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Abstract: A multi-level open-end winding converter topology for multiple-motor drives is presented
featuring a main multi-level inverter processing the power delivered to the motors and an active filter
based on an auxiliary two-level inverter. The main inverter operates at the fundamental frequency in
order to achieve low switching power losses, while the active filter is Pulse Width Modulation (PWM)
operated to suitably shape the motor currents. The proposed configuration features less phase current
distortion than conventional multi-level inverters operating at the fundamental frequency, while
achieving a higher efficiency compared to PWM multi-level inverters. Experimental results confirm
the effectiveness of such a configuration on both multiple motors-single converter and multiple
motor-multiple converter drives.

Keywords: multilevel converter; multi-motor drive; harmonic mitigation; active filter; open end
winding motor; high efficiency drive; high reliability applications

1. Introduction

A Multiple Motor Drive (MMD) is composed of some electric motors sharing the load torque [1–5].
Such a configuration costs less than a set of single motor drives, as some resources are shared between
the units. Further, compared to a single drive, it is easily expandable by adding new units, moreover,
the intrinsic redundancy may be used to mitigate the effects of some kinds of converter and motor
faults. MMD are common in paper and textile industry and ironworks, as well as in several industry
applications demanding synchronization between two or more axes, high levels of reliability and/or
easy expandability. MMD systems can be grouped into two classes, namely: Multiple Motors Fed by a
Single Multi-level Converter (MMSC) and Multiple Motors Fed by Multiple Multi-level Converters
(MMMC). A single inverter on MMSC delivers power to all the machines, thus leading to only
an approximatively proportional load sharing. On MMMC a common DC bus supplies a set of
inverters, each one powering a single motor. In this case, the torque produced by each motor can be
independently controlled, while retaining a common power entry and braking system.

Induction Motor (IM) based MMMCs are frequently used on rail mounted, or rubber tired, gantry
cranes, equipping hoist, trolley and leg drives [6–8]. On leg drives MMMCs provide the ground to cope
with different wheel diameter, unequal wheels’ adhesion and slipping of transmission devices. MMDs
also often equip electric locomotives, powering the axles through spur gearings [9–12]. Dual-Voltage
Source Inverter (VSI)/Dual-IM and Mono-VSI/Dual-IM configurations are used with induction
motors. The first, being of the MMMC type, comprises two induction motors supplied through
two power converters. Such a configuration features a higher level of robustness toward inverter
faults. Moreover, critical operations caused by pantograph detachment, loss of wheel adherence and
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stick-slip perturbation may be faced thanks to a fully independent control of the torque delivered
by single machines. In recent years, MMMC has also become a viable alternative to single drives on
powertrains of electrical and hybrid vehicles, featuring higher flexibility, reliability and transmission
efficiency, while helping to increase the available inner space [13,14].

A straightforward way to control the speed of a MMMC is based on the common speed reference
technique, providing a common speed reference signal to the speed controller of each unit. A torque
follower control approach is however preferable, due to concerns regarding the control precision and
system flexibility. According to such a technique, as shown in Figure 1, a single speed command is
provided to a master unit, which in turns sends the torque references to the other drives [6]. Torque
and flux regulation on single units is generally based on the traditional Indirect Field Oriented Control
(IFOC) technique or Direct Torque Control strategy.
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Figure 1. Common speed reference control of a Multiple Motors fed by Multiple Converters
(MMMC) system.

In recent years, Multi-Level Inverters (MLIs) have been introduced on multi-motor drives. in
order to generate almost sinusoidal output voltages using low frequency switching power devices,
thus achieving high efficiency and electromagnetic compatibility. In addition, power devices are
tasked with withstanding a fraction of the total DC input voltage, resulting in a remarkable reduction
of dv/dt stresses and switches voltage ratings. However, in order to achieve a comparable phase
current Total Harmonic Distortion (THD), MLI topologies working at low switching frequency could
require many more power devices than conventional Pulse Width Modulation (PWM) operated bridge
inverters. Cost concerns lead to limitation of the number of power devices, resulting in torque ripple
and additional losses. These can be addressed by selective harmonic elimination or PWM techniques,
as well as, by the addition of line reactors and tuned harmonic filters. Active power filters may
also be exploited as they are able to provide a more flexible and effective attenuation of current
harmonics [15–24].

An Open-end Winding (OW), multi-level, configuration for MMD applications is proposed in
this paper; it features null neutral point fluctuations, low phase current ripple and improved DC bus
voltage utilization [25–29]. A distinctive characteristic of the proposed configuration is the asymmetry,
because that the two inverters are not of the same type and only one of the two provides power to the
motors. In fact, a main multi-level inverter processes the power delivered to the motors, while an active
filter, based on an auxiliary two-level inverter (TLI), shapes the phase current. Moreover, the main
inverter operates at the fundamental frequency in order to achieve low switching power losses, while
the active filter is PWM operated. Finally, the DC bus voltage of the two-level inverter is remarkably
lower than that of the main inverter [30–36]. The proposed MMD OW configuration features a higher
global efficiency and lower current THD than an equivalent PWM operated multi-level inverter for
multi-motor drives [37], exploiting a specific control strategy combining low switching frequency
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modulation on the MLI and high frequency PWM on the TLI. Finally, it can be used either on either
multiple motors-single converter or multiple motor-multiple converter drives.

2. Open Winding Multiple Motors Fed by a Single Multi-Level Converter—MMSC

Although the proposed approach can be applied to a system composed of an arbitrary number of
machines, a system comprising only two identical induction motors, sharing the total load torque, is
considered for simplicity. The proposed MMSC structure is shown in Figure 2; the stator windings of
the two OW induction motors IM1 and IM2, are parallel connected to a MLI and a TLI, but only the
first actually delivers active power to both motors, the second being operated as an active filter. This
makes the proposed configuration different from most common OW motor drives, where the power
supplied to the motors is evenly shared between the two inverters. The TLI, which supplies a null
average power to the motors, can be supplied through a floating capacitor, avoiding the need for an
additional power source and also making the two DC voltage sources VDC

′ and VDC” independent.
The motors are assumed to be speed controlled through an IFOC technique, but the load sharing
between the motors cannot be managed. The output phase voltage of an MLI may take n different
levels. The magnitude of each level is generally defined as the voltage across the mid-point of the DC
bus and the output phase terminal. The number of possible voltage levels is generally odd, including
a zero level and n − 1 non-zero levels and each level is identified by the value of the coefficient l′ = 0, 1,
2, . . . , n − 1. The i-phase MLI output voltage VMLI_stepi is thus given by:

VMLI_stepi =
2l′ − n + 1
2(n− 1)

VDC
′ (1)
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Multiple Motors Fed by a Single Multi-level Converter (MMSC) configuration.

In the same way, the i-phase TLI output voltage VTLIi is given by:

VTLIi =
(2l′′ − 1)

2
VDC

′′ (2)

where l” = 0, 1 is the i-phase TLI actual output voltage level.
The voltage Vmi across a generic ‘i’ motor phase winding, is finally given by:

Vmi = VMLI_stepi −VTLIi −Vn′n′′ (3)
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where Vn′n” is the voltage across the mid points n′ and n” of the two DC buses, which is given by:

Vn′n′′ =
1
3
(VMLIa + VMLIb + VMLIc) +

1
3
(VTLIa + VTLIb + VTLIc) (4)

The phase voltage Vmi takes the zero level and further 4(n + 1) non-zero levels when VDC” =
VDC

′/[2(n − 1)], while, some additional non zero levels become available if VDC” < VDC
′/[2(n −

1)] [31].
The voltage levels which the proposed asymmetrical hybrid multilevel inverter configuration may

take are more numerous than those of conventional Neutral Point Clamped (NPC) or Flying Capacitor
(FC) MLI topologies with the same amount of power switches. In other words, the same phase voltage
THD can be achieved with the proposed MMSC configuration using fewer power devices. Moreover,
the proposed configuration features a switching frequency which is that of the TLI, although the main
inverter switches at the fundamental frequency [37]. This leads to use power devices optimized for
low switching frequency operation (i.e., featuring a low on-state voltage drop) in the MLI, and power
devices suitable for high switching frequency in the TLI.

A suitable motor phase voltage modulation strategy was formulated taking into account the
specific features of the proposed topology, according to the scheme in Figure 3.
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The TLI is tasked with compensating low frequency phase voltage harmonics generated by the
MLI, which is step driven to reduce the switching power losses. Unwanted low frequency voltage
harmonics can be suppressed by setting the voltage reference V*TLIi of the TLI to:

V∗TLIi = V∗MLI_stepi −V∗MLIi (5)

where: V*MLIi is the fundamental harmonic of the ith motor phase reference voltage V*MLI_stepi. Both
quantities are depicted in Figure 4 for the case of a seven-level VMLI_stepi waveform.
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The voltage ratio KV = VDC”/VDC
′ is a key parameter, because it impacts on the number of

inverter voltage levels, on the THD of phase voltages and currents, on the maximum motor phase
voltage amplitude and finally, on the ratings of TLI power devices.

The phase voltage Vmi is the difference between VMLIi and VTLIi, hence, its space vector diagram
can be obtained by combination of the voltage space vector diagrams of the MLI and TLI. The simplest
MMSC structure which can be obtained with the proposed approach consists of a Three-Level inverter
(3LI) and a TLI (3LI+TLI).

The phase voltage of each inverter leg of the 3LI can assume three statuses namely: P, O and N. P
denotes that the inverter phase voltage VMLIi = VDC

′, while O indicates that VMLIi = 0, and N that VMLIi
=−VDC

′. The 3LI topology is basically composed of two cells, each one supplied at VDC
′/2, hence each

leg may take three switching states, resulting in 33 = 27 possible inverter switching state combinations.
Each space vector can be categorized into zero voltage, small voltage, medium voltage and large
voltage on the basis of its magnitude. These are tabulated in Table 1. The TLI instead features 23 = 8
inverter states, leading to 7 voltage vectors. As shown in Figure 5, the 3LI+TLI voltage space vector
diagram is obtained by composition of the voltage space vector diagrams of the TLI and the 3LI. The
number of available voltage vectors and voltage levels depends on KV, as listed in Table 2, affecting
both the THDV and the peak amplitude Vmpk of the phase voltage Vmi. In particular, Vmpk increases
with KV, while a minimum THDV is achieved for VDC” = VDC

′/[(n − 1)], [24], thus, the considered
3LI+TLI system gets the minimum THDV for VDC” = VDC

′/2. However, Vmpk maximization must be
also taken into consideration, thus, a useful figure of merit in determining the optimal value of KV is
Kp = Vmpk/(VDC

′ × THDV), which, according to Table 3, is maximized when VDC” = VDC
′/2. When

VDC” is reduced below VDC
′/2, Kp and Vmpk decrease, while the number of voltage levels and voltage

vectors increases, as well as THDV. However, the voltage rating of TLI power devices is lowered. For
KV = 1/8, the 3LI+TLI is equivalent to conventional six-level NPC or FC inverter structures, which
however require six more power devices. By setting VDC” over VDC

′/2, a higher Vmpk is obtained,
while the number of voltage levels and voltage vectors is lowered, worsening THDV and Kp. Moreover,
when VDC” = VDC

′, the voltage rating of the TLI switches becomes equal to that of MLI devices.

Table 1. Switching states and voltage vector of Three Level Inverter (3LI).

Vector Magnitude Switching State

Zero vector 0 PPP, OOO, NNN

Small vector 1/3 VDC
′ POO, PPO, OPO, OPP, POP, OOPONN, OON, NON,

NOO, ONO, NNO

Medium vector
√

3/3 VDC
′ PON, OPN, NPO, NOP, ONP, PNO

Large vector 2/3 VDC
′ PNN, PPN, NPN, NPP, NNP, PNP

Table 2. Power converter specifications vs. KV for Three Level Inverter + Two Level Inverter (3LI+TLI).

KV
Number of Inverter

States
Number of Voltage

Vectors
Number of Voltage

Levels

1/8 216 152 8

1/4 216 91 6

1/2 216 37 4

1 216 61 5
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′ = 1/2; (d) VDC”/VDC
′ = 1.

Table 3. Vmpk and THDv vs. KV (3LI+TLI).

KV Vmpk
THDV (%)\KP
ωr/ωn = 0.1

THDV (%)\KP
ωr/ωn = 0.3

THDV (%)\KP
ωr/ωn = 0.7

THDV (%)\KP
ωr/ωn = 1

1/8 0.58 VDC
′ 51\1.14 45\1.29 30\1.93 19\3

1/4 0.72 VDC
′ 36\2 29\2.48 15\4.8 4.0\20.5

1/2 0.87 VDC
′ 10\8.7 8\10.88 7.1\12.2 3.5\21.7

1 1.15 VDC
′ 46\2.5 40\2.88 31\3.7 22.6\5.1

According to the proposed approach no active power is delivered to the two IM motors from the
TLI. In practice, power devices and motors power losses in the TLI would cause a progressive discharge
of the floating capacitor of the TLI DC-bus. Being floating, such a capacitor can only be charged by
diverting to it a small quantity of the active power delivered by the MLI to the motors [32–44]. As
shown in the control scheme of Figure 6, this is achieved by slightly modifying the TLI reference
voltages. Specifically, two additional terms VdCap and VqCap are introduced to control the mean current
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flowing through the DC bus capacitor. Since the TLI is not tasked with supplying reactive power to
the load, VdCap can be straightforwardly related to VqCap, by:

Q =
3
2

(
VqCapid −VdCapiq

)
= 0⇒ VdCap =

id
iq

VqCap (6)

The active power P required to hold VDC” constant is obtained by a PI controller processing the error
between the reference DC bus voltage VDC”* and the actual voltage VDC”.

P =
3
2

(
VqCapiq + VdCapid

)
= (V ′′ DC

∗ −V ′′ DC)

(
KpVDC +

KiVDC
s

)
(7)

where s is the Laplace operator, and KpVDC and KiVDC are, respectively, the proportional and integral
gain of the PI controller. By introducing Equation (6) into Equation (7), the dq-axes voltage reference
components VqCap and VdCap are obtained:

VqCap =
2
3

Piq
i2q + i2d

VdCap =
2
3

Pid
i2q + i2d

(8)
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The two additional terms are then transformed to the abc stationary frame and added to the TLI
voltage references obtained from Equation (5). Due to the floating capacitor recharging, the phase
current typically increases by less than 1.5% of the rated current. The considered 3LI+TLI topology
requires a specific control system which is schematized in Figure 6. It consists of two subsystems,
acting on the two inverters. The MLI is voltage controlled, thus, the q, d axes voltage references VdqMLI*
are made equal to the motors back EMF components Ê*q and Ê*d, which in turn are estimated by{

Ê∗q = Lsωλrei∗d
Ê∗d = −Lkωλrei∗q

(9)

 ωλre =
Rr i∗q
Lr i∗d

+ ωr

Lk = −
Ls Lr−L2

m
Lr

(10)

where: ωλre is the rotor flux angular frequency, ωr is the rotor speed of the two machines, and Ls, Lr

and Lm are respectively the stator, rotor and magnetizing inductances.
As shown in Figure 6, the TLI features a feedback current control, in order to improve the shape

of the current waveform and the system dynamic response. The outputs V*dqTLIr_i of the TLI current
control loop are transformed to the abc stationary frame and then added to other voltage reference
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components, dealing with compensation of low order stator voltage harmonics and VDC” stabilization,
this allows us to obtain the voltage references for the PWM modulator, which are given by:

V∗TLIi = V∗TLIr_i + V∗MLI_stepi −V∗MLIi + Vcap_i (11)

The currents flowing through the two stator windings cannot individually be controlled. However,
even load torque sharing is obtained when considering two identical motors with a high-stiffness
mechanical coupling. Whenever these conditions are not verified, torque and current unbalance may
yield to a system instability. In this case, the TLI current control structure needs to be modified as
suggested in references [45–51].

3. Open Winding Multiple Motors Fed by Multiple Multi-Level Converters—MMMC

The proposed OW approach can also be used on MMMC systems. An MMMC system is in general
able to control the load sharing between the two motors, because providing an independent control
of the stator currents of the two induction motors. However, according to the proposed approach,
this would require two independent MLI and two TLI. A simpler structure was thus developed by
connecting the two motors to a single MLI on one side and to a five-leg two level inverter (TLI5) on the
other side, thus reducing the number of inverter switches and the associated power losses [51,52]. The
circuital scheme and the control block diagram of such a topology (MLI+TLI5) are shown in Figures 7
and 8. Two different PWM strategies can be adopted on five-leg inverters [51–53]. A first one is based
on the cancellation of the voltage reference of the inverter phase common to the two motors. In practice,
for each set of reference voltages, the reference of the common phase is algebraically subtracted to
the voltage references of the other two phases, while the common phase reference becomes equal to
the difference between the two c-phase voltage references. A major drawback of this strategy is a
reduction in the maximum motor phase voltage by a factor of 1/3 compared to a standard three phase
motor drive. In order to overcome this drawback a second PWM strategy can be adopted, which is
based on the addition, rather than subtraction, of the common phase voltage reference to the references
of the other phases.
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According to such an approach [46], the five-leg TLI voltage references are given by:

V∗TLIa = V∗TLIr_a1 + V∗TLIr_c2 + V∗MLI_stepa −V∗MLIa
V∗TLIb = V∗TLIr_b1 + V∗TLIr_c2 + V∗MLI_stepb −V∗MLIb
V∗TLIc = V∗TLIr_c1 + V∗TLIr_c2 + V∗MLI_stepc −V∗MLIc
V∗TLId = V∗TLIr_a2 + V∗TLIr_c1 + V∗MLI_stepa −V∗MLIa
V∗TLIe = V∗TLIr_b2 + V∗TLIr_c1 + V∗MLI_stepb −V∗MLIb.

(12)

Since both motors are connected to a single MLI, voltage harmonic compensation is exerted by
acting on the TLI a, b, d and e phase voltage references.

The average values of q-d back EMF components Ê*q and Ê*d are estimated from Equations (9)
and (10), by assuming:

i∗d = i∗d1 = i∗d2 (13)

i∗q1 = K1i∗q i∗q2 = K2i∗q (14)

where:
K1 =

Te2n

Te1n + Te2n
K2 = (1− K1) (15)

By assuming the use of two identical motors, the q-axis current references can be imposed as:

i∗q1 = i∗q2 = 0.5i∗q (16)

4. Power Losses Assessment

The total power losses of the OW MMSC topology of Figure 2 were evaluated and compared
with those of a system consisting of a single 3LI supplying two wye connected induction motors. Two
different cases were investigated. In the first case, a conventional drive topology was considered,
in which a single multilevel inverter was step operated and feeds two parallel connected induction
motors. In the second case the inverter is operated according to a fswTLI = 10 kHz space vector PWM
modulation. The obtained results was then compared with those obtained with the 3LI+TLI topology,
where the 3LI was driven according to a step modulation with fswMLI =ωre/2π, while a fswTLI = 10 kHz
sinusoidal PWM strategy was used on the TLI. The TLI floating DC-bus was built around a 480 µF
capacitor, while VDC

′ was set at 580 V and VDC” = VDC
′/4 at 145 V. This leads to the use of Insulated

Gate Bipolar Transistor (IGBT) devices on the 3LI and MOSFET on the TLI.
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The inverter power losses, consisting of the switching losses PswMLI, PswTLI and conduction losses
PcMLI, PcTLI were calculated as in [31]:

PswMLI = 0.5VceiC fswMLI(tonI + to f f I)

PswTLI = 0.5VDSiC fswTLI(tonM + to f f M)

PcMLI = δVceoiC
PcTLI = RDS(on)i2D

(17)

The motor joule losses Pjoule and motor iron losses Piron are given by:

Pjoule = RSiS2 + Rrir2 Piron =
E2

R f e
(18)

The induction motors parameters are listed in Table 4, while technical data of the IGBT used in
the MLI and the MOSFET used in the TLI are summarized in Tables 5 and 6, respectively. The systems
were run at ωr = 100 rad/s.

Table 4. Technical specifications of the Induction Motors.

Pn (HP) Vn (V) pp Ls (mH) Lr (H) Lm (H) Rs (Ω) Rfe (Ω) Rr (Ω) J (Kg·m2)

3 400 2 0.32 0.32 0.31 2.6 902 2.7 0.016

Table 5. MLI IGBT Data.

VCES (V) IC (A) Tj (◦C) Vceo (V) ton (ns) toff (ns)

600 20 150 0.75 60 131

Table 6. TLI MOSFET Data.

VDSS (V) IDSS (A) Tj (◦C) RDS(on) (mΩ) ton (ns) toff (ns)

150 20 175 32 8.9 17.2

Figure 9 deals with power losses estimation for the three considered cases, taking into account
the motor (core and winding) and inverter (switching and conduction) power losses and considering
the first ninety harmonics of the stator current and voltage.
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When the step modulated 3LI feeds the two wye connected induction motors, as shown in
Figure 9a, power losses largely consist of motor joule losses, because the motor currents are affected
by low-order harmonics components. When the 3LI PWM modulated feeds the two wye connected
induction motors, as shown in Figure 9b, motor joule losses are still dominant, but higher switching
losses occurs. Finally, the 3LI+TLI configuration is considered. Since the MLI is step modulated and
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the phase motor current waveform is made close to a sinusoidal one by the active power filter, motor
and MLI inverter losses are considerably reduced, especially at heavier loads.

The 3LI+TLI topology features a higher efficiency at medium and high loads, while at low loads
its efficiency is comparable with that of the PWM driven 3LI. Based on computed motor and inverter
losses, total efficiency was evaluated in the three considered cases, as shown in Figure 10.
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(c) 3LI+TLI configuration.

A comparison between the performance of the 3LI+TLI5 topology and that of a conventional
system consisting of two PWM operated 3LIs supplying two wye connected induction motors was also
accomplished. The results shown in Figure 11, confirming that the 3LI+TLI5 MMMC is more efficient
than the conventional one, especially at heavy loads.
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5. Experimental Tests

The proposed multi-motor drive configurations were experimentally validated using two
induction motors, the technical specifications of which are shown in Table 4. The MLI was equipped
with an IGBT with parameters shown in Table 5 while the TLI consisted of a MOSFET, detailed in
Table 6. Figure 12 shows the test rig. The first prototype featured an MMSC configuration, tailored
around a five level NPC main inverter (5LI+TLI). The second prototype was still an MMSC system,
but equipped with a three level NPC main inverter (3LI+TLI). The third prototype is instead a MMMC
system composed of a five level NPC main inverter and a five-leg, two-level (5LI+TLI5) auxiliary
inverter. All the three prototypes are field oriented controlled by a dSPACE board featuring a 100 µs
update time. On each drive configuration two induction motors were present with mechanical coupling
between them in order to operate them at the same rotational speed. Moreover, the TLI was PWM
operated at fswTLI = 10 kHz, with a 1 µs dead time. The DC bus voltage VDC

′ of the MLIs was 400 V,
while VDC” was set at 50 V when a 5LI was used and at 100 V when a 3LI was used. A controllable
mechanical load was realized by exploiting a conventional 3 HP vector controlled induction motor
drive, detailed in Table 4.

A steady state test on a conventional step operated 5LI supplying two wye connected induction
motors is shown in Figure 13. The test was performed at ωr = 50 rad/s and with no load. A remarkable
stator current distortion was obtained, due to the low switching frequency. Figure 14 deals with
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the same test but using the 5LI+TLI MMSC topology instead of the conventional configuration. The
distortion of the motors phase current was remarkably reduced, however; the efficiency was also
slightly reduced, being 80% for the 5LI and 76% for the 5LI+TLI system.
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A comparison between the 3LI+TLI and 5LI+TLI MMSC configurations is provided in Figure 15.
A steady state test (ωr1 =ωr2 = 50 rad/s) performed using the MMMC 5LI+TLI5 system is displayed
in Figure 16. The c phase current of the TLI is higher than the currents of the other four phases, as it is
given by the combination of the c phase currents of both motors.
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Figure 16. 5LI+TLI5 MMMC, Steady state test at ωr = 50 rad/s. (a) Motor speed ωr, a-phase motor
Vma, motor currents iam1 and iam2; (b) motor currents iam1 and iam2 and common-leg c-phase current ic.

Speed reversals fromωr = −40 rad/s toωr = 40 rad/s accomplished by the 5LI+TLI MMSC and
the 5LI+TLI5 MMMC prototypes, are shown in Figure 17. The drives feature a good dynamic response
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and an effective floating capacitor voltage control. The torque load was evenly shared between the
two motors.Energies 2019, 12, x FOR PEER REVIEW 12 of 19 
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In order to assess the capability of the 5LI+TLI5 configuration to individually control the torque
produced by the two motors, the previous test was repeated with uneven loading on the two machines.
As shown in Figure 18, 70% of the load torque was produced by IM1 and 30% by IM2. Figure 19 shows
the phase currents of IM1 and IM2 at the steady state for the MMMC. The steady state currents and
dynamical torque, as well as, and speed response are quite satisfactory.
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6. Conclusions

The paper has proposed a multi-level converter topology for multiple-motor drives based on
a special open-end winding configuration. Applications of such a topology to multiple motors -
single converter and multiple motor-multiple converter drives was also discussed. Specifically, two
configurations, an MLI+TLI Multi Motor Single Converter system and an MLI+TLI5 Multi Motor Multi
Converter system were presented and managed by purposely developed control strategies, combining
a low switching frequency modulation on the MLI and high frequency PWM on the TLI. As shown in
the paper, in both cases the proposed configurations produced much lower stator current distortion
when compared to conventional multi-motor drives equipped with MLI switching at the fundamental
frequency. Further, they generated lower power losses when compared to multi motor drives equipped
with PWM operated MLI. Although the paper considers only multi motor systems comprising two
identical induction machines, the proposed approach can be generalized for systems with an arbitrary
amount of motors; it can also be exploited for multi motor systems using synchronous machines, and
even for multi motor systems using a mix of machines of different sizes.
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Nomenclature

MMD Multiple Motor Drive
MMSC Multiple Motors fed by a Single Converter
MMMC Multiple Motors fed by Multiple Converters
IFOC Indirect Field Oriented Control
TLI Two-Level Inverter
3LI Three-Level inverter
TLI5 Five-leg two level inverter
3LI+TLI OW configuration including 3LI and TLI
3LI+TLI5 OW configuration including 3LI and TLI5
5LI+TLI OW configuration including 5LI and TLI
5LI+TLI5 OW configuration including 5LI and TLI5
THD Total Harmonic Distortion
n MLI voltage levels
VMLI_stepi i-phase MLI output voltage with respect to n′

VTLIi i-phase TLI output voltage with respect to n”
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Vmi i-phase motor voltage
VDC

′ MLI DC Bus voltage
VDC” TLI DC Bus voltage
Vmpk Peak motor voltage
iabc1 abc axes IM1 phase currents
iabc2 abc axes IM2 phase currents
Eqd qd axes motor back EMF
iqd1 qd axes IM1 phase currents
iqd2 qd axes IM1 phase currents
VqdMLI qd axes MLI output voltage
Rs, Rr Stator and rotor resistance
Rfe Iron resistance
Ls, Lr Stator and rotor inductances
Lm Magnetizing inductance
ωλre Rotor flux angular frequency
KV Voltage ratio VDC”/VDC

′

Kp Vmpk/(VDC
′ *THDV)

ωr Mechanical Rotor speed
ωre Electrical Rotor speed
θλr1, θλr2 Rotor flux angular positions of IM1 and IM2
θr Rotor angular positions of IM1 and IM2
Te1n, Te2n Rated torques of IM1 and IM2
J Total inertia of motor and load
pp pole pairs
Vceo Collector to Emitter Saturation Voltage
ton Current Turn-On Delay Time
toff Current Turn-Off Delay Time
VCES Collector to Emitter Breakdown Voltage
IC Collector current
VDSS Drain-to-Source Breakdown Voltage
IDSS Drain-to-Source Leakage Current
RDS(on) Static Drain-to-Source On-Resistance
Piron Motor iron losses
Pjoule Motor joule losses
PCMLI MLI conduction losses
PswMLI MLI switching losses
PCTLI TLI conduction losses
PswTLI TLI switching losses
δ Duty cycle of the 3LI
fswMLI Switching frequency of the 3LI
fswTLI Switching frequency of the TLI
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