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Abstract: In this paper day-ahead electricity price forecasting for the Denmark-West region is
realized with a 24 h forecasting range. The forecasting is done for 212 days from the beginning
of 2017 and past data from 2016 is used. For forecasting, Autoregressive Integrated Moving Average
(ARIMA), Trigonometric Seasonal Box-Cox Transformation with ARMA residuals Trend and Seasonal
Components (TBATS) and Artificial Neural Networks (ANN) methods are used and seasonal naïve
forecast is utilized as a benchmark. Mean absolute error (MAE) and root mean squared error (RMSE)
are used as accuracy criterions. ARIMA and ANN are utilized with external variables and variable
analysis is realized in order to improve forecasting results. As a result of variable analysis, it was
observed that excluding temperature from external variables helped improve forecasting results.
In terms of mean error ARIMA yielded the best results while ANN had the lowest minimum error
and standard deviation. TBATS performed better than ANN in terms of mean error. To further
improve forecasting accuracy, the three forecasts were combined using simple averaging and ANN
methods and they were both found to be beneficial, with simple averaging having better accuracy.
Overall, this paper demonstrates a solid forecasting methodology, while showing actual forecasting
results and improvements for different forecasting methods.
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1. Introduction

Electricity is an energy commodity much different from oil, natural gas, coal and likes because
it is not easily storable locally in large quantities. Storing electricity at a grid-scale is a desired
grid characteristic, however it is not widely used because it is not economically feasible and totally
uncompetitive at the moment. In addition, the electricity on the grid should be perfectly balanced at
all times to prevent outages and other issues.

Electricity markets in Europe started being liberalized in the beginning of 1990s [1]. With the
adoption of EU market liberalization directives, electricity markets in EU became completely liberalized
in the first decade of 2000s. Before the liberalization, markets were mostly controlled by governments
and their agencies. With the liberalization of the markets, electricity generation, supply, transmission
and distribution became competitive activities, achieving reductions in price [2] towards the goal
of low carbon areas, mainly by mergers, privatisation, and asset acquisitions [3–5]. Competitive
programmes were initiated—mainly by the EU—aiming at increasing countries’ interconnectivity
developing new power and energy markets.

Many actors are present in the markets such as producers, traders, transmission system
operators (TSOs). In liberalized electricity markets, electricity is traded in different types of
markets. The Denmark electricity market is a part of the Nordpool Power Market which aims to
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integrate European Energy Markets therefore Denmark follows electricity trading as per Nordpool
regulations [6].

Electricity price forecasting is a vital activity for the members of the markets in order to take
decisions and maximize their profits [7–9]. Due to the nature and the rules of the electricity markets,
which will be discussed in the next section, forecasting is necessary activity to take part in the trading
process [10,11].

Nordpool

Nordpool is an initiative owned by different European TSOs participating in the market, including
the Danish TSO Energinet. It is one of the oldest and well established power exchanges in the world [7].
Trading at Nordpool happens in the day-ahead markets and the intraday markets.

The day-ahead market is where the majority of trading happens in terms of volume. Bids for 24 h
the next day are submitted before 12:00 CET the day before, meaning that a forecasting range of 24 h is
used, starting from 12 h ahead. When the market prices are calculated, then trade volumes are fixed.
This means minimum 36 h ahead should be forecast in order to participate in the bidding. The bids
concern 1 h intervals. Some of the key factors that play a significant role are bottlenecks, transmission
capacities, volumes to meet demand, congestion, and different area prices.

The main role of the intraday market is to keep the balance in the grid using a shorter bidding
interval then day-ahead markets. The fluctuations might happen due to many different factors such as
excessive winds, malfunctions in a production plant or an unexpected change in demand. Trading
in the Nordpool intraday market happens continuously until one hour before delivery (Nordpool
Website). The role of the intraday market is to assist the day-ahead one towards securing matching
demand with supply. Regulations at finer intervals are covered by the local TSO, which is Energinet in
Denmark’s case [7,12].

The electricity market in Denmark is dominated by the increasing penetration of renewable energy,
which is also highlighted by the Danish Government’s plans to become independent from fossil fuels
by 2050 [13]. Figure 1 shows that coal consumption has decreased a lot over the last three decades,
with renewable energy use increasing. Changes in oil and natural gas seem marginal in comparison.
The data also shows that oil, natural gas, and coal, along with renewable energy, are important energy
consumption components and they should be considered in the price forecasting model, if possible.
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Figure 1. Gross energy consumption in Denmark (data from the Danish Energy Agency). Figure 1. Gross energy consumption in Denmark (data from the Danish Energy Agency).

In 2016, 38% of electricity consumption in Denmark was provided by wind energy alone [14],
and this percentage became even higher for 2017, making it the largest component of the renewable
energy category. Due to the uncontrolled and random nature of wind power, it may at times create
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imbalances and price jumps. Unlike power plants, where the electricity production is scheduled and
controlled according to the requirements in the grid, wind power may at times act against the needs of
the grid. Wind energy has an important effect on electricity prices therefore, it should be included in
the forecasting model as well. The electricity grid in Denmark is divided into two parts: DK1 is the
western part of Denmark, including Fyn and Jutland, and DK2 is the eastern part covering Zealand
and Islands [14].

2. Research

2.1. Research Goals

The outcome of the research will be an artifact, a computer program that forecasts electricity prices
given historical data and other required inputs. Multiple models will be implemented for comparison
and it will be used to decide which is better as this is a recommended practice [15]. Realizing the
forecasts, further analysis and possible improvements will be discussed and implemented. The first
goal of the project can be defined as determining the best individual forecasting method out of the
applied forecasting models. The second goal is to suggest and apply ways to improve the individual
forecasts, and the third goal is to demonstrate a solid methodology that can be applied to different
forecasting problems [16].

2.2. Methodology

Understanding the regulations of electricity markets and Denmark’s special conditions is very
important in order to correctly identify price drivers and relevant variables. These are discussed in
detail throughout the paper as they contain a lot of information and assumptions, and constitute an
integral part of the research. The availability and the collection of the data is also crucial as it affects
the implementability of the models.

After collecting the data, preliminary data analysis is required to understand the data better.
This will enable us to find good models that fit our data well. For the data analysis, tools such
as correlation graphs, autocorrelation functions, comparative variable analysis, decomposition and
residual analysis will be used. First the data to be used in the forecasting will be analysed using
statistical tools and patterns for seasonality will be checked using autocorrelation analysis. Then the
data will be decomposed and further analysis will be done on patterns and residuals. For variable
analysis correlation scatterplots will be used as the main tools. Each variable and its possible effects on
the data will be discussed briefly.

After setting up the model, the input data will be divided into two parts, one for training the
model and one for testing the forecasts. The forecasting range will be 24 h with an hourly frequency.
To include a full year of training data as a minimum, 2016 data will be taken as the training period.
2017 prices will be forecasted as an expanding forecast for 212 days, which is from the start of January
to end of July. Expanding forecast means that after forecasting the next 24 h, that raw data is included
to our training period for forecasting the day after. As mentioned by [7,17,18] short and carefully
selected test periods do not give any information regarding the performance of the forecasts as they
are ignoring special days, holidays and general price variations. Therefore, a 7-month period for
forecasting will be used for more objective and better assessment of forecasting models.

For the evaluation of the forecasts, scaled error models will be preferred over percentage error
models as percentage models can yield infinite error when the actual electricity prices are 0 DKK/MWh,
making them unreliable. The reader should keep in mind that the performance of the models should
only be compared for the same set of data of the same time using the same error calculation model.
Also for evaluation simpler forecasting methods can be used as benchmarks. One model that will be
used is the seasonal naïve method, which is basically assuming that the price to be forecasted is similar
to the previous period’s prices, such as previous week.
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After comparing the error values and evaluating the forecasts, ways to improve the forecasting
performance of the models will be investigated using backwards feature elimination. This tool will
provide the removal of variables that are irrelevant to the forecasts. Then an attempt at combining the
forecasts in order to gather more accurate forecasts will be realized. The paper will be finalized with
conclusion, evaluation of the study and suggestions for further studies.

2.3. Forecasting Methodology

Forecasting can be defined as estimating future unknown values in an educated and systematic
way using available data. As the values of the data that is to be forecasted is unknown, there are
different possible values and the forecaster aims to find the most probable value(s). In case the forecast
is used to obtain a single value as the most probable value the forecast is called a point forecast, whereas
a probability forecast contains a range of values with the prediction intervals and densities [19]. In this
research point forecasts will be used as they are simpler and easier to interpret.

There are a variety of tools and methods for forecasting. It is important for a forecaster to
be able to spot the right tools considering the data and the forecast span. To achieve this the
problem should be defined clearly and relevant data should be collected. To achieve this task the
following steps mentioned by [17] will be followed. These steps are as follows: problem definition,
gathering information, preliminary analysis, choosing and fitting models, and using and evaluating a
forecasting model.

The forecasting problem of the project is to forecast day-ahead electricity prices from Denmark
Jutland (including Fyn) region, commonly referred to as DK1 or DKWest in Energinet or Nordpool
sources. The forecasting span has been selected as 24 h to simplify and imitate the actual bidding that
takes place in Nordpool. As the aim is to forecast hourly prices using more frequent data than hourly
will not be necessary. Data from 2016 will be used as training data and the first seven months of 2017
will be forecasted.

Historical data regarding electricity prices is available online at Nordpool website. For the
explanatory variables different sources are being used. Temperature data is provided by Energinet for
the Tange location. As this is a central location in Jutland and knowing Denmark is mostly flat it is
assumed that this temperature portrays a good average for the region and the temperature across the
region is highly positively correlated.

Other explanatory variables such as consumption prognosis, production prognosis, wind power
prognosis and hydro reserve levels are provided by Nordpool and Energinet. Since they have direct
access to the producers, and the users they are seen as highly credible and reliable sources.

Oil and natural gas prices are taken from Fred series [20]. For oil, “Crude Oil Prices:
Brent—Europe” and for natural gas, “Henry Hub Natural Gas Spot Price” data sets are taken
into consideration.

Data obtained from Fred and hydro reservoir data are weekly data where the data are copied to
the corresponding values for each hour of the week. It is assumed that this data frequency is suitable
these variables are not very volatile or have high variance in short time and possibly their effects are
not seen hourly or daily in the corresponding data. Other data mentioned are collected and used as
hourly data.

Hydro reservoir level is derived from the data collected from Nordpool. Following equation
(Equation (1)) is used in order to obtain the data, where HRL is the hydro reservoir level, NL is the
amount of water in reservoirs in Norway, SL is the amount of water in reservoirs in Sweden and FL
is the amount of water in Finish reservoirs. NC, SC, and FC correspond to the total available water
capacities in respective countries. Using the equation a value between 0 and 1 is reached, where 1
means that the reservoirs are full and 0 means that they are empty:

HRL =
NL + SL + FL
NC + SC + FC

(1)
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Two dummy variables are also considered in our data sets, one for weekdays and one for holidays
including the weekends. Two sources are used to spot the holidays (the Office Holidays and the Public
Holidays) [21,22] in order to crosscheck the validity of the data. Also, weekends that are combined
with the holidays are included in the holiday data set as it is assumed that they might exhibit similar
behaviours to holidays than normal weekends. There is one variable for weekdays and weekends
and one for holidays and non-holidays. Therefore for the holiday variable: (a) for holiday the value is
”1”, and (b) for non-holiday the value is ”0”. For the weekday variable: (c) for a weekday the value
is “0” and for the weekend the value is “1”. Using coal prices was also planned as coal constitutes a
significant portion of the energy consumption however, suitable data in this regard was not accessible
and therefore coal prices were omitted from the forecasts. The reason why coal prices were not
attainable is because coal has many different types depending on British thermal units (BTU) and
maybe it is not traded in spot markets and rather traded privately.

A large number of researchers used dummy variables to explain seasonal variables, such as the
day of the week [23,24]. The latter of the two papers test consumption and production prognosis
as variables. Other researchers [25] use system loads, fuel prices, seasonal variables stressing that
available hydro energy and fuel prices are variables that could be used if, and when, data are present.
Other researchers took into account the natural gas prices as explanatory variable. They did also test
temperature, but was found of low correlation [26]. Others like [27] test wind prognosis, however, it
was the link to price that was mainly proven.

One very important price driver is the planned or unexpected changes in production such as
planned maintenance or unexpected problems in a production plant. This information is present in
Nordpool website, under the name Remit Urgent Market Messaging (UMM) however a method to
make the information useful and usable is needed before incorporating it into a model. This method
should compose of two parts, one to filter and download the required data and the second one to
convert the data into usable quantitative information before incorporating it into the models. Due to
the time limitations of the project, these data are excluded from the models.

One other factor that has an effect on the prices is the transmission of electricity. Transmission
lines are used to convey electricity and because electricity is mostly brought from where the production
is high and prices are low to high consumption regions, the transmission lines have an effect to smooth
and bring the prices closer to each other. When the transmission capacity of the lines are close the local
production and consumption becomes more important therefore the prices tend to have more spikes.
As the transmission lines and the interaction between regions and markets are very complicated and
not straightforward to incorporate into a regression model, they are excluded from our models as well.

Reserve margin is a metric that relates available production capacity to consumption and in some
markets it seems to be a reliable predictor for spike forecasting [7]. These data are not present in
Nordpool or Energinet however if they were present, they should have been included in the model as
they could have contributed when the prices are harder to forecast, at high volatility.

2.4. Methodology and Tools Used

Three models were practically used: ARIMA, TBATS and ANN. An analytical description of the
models can be found below.

2.4.1. ARIMA Model

ARIMA models are one of the most frequently used and recognized forecasting models. In order
to use a certain data with ARIMA, the data has to be stationary first. This means that the trend and
the seasonality of the data should be eliminated before applying the ARIMA model. ARIMA model
consists of three parts, autoregressive (AR), integral, and moving average (MA). AR refers to using
the lagged inputs to forecast the future data. Integral refers to differencing needed to make the data
stationary. MA is similar to AR, as it is used to forecast the error using the past (lagged) errors. [17].
With this brief explanation at hand, ARIMA(p,d,q) model means that the data is differenced d times,
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p lagged points are used in AR and q lagged errors are used in MA. An ARIMA(p,0,q) model can also
be referred to as ARMA(p,q) model as there is no differencing involved. The regression with ARMA
errors with one external regressor can be defined as follows where both equations are determined
simultaneously:

yt = Bxt + nt

nt = φ1nt−1 + . . . + φpnt−p − θ1zt−1 − . . . − θqzt−q + zt
(2)

where zt is the white noise, xt is the external regressor at time t, B is the coefficient regarding the
external regressor, nt is the residue from the fit and is modelled as an ARMA process.

The input variables can be differenced as many times as needed in order to make the data
stationary, and the model can be extended to include more external regressors. The coefficients of the
equations can be solved using maximum likelihood estimation (MLE) [17].

The function “auto.arima” is included in the forecasting package of R, used to make an ARIMA
fit using the Hyndman-Khandakar algorithm to choose the model parameters [28]. The algorithm first
uses the Kwiatkowski-Phillips-Schmidt-Shin [29] unit root test to identify if the series is stationary
and to choose the correct d parameter. Then various p and q parameters are heuristically tested and
selected in order to minimize the corrected Akaike information criterion (AIC). The function is not
fully automated, and the outliers have to be cleaned, and if there is variance Box-Cox transformation
should be applied before using auto.arima. The fitting is done using MLE. After the fit, the results
should be examined for irregularities such as autocorrelation. When using the auto.arima function
with exogenous variables, the function works as a regression model with ARMA errors. A detailed
explanation of the procedure and best practice can be found in [17].

2.4.2. TBATS Model

TBATS model is an exponential smoothing method, which includes Box-Cox Transformation
(method for non-linear data), ARMA model for residuals, and the Trigonometric Seasonal. The
trigonometric seasonality expression can significantly reduce model parameters at high seasonality
frequencies and at the same time offer the model plasticity to compromise with complex seasonality.
On the negative side, the computation cost is significantly large if the data files are huge, however
among the strengths that this model has are: (a) the option of implementing a multi-seasonality
analysis without too many parameters, (b) it can work under non-integer seasonality, (c) it can work
under high frequency data (and this is one of the reasons it was selected) [30].

2.4.3. ANN Models

ANN models have been widely used in the literature and seen to provide satisfactory forecasting
accuracy. ANNs are machine learning systems that resemble the neural networks of biological
structures [30,31]. One important aspect of ANNs is that, by having a hidden layer, one can achieve a
nonlinear output function. In a feedforward neural network, the information is carried forward from
one layer to the next layers and not backwards. The weights of the connections are updated in each
run, which is called the training of the network. A DNN represents an ANN with two or more hidden
layers. A fully connected neural network refers to an ANN that each node is connected to all the nodes
in the next layer with a specific weight [17]. Each ANN is comprised of an input layer, an output layer,
and nodes in the associated layers. Optionally, single or multiple hidden layers can also be present.
Each node sums its inputs multiplied by the respective weight and the summation is transferred to an
activation function with a bias.

The result of the activation function is the output of the node. During training of the conventional
ANN, the weights of the inputs and bias are updated in order to minimize the error. One common
algorithm to optimize the weights is called the backpropagation algorithm. In this case of forecasting,
the number of input nodes is equal to the number of variables that are inputted into the system.
The output node is always one, which gives the point forecast result. The number of hidden layers and
the nodes in each layer will depend on the model and heuristics testing. An ANN without a hidden
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layer will be analogous to a linear regression model. Adding more layers and nodes will enable the
model to perform non-linear and more complex tasks, whereas adding too much of them may cause
overfitting and cause the model to lose its generalization ability. In the case of overfitting, the noise in
the data is mistakenly interpreted as information and is contained in the data [17].

3. Preliminary Data Analysis

Data should be analysed first in order to select an appropriate forecasting model. After deciding
on the model, it can be implemented with training data set and evaluated according to the results
received with the test data. The raw data from Figure 2 were evaluated.
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Figure 2. DK west day ahead electricity prices (a), monthly mean, coefficient of variation, and standard
deviation (b).

At the end of the December there is a noticeable negative jump. Looking at the dates it can be
assumed that this period corresponds to Christmas and due to the holiday, there is a lower demand
creating a fall in the prices. A similar but much smaller effect can be seen at the end of March, which
may be a similar effect caused by Easter. A rising trend beginning with October until February can also
be seen and this effect can be due to colder weather creating increased consumption due to heating
requirements. Other noticeable patterns are seen with spikes in January and November followed by
negative jumps in November. Figure 2b shows monthly means for the data shown in Figure 1 with
the standard deviation bars. It can be seen from Figure 2 that each month the mean price is changing
with highest prices in November and lowest prices in February. The standard deviation is highest in
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December and January possibly due to holidays mentioned. Standard deviation is lowest in April.
The yearly seasonal effect can be seen more clearly just by looking at the monthly means. Looking at
Figure 3, which shows daily means and standard deviations for each weekday, a decrease in prices
on Saturdays and Sundays are visible due to demand decrease in weekend, possibly caused by the
industrial consumption. A weekly seasonal effect is visible for workdays and weekends in this figure.
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standard deviation.

Figure 4 shows the hourly means for each weekday with the coefficient of variation, and the
standard deviation bars. As expected from the data in Figure 3, Sundays and Saturdays have lower
means. In each graph a wave with two local maximum can be identified. On weekdays the local
maxima are at around 9 and 18, whereas on weekends they are shifted by almost 2 h and they are
approximately at 11 and 20. On weekdays the first maxima is higher in contrast to the weekends.
A daily seasonality is clearly observed from these figures.
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Just by looking at the means at different intervals, different seasonality’s and different patterns
of the data can be seen. Weekly and daily seasonalities are observed and this information should be
properly included in the forecasting model, otherwise some information that should be carried in the
forecasting model will be missing. Leaving out yearly seasonality in consideration of our data is a
justifiable approach as our time span only covers more than a year and not decades.
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3.1. Autocorrelation of the Time Series

To further analyse the data and confirm the daily and weekly seasonality observed in previous
section autocorrelations functions can be inspected. Autocorrelation is the correlation, the linear
relationship, between the function and the delayed version of the function [17]. Autocorrelation
Function (ACF) will be used in the next sections also to test if the forecasting model is a good fit, or to
see if there is more information left in the data that should be included in the model.

Looking at Figure 5a the local maximum can be seen at lag 24 and 48, indicating a daily seasonality
as expected. Figure 5b shows both the daily and weekly seasonality. In Figure 5b it can be seen that
the maximum at both at multiples of 24 and an increasing pattern at multiples of 168 (7 × 24) which is
the weekly period. It is not possible to see the yearly seasonality with ACF because a much longer
time period of the data would be needed than 1 year to observe the effect, therefore it is not included.
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3.2. Decomposition of the Data

There are many different ways of decomposing data such as the classical, seasonal decomposition
of time series by Loess (STL), X11. The main idea behind the composition is to divide the data into their
components, which are generally the trend, seasonal and remainder parts. When applying additive
decomposition it is assumed that the data comprise of the sum of its components. Multiplicative
decomposition on the other hand assumes that the data are a multiplication of its components and it is
mostly used when the variation in the data increases or decreases along with time. The data that will
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be used for forecasting in this paper do not show a linear relationship in their variation with time so
an additive decomposition model will be preferred.

If the data have Seasonal, Trend and Remainder components the mathematical formula can be
formed as below, where yt is the main data, St is the seasonal component, Tt is the trend component
and Rt is the remainder component [17]:

yt = St + Tt + Rt, (3)

Trying to explain it in a simple way, the Trend component can be thought of as the general level
of the data. In the classical decomposition which is the simplest method, it is calculated as a moving
average. Seasonal component is the part that is dependent on time or calendar and its pattern is
repeated. Daily, Weekly or Annual effects are seasonal where as a cyclical effect that is unrelated to the
calendar or time is not part of the seasonal component. Remainder component is the error or random
part that is not captured by the seasonal or trend components.

It is noticed that there are there seasonalities observed in our data, Daily, Weekly, and Yearly.
An equation that explains our data can be mathematically expressed as below, where Dt is the Daily
seasonality, Wt is the Weekly seasonality and Yt is the Yearly seasonality. The data are relatively of
high frequency and the decomposition model should be able to handle this:

yt = (Dt + Wt + Yt) + Tt + Rt, (4)

Models mentioned above such as classical, STL or X11 cannot handle multiple seasonalities and
are designed for less frequent data sets such as quarterly or annually. TBATS model is able to handle
multiple seasonalities as well as high frequency data [30]. The model will be discussed in more detail
in the next sections of the paper.

Figure 6A presents the application of TBATS decomposition. The first graph is the actual data,
second is the level which is similar to trend, season1 is the daily seasonality, season2 is the weekly
seasonality and season3 is the yearly seasonality. The decomposition and graph is generated by using
R software, forecasting package [31], with “tbats()” function.

Looking closer at Figure 6B, which is a close up of season1 graph adjusted to include two days of
data, daily seasonality can be observed. As expected, it is similar to hourly mean graph and it captures
the construct with two local maximum points. It shows us that TBATS model has captured the daily
seasonality to a satisfactory degree.

In Figure 6C, which is a close up of season2 graph including a two weeks span, weekly seasonality
can be seen. As seen previously in the weekly mean graphs, weekdays are higher compared to
the weekends. The data is adjusted to show Monday first, so that the lowest point seen around
150 corresponds to a Sunday. Similar to mean levels Sunday has the lowest value.

Upon closer inspection of season1 and season2 components it is seen that data seasonality seems
to be captured in our model. One more thing to check is the residuals. If the information in the data is
captured adequately, residuals should resemble white noise, meaning they should have 0 mean and it
should be uncorrelated.

Inspecting Figure 6C and taking the mean of the residuals, it is seen that there is no bias and the
mean is almost zero. The residuals follow a normal distribution however they are very high at some
points and seem to have some correlation. Some explanations for this could be that the initial data have
a lot of spikes, there are holiday effects that are not included in this model, and other external effects
such as excess electricity production that leads to negative jumps due to high wind energy generation.

It is seen from Figure 7 that this model has satisfied our seasonality needs using high data
frequency however, there are some things in the data that cannot be simply explained without referring
to external factors. This shows that explanatory variables should be included in our model in order to
capture the information in the data more accurately.
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3.3. Explanatory Variables

Explanatory variables, sometimes also called as external regressors, are the external data that is
used in the regression systems in order to get a better forecast. These regression systems carry the
assumption that the forecast is a function of its past values (Autoregression) and a function of the
external variables.

In this paper seven explanatory variables along with two dummy variables and a Fourier fit
for seasonality is considered as external regressors. The seven explanatory variables, purposefully
selected—explained in the following sections—are temperature, consumption prognosis, production
prognosis, wind prognosis, oil prices, natural gas prices, and hydro reservoir levels. Two dummy
variables are used to indicate weekends and holidays. Also the daily and weekly seasonality is fit
through a Fourier function and fed into the ANN and ARIMA system as external regressors.

For the forecasting, future values of the explanatory variables are needed. In terms of this
project it can be argued that temperature forecasts are highly accurate and available at various sources.
Consumption, production and wind prognosis data are forecasts that are readily provided by Nordpool.
Oil, natural gas and hydro levels are used with low frequency and they are not volatile so past values
can be easily used. It should be noted that when evaluating forecasting errors, errors that might be in
the explanatory variables are not included.

Table 1 shows the variables along with their correlation coefficients with the electricity prices.
Actual contribution shows if the variable has contributed to the ARIMA and ANN models. For two
variables knots are suggested however, they are not successful and knots should not be used. Out of
the seven suggested variables only temperature has not contributed to the forecast and therefore it is
better to omit it. The other variables should be included without any knots.

Table 1. Explanatory variables.

Explanatory Variable Correlation
Coefficient

Actual
Contribution Suggested Knot Knot Contribution

Temperature 0.0567 No 0 Degree No
Consumption Prognosis 0.43 Yes - -

Production Prognosis 0.0448 Yes 1000 MWh No
Wind Prognosis 0.368 Yes - -

Oil Prices 0.259 Yes - -
Natural Gas Prices 0.293 Yes - -

Hydro Reservoir Levels 0.313 Yes - -

3.3.1. Temperature

Temperature is included as an explanatory variable in the model for two main assumptions.
First one is that in very cold or hot temperatures need for climate control creates additional
consumption which may affect prices. Second is that temperature incorporates daily and annual
cycles and it can be helpful in explaining other information such as wind which is directly related with
the production.

Inspecting Figure 8 it is seen that the increase in temperature does not have any visible effect on
prices, however when temperature falls below 0 in January a spike in the prices is observed. Also in
October when the temperature is below 10 degrees, price levels have risen while is not the same case
before April. Calculating the correlation coefficient we find that CPT = 0.0567. It seems insignificant
however looking at Figure 8, which is a scatterplot, it is seen that prices below 0 degrees has a linear
effect on prices. This is consistent with our previous comments and it suggests that temperature should
be used as a variable with a knot at 0 degrees.
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3.3.2. Consumption Prognosis

This data is presented in Nordpool website along with production and wind prognosis. It is
assumed that it is directly related with prices as consumption of electricity is one of the uncontrolled
variables in price formation.

It is seen (Figure 9) that consumption prognosis results in a spiky graph, probably capturing
daily, weekly cycles along with the holiday effects. At the end of December, it can be observed that
the decrease of consumption prognosis is related to the price decrease. Looking at the scatterplot in
Figure 9 it can be observed that consumption has a positive correlation with the price and it is most
noticeable at the extremes. Correlation coefficient is CPCP = 0.43, which is significant and much higher
than temperature.
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3.3.3. Production Prognosis

Electricity price formation can be seen as some function of consumption and production however
consumption is an uncontrolled variable whereas production is controlled except solar and wind
power. No apparent pattern catches the eye in Figure 10. Correlation coefficient is CPPP = −0.0448,
it is even lower than temperature. Inspecting the scatterplot the only meaningful pattern is seen when
production prognosis is below 1000 MWh, where very low prices can be observed. Production is
actually driven by the consumption and prices and not the other way around, however this data might
be more useful with a knot at 1000 MWh.
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3.3.4. Wind Production Prognosis

Looking at Figure 11 two patterns catch the eye, where in January there is a sharp fall in wind
production prognosis and a sharp increase in prices and the opposite happening at the end of December.
Correlation coefficient is CPWP = −0.368 which is almost 8 times of production prognosis. Wind is very
important for Denmark due to high penetration rate.Energies 2019, 12, x FOR PEER REVIEW 15 of 32 
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In the scatterplot at Figure 11 it is seen that high prices only happen when there is very little wind
and a lower price level is very likely as the wind production is increased.

3.3.5. Oil Prices

Oil has provided the 37% of the gross energy consumption of Denmark in 2016 therefore, it is
assumed that the oil prices have some importance in term of electricity prices. By checking Figure 12 it
is not possible to see a price level increase with the increase of oil prices therefore a low correlation
is expected. Neither of the scatterplots show a strong correlation and since low consumption during
Christmas time coincided with high oil prices, the oil prices do not seem like a major price driver at
their current change rate. When calculated the correlation was found to be 0.259.
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3.3.6. Natural Gas Prices

In 2016, 16% of the gross energy consumption of Denmark has been provided by natural gas thus
it is assumed that natural gas prices have some significance over electricity prices. Natural gas price
diagrams (Figure 13) look similar to oil price diagrams. The correlation coefficient is found to be 0.293.
As the data frequency is lower for natural gas the graphs look discrete.Energies 2019, 12, x FOR PEER REVIEW 16 of 32 

 

 

Figure 13. Price vs. Natural gas prices. 

3.3.7. Hydro Reservoir Level 

Hydro reservoir level is assumed to be important because it is a common way of storing the 

excess energy. For example if the electricity prices are negative in Denmark due to excess wind, 

Norway can purchase the electricity to pump water to their hydro reservoir level. This effect will be 

more visible when the hydro levels are empty than they were full. The data frequency for hydro 

reservoir level is taken as weekly, therefore the graph looks somewhat discrete (Figure 14). The 

correlation coefficient is found to be C = 0.313. The coefficient is higher than oil and natural gas. 

 

Figure 14. Price vs. Hydro reservoir level. 

4. Forecasts and Results 

The outcome of the project is the artifact which is the software that is used for the forecasting 

also the point forecasts generated for the forecasted time period. In this section point forecasts along 

with the actual values will be shared on graphics.  

The graph regarding the whole forecasting period, 212 days, will be shared. Then six weekly 

graphs will be presented, beginning with the 2 January with five week intervals to dismiss any 

monthly bias. As the weekly graphs will be “zoomed” they will reveal an indication of the actual 

performance of the models. 

One important thing to discuss before getting to the forecasts is that the comparison for the 

actual prices in 2016 and 2017. This is particularly important as 2016 data is used for training, the 

forecasts will try to imitate the training set and carry their characteristics. If there is a significant 

difference between the training set and the test set, then a higher error in the forecasts can be 

expected. 

Figure 13. Price vs. Natural gas prices.

3.3.7. Hydro Reservoir Level

Hydro reservoir level is assumed to be important because it is a common way of storing the excess
energy. For example if the electricity prices are negative in Denmark due to excess wind, Norway can
purchase the electricity to pump water to their hydro reservoir level. This effect will be more visible
when the hydro levels are empty than they were full. The data frequency for hydro reservoir level is
taken as weekly, therefore the graph looks somewhat discrete (Figure 14). The correlation coefficient is
found to be C = 0.313. The coefficient is higher than oil and natural gas.
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4. Forecasts and Results

The outcome of the project is the artifact which is the software that is used for the forecasting also
the point forecasts generated for the forecasted time period. In this section point forecasts along with
the actual values will be shared on graphics.

The graph regarding the whole forecasting period, 212 days, will be shared. Then six weekly
graphs will be presented, beginning with the 2 January with five week intervals to dismiss any monthly
bias. As the weekly graphs will be “zoomed” they will reveal an indication of the actual performance
of the models.

One important thing to discuss before getting to the forecasts is that the comparison for the actual
prices in 2016 and 2017. This is particularly important as 2016 data is used for training, the forecasts
will try to imitate the training set and carry their characteristics. If there is a significant difference
between the training set and the test set, then a higher error in the forecasts can be expected.

In Figure 15, the top graph shows the electricity prices for the year 2016 and below graph shows
the prices for year 2017. The data sets are limited to the forecasting interval for the ease of comparison.
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The mean price level has increased around 25% from comparing 2016 to 2017 (Table 2). The
standard deviation increased around 11%.

Table 2. 2016–2017 descriptive statistics for electricity prices (DKK/MWh).

Year Mean Min Max Standard Dev.

2016 175.82 −100.26 692.12 57.02
2017 219.31 −112.30 870.75 63.90

Looking at Figure 15, prices in January 2016 are very volatile and above average, and after April
they are pretty much at the same level of volatility. In 2017, the volatility is higher and seems to spread
more evenly throughout the year.

4.1. TBATS

Unlike many other models that are widely used, Trigonometric Exponential Smoothing State
Space model with Box-Cox transformation, ARMA errors, Trend and Seasonal Components (TBATS)
is forecasting model that allows multiple, complex and dynamic seasonalities in time series. TBATS
uses trigonometric approach for decomposing the seasonalities which allows for forecasting of much
frequent seasonalties such as daily seasonality. The model also uses maximum likelihood estimation
by least squares method, therefore a need for ad-hoc initial parameters is diminished. In addition,
the method reduces the computational load [32,33]. One assumption using the model is that the error
distribution fits the Gaussian distribution, which is applicable when the level of the data is sufficiently
distant from the origin [34]. One disadvantage of the TBATS model is that it does not allow for any
use with external regressors.

Figure 16 shows the TBATS forecasts against actual data for the complete forecasting period.
Figure 17 shows close-up sections of six different weekly periods, which clearly shows the daily
decomposition pattern seen in decomposition section. Although the model looks repetitive, it seems to
fit the data to a satisfactory degree. At some points, it is seen that TBATS forecast cannot follow the
spikes of the data.
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4.2. Non-Seasonal ARIMA with External Regressors

Autoregressive integrated moving average (ARIMA) is one of the most used forecasting methods
along with exponential smoothing [28]. Autoregression is feeding the past data values as inputs in order
to predict the future values. A non-seasonal ARIMA model is a combination of Autoregression and
a moving average. ARIMA models can also be used with external regressors which is an advantage
over TBATS. Seasonal ARIMA models are not considered in our forecasts as they only support
single seasonality.

In order to capture the seasonality effects in our data, a fit for the seasonalities with Fourier series
will be used [35] and then this data will be fed together with other regressors. “fourier()” function from
forecasting package is utilized in order to fit the seasonalities using a Fourier function. “auto.arima()”
function from the same package is used to make the actual fit along with using additional command
seasonal = FALSE [36].

“auto.arima()” function is an automated algorithm that is used in order to choose the best
coefficients in an ARIMA model and it is a variation of Hyndman and Khandakar [28] algorithm.
It uses unit root tests, and minimization of AIC and MLE to get to the result. AIC as a measure of
goodness of fit. AIC is preferred over other methods as it penalizes complexity while evaluating the
goodness of fit [17].

Figure 18 shows the ARIMA forecasts against actual data for the complete forecasting period.
Figure 19 shows close-up sections of 6 different weekly periods. The model looks less repetitive than
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TBATS with the daily cycles being harder to identify. The forecasts follow the trend and seem to fit the
data well.
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4.3. Artificial Neural Network-Nnetar

Artificial Neural Networks (ANN) are a subgroup of machine learning systems which are
computational systems with a design mimicking the biological neural networks. Just like the regression
models they are fed with the training data and depending on the learning algorithm the ANN adjusts
the outputs without any pre-assumptions. The advantage of ANN’s is that they can adapt to complex
nonlinear systems and they can be used with external regressors [31–35]. A large number of data is
beneficial for an accurate forecasting performance from ANN’s and this is suitable as the training data
sample used in this paper is quite large [36].

Similar to ARIMA models in the application, Fourier modelled seasonalities are used as
external regressors. “nnetar()” function under forecasting package is utilized to make a fit using
an autoregressive ANN. The used network structure contains a feed forward neural network with a
single hidden layer and the activation function is a nonlinear logistic function [33,36].

Figure 20 shows the ANN forecasts against actual data for the complete forecasting period.
Figure 21 shows close-up sections of six different weekly periods. The model looks spikier than others
do and it still contains the daily seasonality. The forecasts follow the trend and seem to fit the data well.
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4.4. Seasonal Naïve (Benchmark)

Naïve method in forecasting is simply assuming that the next forecast is equal to the previous
available data. Seasonal naïve is a variation where the forecast is equal to the data from the last season,
for example, a seasonal naïve forecast for the electricity price of this Sunday assumes that it is equal to
the previous Sunday. This method can be further enhanced with the adoption of a drift coefficient if
the level of the data is increasing or decreasing [17].

In this research paper, seasonal naïve method is used as a benchmark, meaning if the other tested
models are performing worse than the seasonal naïve method it is possible to conclude that they are
not working properly. As the implemented models are more complicated it is expected that they
outperform the seasonal naïve.

Figure 22 shows the Seasonal Naive forecasts against actual data for the complete forecasting
period. Figure 23 shows close-up sections of six different weekly periods. The model is carrying the
1 week old data as a forecast which is clearly visible in Figure 22.
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4.5. Evaluation and Comparison of Forecasts

In the evaluation of the forecast, approximately seven months of forecast is used, more
specifically 212 days and 5088-point forecasts were considered starting with 1 January 2017 in all
forecasting models.

For the evaluation of forecasting performance, different error indications can be defined and used.
As electricity prices include positive, negative and zero values using percentage errors do not yield
meaningful results. More specifically percentage errors result infinity when the actual data is 0. Instead
of percentage errors, scale-dependent or scaled errors may be used.

In this paper, error will be indicated in two forms, as root mean squared error (RMSE) and
as mean absolute error (MAE). A forecast that focuses on minimizing MAE will yield forecasts of
median whereas minimizing RMSE will yield forecasts of mean [7,33]. Using an expanding forecast
for 7 months 212 forecasts are generated with 24 data points in each one. In calculation of the accuracy,
this yields us 212 error values calculated as seen below. In Table 3, the values shown are the mean,
minimum, maximum and standard deviation of these 212 accuracy values.

Formulas for calculating RMSE and MAE can be found below. In the formulas T is the forecasting
span, Ph is the actual value and P̂h is the forecasted value. In our calculations “accuracy()” function
from the forecast package is utilized. This function calculates the mean error, MAE, mean absolute
percentage error, mean absolute seasonal error, mean percentage error and RMSE automatically.
Then the mean minimum and maximum values of the related errors were taken, to reach to the values
at Table 3:

RMSE(T=24) =

√
1
T ∑T

h=1 (Ph − P̂h)
2, (5)

MAE(T=24) =
1
T ∑T

h=1

∣∣Ph − P̂h
∣∣, (6)

Table 3. Statistical comparison of forecasts.

Model
RMSE MAE

Mean Min Max Std Dev Mean Min Max Std Dev

TBATS 45.01 11.87 210.13 29.56 37.51 9.86 177.77 24.71
Non-Seasonal ARIMA 39.53 7.95 215.22 26.85 33.24 6.01 212.11 23.91

ANN-nnetar 48.41 7.27 152.07 28.70 41.41 5.53 132.42 26.02
Seasonal Naïve (Benchmark) 65.95 3.43 305.62 50.20 52.53 3.01 295.19 43.45

From Table 3 and the mean values it is seen that all the models have outperformed the seasonal
naïve benchmark significantly. It is also inspected that best forecasts are achieved with Non-Seasonal
ARIMA model. It is interesting to see that ANN-nnetar was outperformed by TBATS as ANN uses
external regressors. It is intuitive to assume ANN would outperform a method that doesn’t use any
regressors. This shows that nnetar might not be suitable for this kind of forecasting and a more
complex ANN model should be more beneficial in terms of forecasting performance. On the other
hand, nnetar model has the lowest maximum error and depending on the error function it might be a
preferred model. ANN model could be more useful in a setting where he cost of an error increases
exponentially as we get further away from the actual value. In addition, it can be speculated that as
the amount of data used gets bigger ANN model could yield better mean values. Further to these low
maximum errors might suggest that it is adapting faster to errors than other models and it could be
more successful over spiky periods.

4.6. Backwards Feature Elimination

Backwards feature elimination is a variable reduction method that is used to minimize the number
of external regressors, optimize the computation time and minimize the error. Assuming there are
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n = 7 regressors (excluding Fourier seasonalities and dummies) the ARIMA forecast will be run with
n − 1 = 6 regressors and each time a different regressor will be eliminated from the forecast and
the error will be evaluated. This will allow us to see if there are any variables that are unnecessary,
disruptive or that are extremely important for better forecasts [37]. Benchmark for comparison will be
the Non-Seasonal ARIMA with all seven regressors (Table 4).

Table 4. ARIMA with seven regressors.

Excluded Variable
RMSE MAE

Mean Min Max Std Dev Mean Min Max Std Dev

Benchmark ARIMA 39.53 7.95 215.22 26.85 33.24 6.01 212.11 23.91
Temperature 38.88 7.15 153.32 20.61 31.96 5.97 120.29 17.35

Consumption Prognosis 45.41 5.44 215.35 27.82 38.49 4.46 211.09 25.04
Production Prognosis 42.04 7.61 236.63 30.10 34.71 6.10 233.27 26.55

Wind Prognosis 44.88 9.29 233.06 33.28 37.19 8.14 229.41 29.41
Oil Price 41.04 4.85 215.49 26.77 34.52 3.81 212.38 23.88

Natural Gas Price 41.06 4.85 215.59 26.80 34.56 3.80 212.49 23.90
Hydro Res. 41.00 4.86 215.58 26.75 34.50 3.81 212.47 23.84

Looking at the error results for elimination the only one better than the benchmark is actually the
temperature variable. There is 1.6% improvement in the mean error for RMSE and 3.85% improvement
in mean MAE error. There is significant improvement in both RMSE and MAE maximum error
respectively 28.8% and 43.4%. Improvement in standard deviation is also significant and it is 23.2% in
RMSE and 27.4% in MAE.

This shows us that the variables chosen actually contribute to the regression model except for
the temperature. As discussed, temperature has a low correlation but inspecting the scatterplot it was
argued that a knot at 0 degree might be useful. Before removing the variable completely, implementing
a knot could prove useful.

By making the following assumption, upon exclusion, the variable that results in the greatest
increase in error has greater contribution to forecasts, it can be inferred which variable that has the
greater importance. In terms of the different variables inspecting the mean error values, it is seen that
consumption prognosis has the greatest positive effect on the forecasts. Consumption is followed by
wind prognosis and production prognosis in terms of the positive effect of variables. Oil price, natural
gas price and hydro reservoir levels have almost the same effect on forecasts and their effects can be
seen as less significant than production prognosis.

In order to place a knot at 0 degree and only consider the data below 0 degree, all data points
greater than 0 will be set to 0 and the “auto.arima()” regression will be repeated for the error comparison.
Although having the Production Prognosis variable benefited the forecast, a knot at 1000 MWh can be
placed and the regression can be repeated to see if there is an improvement.

Inspecting the error values on Table 5 it is seen that the best result is achieved with temperature
excluded and without a knot at Production Prognosis. Temperature variable might not be contributing
the forecasts as it may already be included in the consumption prognosis variable. Based on the
improved knowledge about the variables shown on Table 5 the forecasts with ideal variables can be
repeated for ANN also.

Table 5. Error values and variables excluded for ARIMA.

Model
RMSE MAE

Mean Min Max Std Dev Mean Min Max Std Dev

Benchmark ARIMA 39.53 7.95 215.22 26.85 33.24 6.01 212.11 23.91
Temperature Excluded 38.88 7.15 153.32 20.61 31.96 5.97 120.29 17.35
Temperature with Knot 39.52 8.03 215.31 26.87 33.22 6.04 212.18 23.93
Production Prognosis

with Knot 40.96 9.58 235.27 30.20 34.04 7.91 232.13 26.49
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Table 6 shows that ANN mean performance also increased, although it is still not as good as a
TBATS forecast. Excluding temperature from the regressors, ARIMA has seen great improvement in
the maximum error and it is better than ANN in terms of MAE and almost the same with it in terms of
RMSE. For this dataset, it can be concluded that not using temperature is beneficial.

Table 6. Error Values and variables excluded for TBATS, ARIMA, ANN.

Model
RMSE MAE

Mean Min Max Std Dev Mean Min Max Std Dev

Benchmark TBATS 45.01 11.87 210.13 29.56 37.51 9.86 177.77 24.71
Benchmark ARIMA 39.53 7.95 215.22 26.85 33.24 6.01 212.11 23.91

Benchmark ANN 48.41 7.27 152.07 28.70 41.41 5.53 132.42 26.02
ARIMA (Temp.

Excluded) 38.88 7.15 153.32 20.61 31.96 5.97 120.29 17.35

ANN (Temp. Excluded) 47.57 8.33 151.39 29.29 40.44 7.10 132.27 26.49

4.7. Combination Forecasts

Combination forecasts is the collection of methods that combine, average or select between
multiple forecasts in order to generate a new forecast. Combining forecasts is not only beneficial in
order to get a better forecast but it is also beneficial in order to minimize the risk of using an individual
forecasting method [7].

To further improve the forecasts, combining the results of the three individual forecasts is possible.
In this paper two methods for combining the forecasts will be used. One is the simple averaging
method, in which the forecasts generated from the individual models will be averaged. This will be
done for all 4 possible combinations then RMSE and MAE will be calculated as was done with the
individual forecasts.

In the second method, a selection algorithm that uses ANN will be utilized. This will be done by
using a single neuron network with Excel. The starting weights will be 1/3, the same as simple
averaging. The neural network is run through each hourly prediction and the learning rate is
experimentally found to be 0.0000001. Actual price data will be calculated with the coefficients
that were calculated for hour 0 for each day and although the coefficients will be updated for next
calculations, they will not be used hourly in order to prevent anachronism. Error will be calculated the
same way as it was done previously to gather 212 daily error values and the RMSE and MAE will be
calculated for these values.

In Table 7, the performance results of different simple averaging combinations can be seen.
From the means of the error values it is seen that the combinations that include ARIMA has surpassed
all the single forecasts. The lowest maximum error is still observed at the ANN single forecast. The best
forecast performance is the combination of all three forecasts and the mean error has improved by
7% in terms of RMSE and 9.6% in terms of MAE compared to the best individual forecast. Also, the
standard deviations are lower in combination forecasts than the individual forecasts. Even with a basic
combination method such as simple averaging significant decrease in errors and standard deviation
were seen.

Table 7. Simple averaging method.

Model
RMSE MAE

Mean Min Max Std Dev Mean Min Max Std Dev

Benchmark ARIMA 39.53 7.95 215.22 26.85 33.24 6.01 212.11 23.91
Benchmark TBATS 45.01 11.87 210.13 29.56 37.51 9.86 177.77 24.71
Benchmark ANN 48.41 7.27 152.07 28.70 41.41 5.53 132.42 26.02

TBATS+ANN 40.21 8.88 174.22 25.71 33.46 7.53 136.30 21.50
ANN+ARIMA 38.05 8.07 168.88 24.06 31.92 5.90 165.67 21.14

TBATS+ARIMA 37.50 9.94 176.41 26.41 31.11 8.10 162.73 21.86
TBATS+ANN+ARIMA 36.44 8.04 164.26 24.34 30.06 6.63 148.23 20.34
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In Table 8 performance of combination of three individual forecasts using the ANN method can
be seen. The performance of combination ANN is better than all the individual forecasts in terms of
RMSE and MAE means. However surprisingly it is not better than simple averaging. The reason ANN
did not outperform simple averaging is because the coefficients are calculated as hourly but they can
be used as daily, meaning there is one coefficient for 24 h of the day. During trials with learning rates
of ANN it was seen that the larger the learning rate the worse the performance was, meaning given a
small learning rates error will be converging to simple averaging values. If the calculations could be
used hourly than the benefit of the ANN will be much significant, up to 25% reduction in RMSE could
have been observed.

Table 8. ANN method results.

Model
RMSE MAE

Mean Min Max Std Dev Mean Min Max Std Dev

Benchmark ARIMA 39.53 7.95 215.22 26.85 33.24 6.01 212.11 23.91
Benchmark TBATS 45.01 11.87 210.13 29.56 37.51 9.86 177.77 24.71
Benchmark ANN 48.41 7.27 152.07 28.70 41.41 5.53 132.42 26.02

Combination ANN 37.37 8.07 166.31 25.04 31.10 6.38 153.93 21.40

Sharpening of the statistical analysis was based on the Diebold-Mariano (DM) comparing test on
predictive accuracy [38,39]. The null hypothesis, according to the test, was that Forecast 1 and Forecast
2 have the same accuracy. The alternative hypothesis is that Forecast 2 is less accurate than forecast 1
(Table 9).

Table 9. Comparing predictive accuracy via the Diebold-Mariano test.

Forecast 1 Forecast 2 p (power = 1) Result

Arima Tbats 0.002476 Null Hypothesis is rejected
Arima ANN 0.00005125 Null Hypothesis is rejected
Tbats ANN 0.02377 Null Hypothesis is rejected

TBATS+ANN Arima 0.5596 Failed to Reject Null Hypothesis
ANN+ARIMA Arima 0.1057 Failed to Reject Null Hypothesis

TBATS+ ARIMA Arima 0.006285 Null Hypothesis is rejected
TBATS+ANN+ARIMA Arima 0.0013 Null Hypothesis is rejected

Alpha value is 0.05. If p is less than alpha, the null hypothesis is rejected. If p value is less than
alpha, we see that Forecast 1 is more accurate than forecast 2 in a statistically significant way. Power is
related to the loss function. Power of 2 is similar to a squared error, RMSE and power of 1 is a loss
function that is not exponential, similar to comparing MAE error (Table 10).

Table 10. Comparing predictive accuracy through the Diebold-Mariano test (Power of 2).

Forecast 1 Forecast 2 p (power = 2) Result

Arima Tbats 0.007324 Null Hypothesis is rejected
Arima ANN 0.003557 Null Hypothesis is rejected
Tbats ANN 0.201 Failed to Reject Null Hypothesis

TBATS+ANN Arima 0.4896 Failed to Reject Null Hypothesis
ANN+ARIMA Arima 0.03984 Null Hypothesis is rejected

TBATS+ ARIMA Arima 0.08277 Failed to Reject Null Hypothesis
TBATS+ANN+ARIMA Arima 0.009754 Null Hypothesis is rejected

The results confirm that the forecasting accuracy of TBATS+ANN+ARIMA model is statistically
significant regardless of the loss function power. In the individual forecasts, ARIMA has better
forecasting accuracy, and the statistical significance is shown by the DM test. It should be noted
that the “dm.test” function is used in the forecast package in R [40]. It is seen that both combination
methods have provided beneficial results in terms of error reduction, risk mitigation and to decrease the
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maximum error and standard deviation. It can also be argued that a properly set up ANN or a complex
method applied well may yield better results than a simple averaging method for hourly forecasts but
for daily forecasts or longer intervals using simple averaging for combination is more beneficial.

5. Conclusions

Three goals were determined and examined in this research, and they can be listed as below:

(1) Determine the best forecasting method out of the three individual methods
(2) Suggest and implement ways for improving the individual forecasts
(3) Demonstrate a solid forecasting methodology

To satisfy the first goal, three forecasting methods were investigated for electricity prices in
DK-West during the first 212 days of 2017. Electricity prices from 2016 have been used to train the
forecasting models. The three individual models for forecasting that were used were TBATS, ARIMA
and ANN. ARIMA and ANN methods are used with external regressors. Among the three individual
models the best performance in terms of mean error is provided by ARIMA. All three models have
surpassed the benchmark seasonal naïve model. In terms of providing the lowest maximum error
ANN have provided the best results among the three models.

Significant improvements were achieved over the individual forecasts achieving the second
goal by backwards variable elimination and combination forecast methods. An analysis on external
regressors using backwards elimination method have been realized and it is seen that exclusion of
temperature is beneficial to forecasting models. The importance of external regressors that have
positive effect on the forecasting models in an order from the most important to the least can be listed
as consumption prognosis, wind prognosis, production prognosis, natural gas prices, oil prices and
hydro reservoir levels. Upon exclusion of temperature from the external regressors of the ARIMA
model an improvement of 1.6% in RMSE and 3.85% in MAE is achieved and for these values the
maximum error have decreased by 28.8% and 43.4%. Standard deviation has also improved, 23.2% in
RMSE and 27.4% in MAE.

Further to variable analysis, combination forecasting methods were also implemented.
Combination forecasts are beneficial as they reduce the risks of depending on a single forecasting
method. Two methods that were implemented were simple averaging and artificial neural networks
and both methods surpassed the individual forecasting methods. Using the simple averaging method
the gain in the RMSE error is 7% and while with the combination ANN it is 25%. Both methods have
also decreased the standard deviation and maximum error value in comparison to ARIMA model.
Due to the forecasting range, it was observed that simple averaging yielded better results than ANN
and it is best to use all the individual forecasts in simple averaging to get the best results.

The third goal is more general and creating road map for a proper forecast is beyond the aim of
the project, however the project sets a solid example in terms of forecasting methodology. To sum up
the steps followed in this project, first the data at hand is inspected using various methods such as
decomposition and ACF analysis. Then external regressors are selected purposefully and related data
are collected and evaluated using correlation scatterplots. Thereafter suitable forecasting methods
were identified and implemented. Error evaluation method is determined depending on the data
properties, and individual forecasting methods are therefore compared. To improve the individual
forecasts backwards feature elimination and combination forecasts are implemented.
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