained from
the CFSR system it was possible to obtain the expected wind power time series for each of the 283 wind
farms. The year 2016 was used as calibration year, so for each wind farm, expected wind power
is multiplied by a monthly calibration factor obtained through the relation between calculated and
observed monthly generation. This calibration factor is calculated using monthly data since the
observed wind power generation is available on a monthly basis. For the 74 farms that will be in
operation, the monthly average of the calibration factor of the others plants was applied.

3.2. Wind Power Simulation Model Results

The first task in this stage is the transformation of the wind power obtained in the previous step
into a finite number of states. To do this, we applied the K-means clustering technique where at least
98% of the data variability has to be represented, resulting in a variation from 13 to 24 in the number
of clusters when applying the methodology to the wind power data, with great concentration around
15 clusters. The number of clusters varies accordingly to the original wind power data distribution,
without any external interference.

The next step involves calculating the Markov chain transition matrix, constructed by the
frequency at which one state transits to another, or to itself. As an example, in Table 3 the wind
farm Abil transition matrix of March is presented. First, notice that the time series of this wind farm
was divided into 14 finite numbers. Note also that the transitions happen in a gradual way, that is, if at
a moment the generation is low, the chance that in the next moment this value is high is almost zero or
zero in many cases, while the opposite is also true.

To build the cumulative transition matrix it is necessary to add for each state the probability of
the previous states with their own probability. See Table 4 for the cumulative transition matrix for the
Abil wind farm in March.

To simulate the hourly wind power values, it is first necessary to randomly select the initial state,
for instance, state 3 (1.20 MW in the example) and then to choose a value from the uniform [0, 1]
distribution. Assume it is 0.92. This means that the first simulated value is 1.20 MW and the second is
2.18 MW, since 0.92 is more than 0.72 (state 3) and less than 0.97 (state 4). This procedure continues
until the entire horizon has been simulated for each wind farm. For convergence reasons, this entire
process was repeated 200 times, thus generating the same number of possible scenarios. This value
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was chosen after performing sensitivity analysis of this database for different numbers of scenarios.
Figure 4 depicts the average scenarios for the Abil farm.

Table 3. Transition matrix example.

State a (MW)
State b (MW)

0 0.32 1.20 2.18 3.32 4.47 5.71 7.03 8.57 10.20 11.77 13.55 15.53 17.60

0 0.50 0.50 0 0 0 0 0 0 0 0 0 0 0 0
0.32 0.01 0.84 0.13 0.02 0 0 0 0 0 0 0 0 0 0
1.20 0 0.14 0.58 0.25 0.03 0 0 0 0 0 0 0 0 0
2.18 0 0.04 0.21 0.41 0.28 0.04 0.03 0 0 0 0 0 0 0
3.32 0 0 0.05 0.20 0.34 0.23 0.06 0.08 0.02 0.02 0 0 0 0
4.47 0 0 0.02 0.07 0.22 0.31 0.24 0.10 0.03 0.00 0 0 0 0
5.71 0 0 0 0.04 0.07 0.21 0.29 0.21 0.09 0.07 0.02 0 0 0
7.03 0 0 0 0.03 0.03 0.10 0.24 0.32 0.15 0.06 0.05 0.02 0 0
8.57 0 0 0 0.00 0.02 0.06 0.04 0.21 0.31 0.17 0.08 0.08 0.04 0

10.20 0 0 0 0.00 0 0 0.04 0.09 0.26 0.24 0.26 0.07 0 0.04
11.77 0 0 0 0.02 0 0.02 0.02 0.05 0.11 0.30 0.23 0.11 0.11 0.02
13.55 0 0 0 0 0 0 0 0 0.08 0.04 0.31 0.31 0.15 0.12
15.53 0 0 0 0.04 0 0 0 0 0 0.11 0.19 0.11 0.30 0.26
17.60 0 0 0 0 0 0 0 0.03 0 0 0.02 0.03 0.14 0.78

Table 4. Cumulative transition matrix example.

State a (MW)
State b (MW)

0 0.32 1.20 2.18 3.32 4.47 5.71 7.03 8.57 10.20 11.77 13.55 15.53 17.60

0 0.50 1 1 1 1 1 1 1 1 1 1 1 1 1
0.32 0.01 0.85 0.98 1 1 1 1 1 1 1 1 1 1 1
1.20 0 0.14 0.72 0.97 1 1 1 1 1 1 1 1 1 1
2.18 0 0.04 0.25 0.66 0.93 0.97 1 1 1 1 1 1 1 1
3.32 0 0 0.05 0.25 0.59 0.83 0.89 0.97 0.98 1 1 1 1 1
4.47 0 0 0.02 0.09 0.31 0.62 0.86 0.97 1 1 1 1 1 1
5.71 0 0 0 0.04 0.11 0.32 0.61 0.82 0.91 0.98 1 1 1 1
7.03 0 0 0 0.03 0.06 0.16 0.40 0.73 0.87 0.94 0.98 1 1 1
8.57 0 0 0 0 0.02 0.08 0.12 0.33 0.63 0.81 0.88 0.96 1 1

10.20 0 0 0 0 0 0 0.04 0.13 0.39 0.63 0.89 0.96 0.96 1
11.77 0 0 0 0.02 0.02 0.05 0.07 0.11 0.23 0.52 0.75 0.86 0.98 1
13.55 0 0 0 0 0 0 0 0 0.08 0.12 0.42 0.73 0.88 1
15.53 0 0 0 0.04 0.04 0.04 0.04 0.04 0.04 0.15 0.33 0.44 0.74 1
17.60 0 0 0 0 0 0 0 0.03 0.03 0.03 0.05 0.08 0.22 1
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In Figure 4 it is not possible to see the year-to-year variation of the wind series, but since
the dispatch is optimized using the farms in aggregate form (submarket) rather than individually,
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the year-to-year variations are not significant, because in this case, the generation variation of a
farm may be compensated for the others. Still, the year-to-year wind generation of the submarket is
represented by considering the entry of new farms into operation in the future.

3.3. Checking of the Wind Power Simulation Model Results

In order to check the goodness of the simulated series, statistical factors were considered, such as
the probability distribution function (PDF), autocorrelation functions (ACF), monthly characteristics
and Wilcoxon signed-rank test.

The PDF shows the values of the distribution behavior of a given database. In this work it is used
to compare the proportion of values generated through the simulation and the real series. Note in
Figure 5 that the number of values belonging to a state in the simulated series is approximately equal
to that of the real series, indicating that the synthetic scenario generation method used satisfactorily
reproduces such behavior.
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Figure 5. Comparison of PDFs.

Given that the wind time series behave differently between the seasons of a year, it is important
to check whether the means and variations between the months are replicated for the simulated series
compared to the measured series. Table 5 shows the mean and standard deviation values obtained
from the measured data and the simulated data. Notice that the values of both, the simulated and
observed series are very close, with the percentage errors varying from 0.08% to 3.64% for the mean
and 0.00% to 1.26% for the standard deviation. This indicates that the scenario generation method
replicates the inherent variation of the wind series.

In the previous analysis we checked whether the wind series seasonal behavior was replicated in
the simulated series. In the present analysis, we check if the intra-hour behavior is reproduced using
the autocorrelation function, which presents the correlation between the time intervals. Figure 6 shows
that the peaks are exactly in the multiple of 24 lags, and since we are dealing with an hourly time
series, it is possible to conclude that the present method also reproduces the hourly behavior.
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Table 5. Monthly results.

Month
Mean (MW) Standard Deviation (MW)

Measured Data Simulated Data Measured Data Simulated Data

Jan 3.2204 3.2727 3.5331 3.5668
Feb 5.6109 5.5751 4.2978 4.3025
Mar 6.3998 6.4795 5.3218 5.3187
Apr 7.0073 6.9852 5.6116 5.6165
May 7.1462 7.1800 5.8127 5.8084
Jun 9.0496 9.3804 6.3166 6.3166
Jul 9.9104 9.9181 6.0918 6.1196

Aug 9.6687 9.7155 6.2547 6.2793
Sep 10.5886 10.2190 6.5827 6.6192
Oct 10.1114 10.2143 6.3178 6.3066
Nov 9.1185 8.7986 6.7229 6.6391
Dec 8.2729 8.3653 6.3252 6.3179

Energies 2019, 12, x FOR PEER REVIEW 13 of 19 

 

In the previous analysis we checked whether the wind series seasonal behavior was replicated 
in the simulated series. In the present analysis, we check if the intra-hour behavior is reproduced 
using the autocorrelation function, which presents the correlation between the time intervals. Figure 
6 shows that the peaks are exactly in the multiple of 24 lags, and since we are dealing with an hourly 
time series, it is possible to conclude that the present method also reproduces the hourly behavior. 

 
Figure 6. Comparison of ACFs. 

The last feature to be tested is whether the simulated series fits the same distribution of the real 
data. In order to do that, the Wilcoxon signed-rank test was used (since the data were not normally 
distributed). The test’s null hypothesis is that both distributions are equivalent, and since the p-value 
obtained is 0.2929, it is possible to conclude that the probability distribution of the simulated data is 
the same as the measured data. 

3.4.Creating Hourly Load Values 

As stated in Section 2.3, it is not possible to obtain hourly load forecasts directly from official 
organizations. Therefore, a methodology was developed to obtain such data from the load 
expectations made available for 60 months on monthly basis (Figure 7). 

 
Figure 7. Northeast load forecast. 

Figure 6. Comparison of ACFs.

The last feature to be tested is whether the simulated series fits the same distribution of the real
data. In order to do that, the Wilcoxon signed-rank test was used (since the data were not normally
distributed). The test’s null hypothesis is that both distributions are equivalent, and since the p-value
obtained is 0.2929, it is possible to conclude that the probability distribution of the simulated data is
the same as the measured data.

3.4. Creating Hourly Load Values

As stated in Section 2.3, it is not possible to obtain hourly load forecasts directly from official
organizations. Therefore, a methodology was developed to obtain such data from the load expectations
made available for 60 months on monthly basis (Figure 7).
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The first step involves obtaining the load profiles by type of day (workday, Saturday and
Sunday/holidays) and month from a historical time series. Figure 8 presents the average monthly
profiles for the Northeast submarket using data from January 2008 to December 2017. Note that during
the early morning hours (1 a.m. to 5 a.m.) there is no significant difference in load between profiles,
with the lowest values being on Sundays and holidays. However, during business hours (8 a.m. to
5 p.m.) there is a big difference between the profiles, where on weekdays the average load is much
higher than on other days, as expected. In the evening (7 p.m. to 9 p.m.), this behavior is reversed,
with higher load on Sundays and holidays.
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By combining Figures 7 and 8, it is possible to transform the monthly forecast into hourly forecast,
not displayed graphically for complexity reasons. The next step involves discretization of time series
into finite values, just as was done for the wind power time series. The K-means process produced
17 clusters (Figure 9), accounting for 99.5% of the total data variation.
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3.5. Net Demand and Optimization of Dispatch Results

Now that all the information needed to calculate the net demand is available, it is possible to
obtain the final results and compare then with those expected by the government.

The first and most important result is the wind generation forecast for the next 5 years (or
60 months). In Figure 10, the forecast through the net demand approach and from the official sources
are presented, where it is possible to observe that, on average, wind power generation predicted by the
government is higher than the simulated value, especially regarding peaks and valleys. Apart from
this, both have the same trend and behavior.
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As a consequence of a smaller expected wind power availability in the future compared to the
official expectations, the load to be met (Figure 11) will present higher values when considering the
methodology proposed here.
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Considering the data from the load to be met (Figure 11), it is possible to evaluate, using the
optimization dispatch model, the system’s behavior according to the power demand forecasts and
simulated wind power generation. Figure 12 presents the energy storage and Figure 13 gives the
thermal generation according to official sources and the net demand approach. From Figure 12 it is
possible to notice that the energy stored considering the official forecasts is almost the same as in the
net demand approach, but in the dry season the proposed methodology is more conservative.
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For the thermal generation, since with the net demand approach a more conservative generation
of wind energy is expected, the complementation with thermal generation will be larger, as shown
in Figure 13. Note that there was a drop in thermal dispatch in 2018, July 2018. In this month, it is
possible to see that the load was low (the lowest level in 2018), and in addition, the income inflow
contributed in a manner that it was not necessary to dispatch thermal power plants, since the hydro
generation could supply most part of demand. It is important to emphasize that this is a part of the
optimization results, restricted to the Northeast Brazil’s region.
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4. Conclusions

This article proposes an approach to incorporate wind power generation in the current Brazilian
hydro-thermal dispatch. The methodology is summarized in three main stages, comprising fourteen
distinct steps, where the first stage deals with historical measurements, the second stage with the
wind power simulation via MCMC and the final stage with the net demand calculation. The historical
measurement stage involves obtaining wind speed data from a reanalysis database and transformation
to wind power by the Weibull probability distribution. A wind power scenario, based on the MCMC
model, is created for the entire time considering the starting date of operation of each wind farm.
From statistical factors, the simulated time series characteristics are tested and validated in comparison
with the observed series that replicate the monthly and hourly behavior and also the temporal
correlation together with the probability distribution. In the net demand stage, a standard load profile
by type of day is computed and applied to the monthly load forecasting, followed by the discretization
of both the generation and the load series into finite states. In this stage, the Markov chain transition
matrices and steady-state probabilities are also estimated. The combination of generation and load
states into a single net demand value for each month of the planning period is performed by discrete
convolution and expected value calculation.

The results obtained confirm that the expected wind power forecast using the proposed
methodology is more conservative than the official expectations. That is, in periods of higher
wind power generation in the Northeast, the net demand approach expects less generation than
the government, with the same for periods with smaller generation. Thus, the load to be met will be
greater according to the methodology proposed here. These values indicate a lower expectation of
water storage in the future, translated into energy storage, and also higher generation from thermal
plants. The main consequences of such differences between what is expected by the government and
the forecast calculated here are the depletion of hydroelectric reservoirs and also the “non-optimization”
of dispatch. Therefore, we can conclude that the consideration of probabilistic scenarios of wind energy
generation as proposed in the net demand approach can mitigate errors in decision making by the
Brazilian National Electric System Operator.

Finally, our objective was satisfactorily achieved, since the suggested methodology was able to:
(i) reproduce the variable behavior of the wind series; and (ii) insert the wind generation in the current
optimization dispatch model, conserving its structural mathematical formulation.

For future research, we suggest using other databases to provide wind speed series in addition
to obtain a history of more than one year in order to capture yearly variability. We also suggest the
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application of other techniques to forecast wind power generation and consideration of different
approaches for insertion of such generation in a mainly water and thermal dispatch. The application
of methods that specifically consider the night/day effects of wind time series is another suggestion.
We also recommend the construction of confidence intervals to increase the reliability of the applied
simulation method, as was done in Cyrino Oliveira et al. [45] using bootstrap, or as it was done
in Yang et al. [46] by applying Markov chain methods. Finally, it is possible to apply the proposed
approach to other renewable sources, such as photovoltaic.
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