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Abstract: Exhaust emissions from the large population of motorcycles are a major issue in
Asian countries. The regulation of exhaust emissions is therefore becoming increasingly stringent,
with those relating to nitrogen oxides (NOx) the most difficult to pass. The homogeneous charge
compression ignition (HCCI) has special combustion characteristics and hence produces low NOx

emissions and exhibits high thermal efficiency. This study developed an HCCI system for a 150 cc
motorcycle engine. The target engine was modified using a dual-fuel of dimethyl ether (DME) and
gasoline with exhaust gas recirculation (EGR). It was tested at 2000–4000 rpm and the analysis was
focused on 2000 rpm. The DME was supplied continuously at an injection pressure of 1.5 kg/cm2.
The gasoline injection rate was adjusted at a pressure of 2.5 kg/cm2. A brake-specific fuel consumption
of <250 g/kW·h was achieved under a condition of air–fuel equivalence ratio (λ) < 2 and an EGR
of 25%. The nitric oxide concentration was too low to measure. The brake mean effective pressure
(BMEP) increased by 65.8% from 2.93 to 4.86 bar when the EGR was 0% to 25%. The combustion
efficiency was close to 100% when the BMEP was >3 bar.

Keywords: homogeneous charge compression ignition (HCCI); exhaust gas recirculation (EGR);
dual-fuel; dimethyl ether (DME); exhaust emission

1. Introduction

The number of motorcycles in Asia is extremely large. This is because motorcycles are low in cost
and small in size, allowing freedom of movement in crowded areas, easy parking, and high mobility.
For example, the density of motorcycles in Taiwan in 2018 was 384/km2 [1], the highest in the world.
Motorcycles contribute to air pollution more than other vehicles [2,3]. They not only damage human
health but also contribute to global warming. Consequently, regulations on their exhaust emissions
and fuel consumption are becoming more stringent.

For instance, the Economic Commission of Europe (ECE) established long-term stage-by-stage
emission regulations for motorcycles from 1999, as shown in Figure 1. The Taiwan Environmental
Protection Administration (EPA) implemented motorcycle emission regulations from 1988, in a
stage-by-stage approach. Taiwan’s regulations were harmonized with ECE regulations from their
fifth stage, which is similar to EURO 3 (i.e., the third stage of the ECE). The double-arrow red lines in
Figure 1 link the corresponding stages between Taiwan and ECE. The implementation of Taiwanese
regulations occurred approximately 1 year later than ECE regulations.
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Figure 1. Evolution of motorcycle emission regulations by the ECE and Taiwan (WMTC: worldwide
motorcycle test cycle; OBD: on-board diagnostics).

Table 1 shows the current and next-stage emission standards for motorcycles in Taiwan [4].
This encompasses carbon monoxide (CO), hydrocarbons (HC), non-methane hydrocarbons (NMHC),
nitrogen oxides (NOx), and particulate matter (PM). The emission standards of the sixth and seventh
stages in Table 1 are the same as those in EURO 4 and 5, respectively. Numerous Asian countries
follow the ECE regulations. To comply with emission standards, all the motorcycles produced in
Taiwan now use an electronic fuel injection system. The NOx standard is the most difficult to pass.
In-use motorcycles emission controlled by Taiwan’s EPA have even been recalled because of high
NOx emissions. Although lean-burn can improve fuel economy, motorcycle manufacturers do not
use this approach. This is because NOx emissions are difficult to reduce in a lean-burn system.
The seventh-stage standard will be implemented from 1 January 2021. This will be extremely strict,
which means that new technologies must be developed.

Table 1. Emission standards of motorcycles in Taiwan.

Stage
(Implemented Date)

Maxi.
Speed
(km/h)

CO (mg/km) HC (mg/km) NMHC
(mg/km)

NOx
(mg/km)

PM 1

(mg/km)

6th stage
(1 Jan. 2017)

<130 1140 380 - 70 -
≥130 1140 170 - 90 -

7th stage
(1 Jan. 2021) - 1000 100 68 60 4.5

1 Particulate matter (PM) is for gasoline direct injection engines only.

In a spark ignition (SI) engine, a three-way catalytic converter efficiently reduces HC, CO, and NOx,
although the mixture must be maintained within a narrow air-fuel-ratio window. Other technologies for
reducing NOx include exhaust gas recirculation (EGR) [5], selective catalytic reduction (SCR) [6], a NOx

trap [7], a plasma reactor [8], water injection [9], water/fuel emulsions [10], and homogeneous charge
compression ignition (HCCI) [11–13]. SCR and lean NOx-trap have been applied in diesel vehicles
to meet standard emission limits [14]. However, these systems increase production costs and cannot
be used in motorcycles. An HCCI engine has special characteristics, as it constitutes a combination
of an SI engine and a diesel engine. The homogeneous charge of fuel–air mixture is similar to that in
an SI engine, whereas the compression ignition is similar to that in a diesel engine. Such combustion
characteristics produce very low amounts of NOx emissions and exhibit high thermal efficiency.
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HCCI is an advanced low-temperature combustion concept that has attracted global attention in
recent years [12]. However, the operational range of HCCI combustion is restricted due to the absence
of direct control of the ignition timing and heat release rate [15]. In short, the key issues affecting HCCI
combustion are thermal effects and chemical kinetics.

The factors that cause thermal effects include negative valve overlap (NVO), intake heating, glow
plug, spark-assisted combustion, and compression ratio. NVO engines retain hot residual gas in the
cylinder to heat the intake charge, extending the engine load range [16]. The intake heating improves
autoignition, advances the combustion phase, and shortens combustion duration [15]. Spark-assisted
HCCI reduces combustion noise under high-load conditions [17,18] and extends the operating load up
to 750 kPa indicated mean effective pressure (IMEP) [18]. The glow plug can be used to control the heat
release rate, and the temperature distribution is broadened to heat the charge unevenly [19]. A suitable
compression ratio is necessary, which is from 12 to 18 according to most studies on HCCI engines.

The factors that cause the chemical kinetic effect include fuel composition, fuel properties,
dual-fuel, external EGR, EGR stratification, and fuel stratification. One of the vital properties of
fuel used for HCCI is its autoignition temperature. Fuel with a low autoignition temperature is termed
diesel-like fuel and fuel with a high autoignition temperature is called gasoline-like fuel. To ensure
suitable ignition timing and combustion phasing, an additive fuel is used. Diesel-like fuel can be used
as an additive to enhance autoignition in a gasoline-like fuel system. Gasoline-like fuel can also be
used as an additive to inhibit autoignition in a diesel-like fuel system.

Ji et al. [20] used a diesel-like fuel of 2-ethylhexyl nitrate to enhance the autoignition of an E10
gasoline HCCI engine. A maximum indicated thermal efficiency of 50.1% was found at 1800 rpm
and an intake pressure of 180 kPa. Wang et al. [21] developed a DME-diesel blend fuel system using
the gasoline-like fuel of liquefied petroleum gas as an ignition inhibitor. Pedersen et al. [22] used
the port fuel injection (PFI) of methanol in the direct injection (DI) of a DME engine. The added
methanol increased the BMEP and slowed the combustion so that it was after top dead center (aTDC).
Mohebbi et al. [14] applied a PFI of ethanol and diethyl-ether blend fuel in a DI diesel engine: this
resulted in a 14% increase in IMEP and a 33% reduction in the maximum rate of pressure rise (MRPR).
Li et al. [23] investigated a blend of n-butanol and n-heptane in HCCI combustion and found that the
knock tendency decreased as the n-butanol volume fraction increased. Khandal et al. [24] used a PFI of
hydrogen in the DI of a biodiesel engine, which resulted in 65%–67% less smoke and 98%–99% lower
NOx emissions. Finally, Zheng et al. [25] developed a dual-fuel system using the DI of biodiesel and
PFI of several gasoline-like fuels. Among the gasoline-like fuels, the biodiesel-ethanol produced low
NOx and soot emissions (soot < 0.3 FSN and NOx < 1.5 g/kW·h).

Regarding the mechanism of the effect of EGR on combustion, the addition of EGR slows the
decomposition of hydrogen peroxide (H2O2) by reducing the rate of hydroxyl radicals (OH) [26].
This results in the suppression of autoignition and delay of combustion phasing, thus allowing high
load operation. Researchers [27,28] have reported that in-cylinder EGR stratification reduced the
MRPR of HCCI engines. Other researchers [13,29] have reported that the effects of external EGR on
HCCI engines were a delay in combustion phasing, decrease in maximum temperature and maximum
HRR (heat release rate), prolonged high-temperature heat release, and decreased MRPR. Lee et al. [30]
investigated the optimization of EGR (0–25%) and two-stage injection with compression ratios of 15
and 17.8.

Superior HCCI operation can be achieved using a combination of several strategies, such as
the stratification of external EGR, fuel stratification using PFI and DI injectors including asymmetric
injection, open valve injection using a PFI injector, and NVO injection [31]. Researchers [16,32] have
developed an HCCI engine with intake boosting, NVO, and external EGR. The engine load was
extended to an IMEP of 8 bar. This type of system can achieve a thermal efficiency of 47%, NOx of
≤0.1 g/kW·h, and combustion efficiency of ≥96.5% [16].

The best elements of previous research have been developed for automobile engines and cannot
be used for motorcycles. Most motorcycle engines are small-scale, with a displacement ≤150 cc,
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while the surface-volume ratio is large compared to automobile engines and hence causes high heat
loss [33]. This condition makes HCCI operation in motorcycles difficult. Additionally, the combustion
characteristics of a small-scale air-cooled HCCI engine are insufficient. Therefore, a combination of
DME-gasoline dual-fuel and external EGR with a suitable compression ratio for HCCI operation was
developed. This is useful for low-cost motorcycle engines with only minor modifications. The purpose
of this study was to therefore investigate the combustion characteristics of this HCCI system.

2. Experimental Methodology

2.1. Experimental Setup

A commercial motorcycle engine (SYM, Taipei, Taiwan) with an electronic fuel injection system
was retrofitted for HCCI operation. The engine was a 150 cc air-cooled SI engine. Detailed engine
specifications are listed in Table 2. The compression ratio was increased from 10.5 to 12.4 by replacing
the cylinder head with a smaller clearance volume. The increased compression ratio raises the
temperature of the compressed mixture, which easily achieves compression ignition.

Table 2. Engine specifications.

Items Specifications Units

Engine type 4-stroke, 1-cylinder, SI -
Valve system 4-valve, overhead cam -

Cooling system Forced air cooling -
Displacement 150 cc
Bore × stroke 57.4 × 57.8 mm

Compression ratio 10.5 changed to 12.4 -
Fuel system Electronic port fuel injection -

Intake valve open 1 10◦ bTDC CA
Intake valve close 1 20◦ aBDC CA

Exhaust valve open 1 30◦ bBDC CA
Exhaust valve close 1 10◦ aTDC CA

1 Valve timing is defined at 1 mm of valve lift. aTDC: after top dead center; bTDC: before top dead center; aBDC:
after bottom dead center; bBDC: before bottom dead center.

The fuel for HCCI operation in an SI engine should have a low autoignition temperature.
Previous research [34] has concluded that DME, the properties of which are listed in Table 3,
is a favorable choice for this. The cetane number of DME is 60, higher than that of diesel fuel
(i.e., 40–60). It can autoignite in the target engine. Therefore, DME was selected as the main fuel.
Increasing the fuel amount of DME to increase engine load will cause high MRPR or engine knocking.

Table 3. Fuel properties.

Properties DME Gasoline

Chemical structure C2H6O -
Lower heating value (MJ/kg) 28.9 44.0

Octane number 35 92
Cetane number 60 5–12

Autoignition temperature 1 (K) 508 553–729
Stoichiometric air-fuel ratio 9.0 14.7

Viscosity at 20 ◦C (cP) 0.224 0.74
1 Autoignition temperatures were obtained from Material Safety Data Sheets.

Gasoline with a research octane number (RON) 92 and external EGR were added to extend
the operating range of the engine. The autoignition temperature of gasoline is much higher than
that of DME, as shown in Table 3. The addition of gasoline can therefore increase the engine load
without knocking.
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The experimental setup for the proposed HCCI engine is shown in Figure 2. The external EGR
system was built on the target engine with a small EGR pump and a control valve, which adjusted
the EGR ratio. A surge tank was installed between the air flow meter and the throttle; it was used
for attenuating the pressure pulsation in the intake system of the engine. So the intake air flow rate
can be measured stably. The volume of the surge tank is 40 L, which is larger than the minimum
requirement calculated according to SAE J244. A dual-fuel supplying system was then built into the
target engine (Figure 3). The original fuel and ignition systems of the target engine were retained to
start the engine. The spark plug was used only for starting the engine and the spark timing was the
same as the original engine. The original gasoline injector was also used for the addition of gasoline
in the HCCI engine. The additional DME supplying system, which includes a DME tank, pressure
regulator, filter, and a flow meter, was attached to the target engine with a DME supply tube installed
near the intake port.
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For the engine test, an eddy-current engine dynamometer (FE150-S, Borghi & Saveri S.R.L.,
Bologna, Italy) was used to measure the engine speed and brake torque. The gasoline flow rate was
measured using a mass burette flow detector (FX-1110, Ono Sokki, Yokohama, Japan). The DME
flow rate was measured using a thermal mass flow controller (NM-2100, Tokyo Keiso, Tokyo, Japan).
The exhaust emissions of CO, HC, NO, carbon dioxide (CO2), oxygen, and the lambda were measured
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using an emission analyzer (MEXA-584L, Horiba, Kyoto, Japan). The lambda is calculated by
the carbon balance method in standard configuration using the MEXA-584L emission analyzer.
The hydrogen/carbon ratio and oxygen/carbon ratio of the fuel must be input to this analyzer.
Additionally, another emission analyzer (MEXA-584L, Horiba) was installed in the intake system to
measure the CO2 concentration and thus calculate the EGR ratio. K-type thermocouples were installed
on the engine to measure the temperature of the intake gas, exhaust gas, cylinder head, and lubricating
oil, as shown in Figure 2.

A piezoelectric pressure transducer (Kistler 6051B, Winterthur, Switzerland) coupled to a charge
amplifier (Kistler 5018A) was used to record in-cylinder gas pressure. A shaft encoder (BEI H25,
Thousand Oaks, CA, USA) was used to detect the crank angle (CA). The pressure signal was transmitted
to a data acquisition system (IndiCom 619, AVL, Graz, Austria) for every 1 ◦CA of 100 continuous cycles.
The number of cylinder pressure data of 100 cycles is good enough for the combustion analysis.
The pressure data were used to analyze engine combustion parameters, such as the in-cylinder gas
temperature, coefficient of variation (COV), and HRR.

The engine control was replaced by a controller (MotoHawk ECU 555-80, Woodward, CO, USA)
which controlled the spark timing (for SI engine starting), gasoline injector, DME flow control valve,
and EGR control valve.

Temperature is an important factor in HCCI engines [35]. Reference [36] has shown that, for stable
HCCI operation in a small engine the cylinder head and oil temperatures should be maintained above
120 ◦C and 65 ◦C, respectively. The intake charge temperature of all tests in this research ranges from
21.2 ◦C to 23.2 ◦C, its mean value is 22.4 ◦C, and the standard deviation is 0.6 ◦C. The range of intake
temperature is not large, so the influence of intake temperature on combustion can be neglected.

The engine was started using the original ignition and fuel systems. When the cylinder head and
oil temperatures reached 120 ◦C and 65 ◦C, respectively, the controller switched the engine operation
to HCCI mode by interrupting the ignition system. Simultaneously, the dual-fuel of DME and gasoline
was injected and the throttle was opened further. The throttle was used only for SI operation of the
original engine. For HCCI operation, it was fully opened. The fuel supply was adjusted for stable HCCI
operation; the ratio of these two fuels was therefore not fixed. The engine was tested at 2000–4000 rpm
and with a wide-open throttle. Most of the analyses were focused on 2000 rpm because its operating
load range was large. The DME fuel was supplied continuously; its injection pressure was adjusted
before engine test for stable combustion and it was found to be 1.5 kg/cm2. The gasoline was injected
at a pressure of 2.5 kg/cm2, which was the same as the original engine. The gasoline fuel injection
pulse width was adjusted to set the fuel flow rate. The EGR ratio was adjusted from 0% to 30%.

The engine speed, brake torque, DME flow rate, gasoline flow rate, intake air mass flow rate,
exhaust emissions, and EGR ratio were measured and recorded during the engine tests. The EGR ratio
was calculated using the CO2 percentages measured in the intake and exhaust systems, as formulated
in Equation (1) [37]:

EGR =
[CO2]in
[CO2]exh

× 100%, (1)

where [CO2] is the CO2 concentration.
The maximum error of the experimental data was calculated with an engine test at 2000 rpm and

repeated five times using the Kline and McClintock method [38]. The results are listed in Table 4.

Table 4. Maximum error in the experimental results of the engine test.

Item Maximum Error (± %)

Engine Speed 0.68
Engine Torque 1.75

IMEP 1.92
Fuel Rate 5.57
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2.2. Calculation of Combustion Parameters

Combustion parameters, such as IMEP, COV, combustion efficiency, cylinder gas temperature,
HRR, and MFB, are used to study the combustion characteristics of an engine.

IMEP is defined as the work divided by the engine displacement volume, which can be calculated
during compression and expansion strokes without pumping work. Because this study focused
on combustion effect, the elimination of intake and exhaust strokes is better for analyzing. This is
expressed as:

IMEP =

180CAD∫
−180CAD

PdV

Vd
, (2)

where CAD denotes CA degrees.
The COV is expressed as:

COV =
IMEPstd
IMEPavg

, (3)

The combustion efficiency ηc can be defined as the fraction of carbon emitted as CO2 in relation
to the total carbon emitted (CO2, CO, HC and PM). The modified combustion efficiency is defined
as the ratio between CO2 and CO2 plus CO. This study used the modified combustion efficiency for
convenient calculation. This is expressed as:

ηc =
[CO2]

[CO2] + [CO]
, (4)

where square bracket [ ] represents exhaust species concentration as a percentage.
The in-cylinder gas temperature is obtained using the state equation of ideal gas. The HRR

equation can be derived from the first law of thermodynamics and is thus expressed as:

dQhr
dθ

=
γ

γ − 1
p

dV
dθ

+
1

γ − 1
V

dp
dθ

+
dQht

dθ
, (5)

where dQhr/dθ is the HRR, dQht/dθ is the heat transfer rate between cylinder gas and the wall.
The specific heat ratio γ is a function of temperature, which can be obtained using the empirical
equation presented in [39].

The heat transfer rate dQht/dθ is expressed as:

dQht
dθ

= hA
(
Tg − Tw

)
, (6)

where h is the heat transfer coefficient, as shown in Equation (7):

h = Stρgcp(0.5Cm) and (7)

St = 0.718 exp(−0.145Cm), (8)

where St is the Stanton number and Cm the average piston speed. Equations (7) and (8) were proposed
by [33] for small engines.

The MFB at any CA is calculated from HRR and is expressed as:

MFB =

∫ ( dQhr
dθ

)
dθ

m f QLHV
. (9)
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3. Results and Discussion

The experimental results are presented in terms of the performances, efficiencies, exhaust
emissions, and combustion characteristics of the target engine. The data in Sections 3.1–3.4 are
all at 2000 rpm of engine speed.

3.1. Engine Performances

The BMEP, IMEP, and brake-specific fuel consumption (BSFC) are discussed in this section. HCCI
engines are always run with a lean mixture. Generally, the output of a HCCI engine increases with a
richer mixture but is limited by engine knocking or MRPR [40]. The EGR is a kind of diluent in air-fuel
mixture which suppresses the combustion rate. Previous research [41] has reported that autoignition
timing is delayed and burn duration prolonged by applying EGR in a HCCI engine, which suppresses
engine knocking. The test results for engine output with various EGR ratios are shown in Figure 4.

The BMEP and IMEP indicate the work output per cycle divided by the engine displacement volume.
As shown in Figure 4, the engine output increases when the air–fuel equivalence ratio (lambda, λ)
decreases. Each curve in Figure 4 indicates the operational range of each EGR ratio. The maximum engine
output on each curve increases in line with the EGR. However, the EGR of 30% seems too high for this
HCCI system because the operational range is very small and the engine output cannot be extended.
In this study, an EGR of 25% yields the best engine output. When the EGR was increased from 0% to
25%, the maximum BMEP increased by 65.8% from 2.93 to 4.86 bar. In Figure 4, the first and last point of
each EGR line were determined by the limit of stable operation, which is COV < 10% for low load and
MRPR < 6 bar/deg for high load.
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Figure 4. Effect of lambda on engine output with various EGR ratios: (a) BMEP; (b) IMEP.

Gasoline and DME were used in the dual-fuel system. DME was selected as the main fuel and
was supplied at an almost constant flow rate. Increasing the gasoline mass ratio in the dual-fuel causes
λ to decrease, as shown in Figure 5a. The BMEP increases in line with the amount of gasoline, as shown
in Figure 5b. At an EGR of 25%, BMEP increases by 77.4% from 2.74 to 4.86 bar when the gasoline ratio
rises from 0.13 to 0.35.
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Figure 5. Effect of gasoline mass ratio in the dual-fuel on: (a) Lambda; (b) BMEP.

The fuel consumed contains gasoline and DME; therefore, an equivalent fuel mass was used.
The equivalent fuel flow rate was calculated based on the heating value of the fuels, as shown in
Equation (10), and the BSFC was calculated using Equation (11):

.
me =

.
mDMEQLHV DME +

.
mgasolineQLHV

QLHV
and (10)

BSFC =

.
me

bhp
, (11)

where
.

me is the fuel flow rate equivalent to gasoline,
.

mDME is DME flow rate,
.

mgasoline is gasoline flow
rate, QLHV DME is the low heating value of DME, QLHV is the low heating value of gasoline, and bhp is
the brake horsepower.

Figure 6 shows the BSFC of all test points. Most of the operation conditions have a BSFC ranging
from 230 to 260 g/kW·h. The BSFC of a HCCI engine is much lower than that of a conventional
motorcycle engine, which is approximately 350 g/kW·h [42]. When λ is >2 or BMEP is <3 bar, the BSFC
clearly increases. This might be caused by the low engine output and low combustion efficiency.
A BSFC of ≤250 g/kW·h was achieved under conditions of λ < 2 and an EGR of 25%.
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3.2. Engine Efficiencies

The combustion efficiency, ηc, is the ratio of the fuel mass burned and the fuel mass delivered
into the engine. It can be calculated using Equation (4). The fuel efficiency ηf is the ratio of the power
developed by the engine to the rate of fuel energy in the engine. It is calculated using Equation (12):

η f =
bhp

.
m f QLHV

=
3600(s/h)

BSFC(g/kW · h) · QLHV(kJ/g)
, (12)

where bhp is the brake horsepower,
.

m f is the fuel flow rate, and QLHV the lower heating value of fuel.
The brake thermal efficiency ηth is calculated using Equation (13):

ηth =
bhp

ηc
.

m f QLHV
=

η f

ηc
, (13)

Figure 7 shows that the combustion efficiency decreases with an increase in λ or decrease in engine
load (BMEP) because a high λ or low BMEP leads to a leaner mixture and incomplete combustion.
In Figure 7a, the effect of λ on combustion efficiency for each EGR ratio is separated each other and does
not coincide together. However, the effect of BMEP on combustion efficiency is evident (Figure 7b),
irrespective of the amount of EGR. The combustion efficiency was close to 100% when BMEP > 3 bar.
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Figure 8 shows that the fuel efficiency decreases with increasing λ or decreasing engine load
(BMEP) because high λ or low BMEP leads to incomplete combustion. When λ is >2 or BMEP is <3 bar,
the fuel efficiency clearly drops.
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The brake thermal efficiency is shown in Figure 9. Most of the brake thermal efficiencies are
clustered within the range of 30%–35%. They have no clear relationship with λ or engine load (BMEP).
The thermal efficiency is not very high because the target engine is small in size and heat loss is
relatively high [33]. Furthermore, the HCCI engines do not require as much cooling as a conventional
engine due to the low combustion temperature of HCCI. Therefore, the modification of a cooling system
to reduce cooling capacity will be better for HCCI operation and will improve thermal efficiency.
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Figure 9. Brake thermal efficiency with respect to: (a) Lambda; (b) BMEP.

3.3. Exhaust Emissions

Emission data for NO is lacking because the concentration was too low to be measured during
the engine test. In general, when the combustion temperature is lower than 1800 K, much less NO will
be emitted [43]. The maximum cylinder temperatures of all test points in this study were less than
1600 K, which is much lower than 1800 K, so the NO emission was close to zero ppm.

The exhaust emissions of CO and HC are depicted through the brake-specific emissions as BSCO
and BSHC. The BSCO increases with increasing λ or decreasing exhaust temperature, as shown in
Figure 10. The leaner mixture causes higher CO emission in the HCCI engine (Figure 10a), which is
the opposite of that in a conventional SI engine. The results obtained are in agreement with previous
research [44,45]. This is because the combustion temperature of HCCI is lower and, again, will decrease
with increasing λ. Sjöberg and Dec [44] reported that CO oxidation does not reach completion with a
peak temperature below 1500 K because the OH level becomes too low.
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In Figure 10a, the effect of λ on BSCO for each EGR ratio is separated each other and does not
coincide together. However, the effect of exhaust temperature on BSCO is evident (Figure 10b), irrespective
of the amount of EGR. The BSCO is close to 0 g/kW·h when the exhaust temperature is > 550 K.

The BSHC increases with increasing λ or decreasing exhaust temperature, as shown in Figure 11.
A higher λ indicates a leaner mixture and leads to a lower combustion temperature, which causes an
increase in HC emissions. Both BSCO and BSHC show good correlation with the exhaust temperature,
but they do not correlate with the maximum cylinder gas temperature (the Figure for which is not
included here). Thus, the high temperature of the exhaust gas results in the oxidation of CO and HC.
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illustrated in Figure 13. A lower λ means a large amount of gasoline is added, which delays the 
combustion phase and slows the onset of maximum cylinder pressure (Figures 13a, 13c). The 
cylinder temperature is very low (Figures 13b, 13d) compared with an SI engine because HCCI 
involves low-temperature combustion [12]. 
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Figure 11. Brake specific HC emission with respect to: (a) Lambda; (b) Exhaust temperature.

The exhaust temperature increases in line with BMEP. The curve fitting of Figure 12a shows a good
correlation between exhaust temperature and BMEP, with an R2 of 0.9713. The oxygen concentration
in the exhaust gas increases with λ as a quadratic equation, the R2 of which is 0.9899 (Figure 12b).
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Figure 12. Curve fitting of exhaust properties: (a) Exhaust gas temperature versus BMEP; (b) Oxygen
concentration in exhaust gas versus lambda.

3.4. Combustion Characteristics

The combustion characteristics were calculated from cylinder pressure values. The cylinder
pressure and temperature under a condition of 25% EGR and 20% EGR with various λ values are
illustrated in Figure 13. A lower λ means a large amount of gasoline is added, which delays the
combustion phase and slows the onset of maximum cylinder pressure (Figure 13a,c). The cylinder
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temperature is very low (Figure 13b,d) compared with an SI engine because HCCI involves
low-temperature combustion [12].Energies 2018, 11, x FOR PEER REVIEW  13 of 21 
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Figure 13. Cylinder pressure and temperature: (a) Cylinder pressure with EGR 25%; (b) Cylinder
temperature with EGR 25%; (c) Cylinder pressure with EGR 20%; (d) Cylinder temperature with
EGR 20%.

HRR and MFB under a condition of 25% EGR and 20% EGR with various λ values are illustrated
in Figure 14. It is clear that the addition of more gasoline (less λ) causes higher HRR values and delays
HRR and MFB. The beginning of the increase in HRR indicates the start of combustion. Figure 14a
shows that the start of combustion is delayed by adding gasoline.
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Figure 14. Heat release rate and mass fraction burned: (a) Heat release rate with EGR 25%;
(b) Mass fraction burned with EGR 25%; (c) Heat release rate with EGR 20%; (d) Mass fraction
burned with EGR 20%.

Figure 15 shows that COV decreases and MRPR increases with an increase in BMEP. The COV
increases rapidly as BMEP is <3 bar (Figure 15a). In general, a low load causes unstable combustion
and a high load causes a high rate of pressure rise or knocking [11,26]. Almost all the MRPR values are
less than 6 bar/deg in Figure 15b, which is a criterion for avoiding engine damage [40]. This is because
the addition of gasoline and EGR delays the ignition and suppresses the combustion reaction.
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Figure 15. The coefficient of variation of IMEP (COV) and the maximum rate of pressure rise (MRPR)
with respect to: (a) COV; (b) MRPR.

In Figure 16, the maximum HRR1 (first-stage HRR) increases with increasing λ, whereas maximum
HRR2 (second-stage HRR) decreases with increasing λ. The first stage of combustion (Figure 16a)
expresses the ignition property, whereas the second stage of combustion (Figure 16b) expresses the
combustion property. The first stage of combustion is the result of cool-combustion chemistry and
negative temperature coefficient behavior [46]. In the first stage of combustion, the reaction rate
decreases after the temperature reaches a certain value. Therefore, the maximum HRR1 depends on
λ only (Figure 16a). By contrast, the maximum HRR2 depends on both the λ value and EGR ratio
(Figure 16b).
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Figure 16. Effects of lambda on maximum heat release rate: (a) First stage combustion, HRR1;
(b) Second stage combustion, HRR2.

CA10, CA50, and CA90 are the CA values when MFB is 10%, 50%, and 90%, respectively.
These indicate the combustion phase. Both CA10 and CA50 are delayed when λ is lower, as shown in
Figure 17. This is caused by the effect of dual-fuel on combustion. A richer mixture (i.e., less λ) has much
more gasoline (Figure 5a), which delays combustion. CA50 is a combination of first- and second-stage
combustion, whereas CA10 represents first-stage combustion only. Therefore, the correlation between
CA10 and λ (Figure 17a) is clearer than that of CA50 (Figure 17b).
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Figure 17. Effects of lambda on combustion phasing: (a) CA10; (b) CA50.

Figure 18a shows that the burn duration (period between CA10 and CA90) increases with an
increase in λ, because a leaner mixture causes slower combustion. Figure 18b shows that the burn
duration increases rapidly when BMEP is <3 bar.
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Figure 18. Burn duration with respect to: (a) Lambda; (b) BMEP.
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The combustion efficiency is close to 100% at a burn duration of <10 deg CA (Figure 19a), which
equates to a BMEP of >3 bar (Figure 18b). The burn duration indicates the combustion rate, whereas
CA10 indicates the start of combustion. Therefore, the influence of burn duration on the combustion
efficiency is more obvious (Figure 19a) than in CA10 (Figure 19b).
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3.5. Comparison between HCCI and SI

The engine speeds operated with HCCI contained 2000, 2600, 3000, 3300, 3500,
and 4000 rpm. The experimental results of HCCI are compared with that of original SI engine
as shown in Figures 20 and 21.

Figure 20a shows that the operating range of HCCI engine is much smaller than that of the original
SI engine, so the proposed HCCI engine cannot be used in a conventional motorcycle. However, it could
be used as a range extender for an electric motorcycle. The BSFC of HCCI engine is much better than
that of original SI engine as shown in Figure 20b. The lower BSFC of HCCI engine might be caused
by several reasons: (1) lower heat transfer loss from cylinder gas to the wall, (2) short combustion
duration, and (3) lean mixture. The combustion duration of HCCI engine is much shorter than that
of conventional SI engine. When the load increases (i.e., λ decreases in Figure 14a), the combustion
phasing has to be retarded to avoid engine knocking as shown in Figure 14a.
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Figure 20. Comparison of engine characteristics between proposed HCCI and original SI engine:
(a) BMEP; (b) BSFC.

The CO emission of HCCI engine is smaller than that of original SI engine (Figure 21a) due
to the lean combustion. However, the HC emission is higher (Figure 21b) because of the low
combustion temperature.
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4. Conclusions

The proposed HCCI engine was operated with DME-gasoline dual-fuel in a conventional
motorcycle engine. The engine test results and combustion analysis led to the following conclusions:

(1) To pursue both high engine output and low BSFC, the proposed HCCI system for a motorcycle
engine is DME-gasoline dual-fuel with 25% EGR and λ < 2. Therefore, the design guide for HCCI
engine obtaining high output and low BSFC can be led to a DME-gasoline dual-fuel system with
suitable EGR ratio and air-fuel mixture not too lean.

(2) The maximum BMEP increase was from 2.93 to 4.86 bar, an increase of 65.8%, when the EGR was
0% to 25%. At 25% EGR, BMEP increased by 77.4% from 2.74 to 4.86 bar when the gasoline ratio
increased from 0.13 to 0.35.

(3) The BSFC was improved great as compared with the original SI engine and NO emision was too
small to measure.

(4) The thermal efficiency ranged from 30%–35% and had no clear relationship with λ or BMEP.
(5) Both BSCO and BSHC decreased when the exhaust temperature increased, whereas the exhaust

temperature increased linearly with BMEP. When the exhaust temperature was > 550 K or BMEP
was > 3.16 bar, the amount of CO emitted was very small.

(6) Both CA10 and CA50 were delayed by a decrease in λ. This is caused by the addition of more
gasoline fuel, which delays combustion.

(7) The burn duration increased in line with λ because a leaner mixture causes slower combustion.
The combustion efficiency was close to 100% when the burn duration was <10 deg CA.

To further improve the thermal efficiency of the proposed HCCI engine, future studies should
modify the cooling system to reduce the cooling capacity.

Author Contributions: Y.-Y.W. designed the experiments; C.-T.J. performed the experiments and data reduction;
Y.-Y.W. and C.-T.J. analyzed the data; Y.-Y.W. wrote the paper.

Funding: This research was funded by Ministry of Science and Technology (MOST, Taipei, Taiwan), grant number
MOST 106-3113-E-027-002-CC2.X.

Acknowledgments: The authors would like to thank the Ministry of Science and Technology (MOST,
Taipei, Taiwan) for their financial support. This manuscript was edited by Wallace Academic Editing.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.



Energies 2019, 12, 847 18 of 21

Nomenclature

A area of combustion chamber surface
BMEP brake mean effective pressure
BSCO brake-specific CO
BSFC brake-specific fuel consumption
BSHC brake-specific HC
BDC bottom dead center
Cm average piston speed
cp specific heat for constant pressure
CA crank angle
CAD crank angle degrees
CA10 crank angle at which the mass fraction burned is 10%
CA50 crank angle at which the mass fraction burned is 50%
CA90 crank angle at which the mass fraction burned is 90%
CO carbon monoxide
CO2 carbon dioxide
COV coefficient of variation
DI direct injection
DME dimethyl ether
ECE Economic Commission of Europe
EGR exhaust gas recirculation
EPA Environmental Protection Administration
FSN filter smoke number
HC hydrocarbons
HCCI homogeneous charge compression ignition
HRR heat release rate
H2O2 hydrogen peroxide
h heat transfer coefficient
IMEP indicated mean effective pressure
IMEPavg average IMEP
IMEPstd standard deviation of IMEP
MFB mass fraction burned
MHRR maximum heat release rate
MRPR maximum rate of pressure rise
NMHC non-methane hydrocarbons
NO nitric oxide
NOx nitrogen oxides
NVO negative valve overlap
OBD on-board diagnostics
OH hydroxyl radical
P cylinder gas pressure (bar)
PFI port fuel injection
PM particulate matter
QLHV low heating value of fuel
RON research octane number
St Stanton number
SCR selective catalytic reduction
SI spark ignition
T cylinder gas temperature
TDC top dead center
V cylinder volume
WMTC worldwide motorcycle test cycle
bhp brake horsepower
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mf fuel mass supplied per cycle
λ air–fuel equivalence ratio
θ crank angle (degree)
γ specific heat ratio
ηc combustion efficiency (%)
ηf fuel efficiency (%)
ηth brake thermal efficiency (%)
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