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Abstract: The winter season in Nanjing is from December to February, with extremely low
temperature and high humidity due to seasonal snowfall. During these extreme cold climatic
conditions, plants have to survive severe heat stress conditions, even if they are being kept in
greenhouses. The objective of this study was to investigate a heating system that can provide
heat directly to the root zone instead of heating the entire greenhouse, which is a viable option to
reduce energy consumption. Root zone heating could be an effective alternative for the sustainable
development of plants during the winter. A novel type of root zone heating system was applied to
evaluate the energy consumption during different greenhouse ambient temperature conditions, the
effects of root zone heating systems on pepper plant morphology, and heat transfer rates to plant
canopy in the greenhouse. The temperature treatments in root zone heating system were T-15, T-20,
T-25, T-30, and a control treatment (TC) at 15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C, respectively, while TC
received no heat. A simulation study was carried out to validate the root zone temperature. The
results of the current investigation revealed that energy consumption has an inverse relationship
to the ambient temperature of the greenhouse, while temperature gradients to the plant canopy
observed from the lower to the upper part of the plant and the upper canopy experienced less
temperature fluctuation as compared to the lower part of the plant. The results also showed that
treatment T-20 had the maximum in terms of the leaf dry weight, stem diameter, and the number of
leaves, while T-25 showed the maximum root dry weight and stem dry weight; T-30 and T-15 had
minimum dry weights of plant segments among all treatments. Control treatment (TC) showed a
minimum dry mass of plant. The root zone heating with optimal root zone temperature was found
to be a viable and adaptable option as this leads to improved energy consumption patterns for the
sustainable growth and development of plants in greenhouses during extremely low temperatures.

Keywords: energy consumption; sustainability; root zone; heating system; heat transfer; plants
development; peppers; plant morphology
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1. Introduction

Agriculture, as a production-oriented division, requires energy as an important input. The
agricultural industry uses energy directly as electricity or fuel to drive machinery and equipment and
for heating and cooling purposes. The concept of sustainable agriculture is geared towards increasing
crop production and sustaining economic stability while reducing the exploitation of limited natural
assets and harmful environmental effects. The Yangtze River Delta is one of China’s most advanced,
dynamic, densely inhabited industrial areas and is growing into a prominent world-class metropolitan
area and performing a vital role in China’s commercial and social growth [1]. It is famous for
the intensive cultivation of crops [2] and faces extreme low temperature for one month with poor
light and weather conditions. These severe conditions have a significant impact on horticultural
productivity in non-heated greenhouses [3]. Greenhouse heating systems are needed for sustaining
ideal ambient temperature conditions for the sustainable growth of plants and vegetables. Heating
the root zone is a viable alternative instead of heating the whole greenhouse. The benefits of root
zone heating have been attested to by many researchers. The quality and growth of crops are
influenced by the soil temperatures in field as well as greenhouse conditions. Some other factors of the
environment, i.e., temperature and light, also influence the growth and development of plants [1–4].
The growing medium acts as a substrate to stabilize and conserve the plant, while also performing
the role of a basin conserving various nutrients, water, and heat [5]. Root zone temperature (RZT)
is self-descriptive, giving the heat within the roots [6]. RZT influences the three core features of
the growing medium, specifically physical, chemical, and biological, in disparate ways. Meanwhile,
keeping the surroundings of the root zone consistent with the comfort zone encourages plant growth
with efficient photosynthesis and reduced stress [5]. By controlling RZT suitably, the cultivation of
tropical plants may be accomplished at an ambient air temperature of 7 ◦C with an RZT of 21 ◦C [7].
Cucumber, sweet pepper, and tomato plants were grown for 10 days at an RZT of 10 ◦C and 35 ◦C;
the influence of root temperature was relatively small at low ambient air temperature [8]. The root zone
temperature has a dynamic impact on the growth and development of various plants. Richards et al. [9]
also accomplished numerous trials to investigate optimum, least, and extreme RZT for diversified
plants. They noticed that root zone temperature had a significant impact on the dry weight and height
of plants, although this impact on the growth of plants was partial.

The foremost benefits of a root zone heating system are preserving energy and attaining optimal
growth. Jenkins et al. [10] studied the association between optimal plant growth and two kinds of
heating structures in commercial-scale greenhouses, outer heating systems and plant top heating
systems. They concluded that plant top heating systems consume almost 25% less energy compared to
the outer heating system. The ambient temperature in a greenhouse might be decreased by 10 ◦C by
sustaining optimal RZT [11]. The reduction in ambient temperature minimizes the temperature
variation between the greenhouse internal and external walls, which significantly reduces the
consumption energy. Likewise, this helps to attain optimal root temperatures and is cost-effective
compared to directly heating the root zone because of the lower demand for fuel [12]. Conversely,
it has been observed that bench-top heating systems cannot meet the heat requirements of greenhouses;
as a result, the temperature is unequally distributed in the canopy [11]. In the case of ambient
humid conditions and uncontrolled RZT, highly concentrated light and extreme temperatures hamper
the growth of vegetables [13,14]. The morphology of the root depends on its growth rate and
maturing. Transformations in the morphology of the root are apparent when there are high or
low root temperatures. Optimal root temperature treatment higher than 30 ◦C, depending on the type
and condition of the plant, results in faster cell partition and maturing; with brown roots, filamentous,
less diameter, non-succulent, more superb branches and lateral roots closer to the tips of growth
and fewer curls on the roots as compared to plant roots cultivated at root temperatures lower than
30 ◦C [15–17]. Nielsen [18] found efficient stability in water, carbohydrates, and nutrients between
the root and shoot. Reduced growth of roots and maturing at extreme root zone temperatures lead to
reduced growth of shoots [16,17].
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Pepper development at different root-zone temperatures has not been assessed before in hot aerial
environments. Though they had shoot temperatures of 23 ◦C in the day and 19 ◦C at night, pepper
plants experienced improved development with a rise in the temperature of the root zone to 30 ◦C;
however, an adverse response may occur in leaf areas and in terms of dry weight due to a rise in RZ
temperature to 36 ◦C [19,20].

In Nanjing, winter lasts from December to February and is marked by cold temperatures, high
humidity, and occasional snow. January is the coldest month, with a low temperature dropping to
−7 ◦C. In December and February, the average low temperature is 0 ◦C. During these extreme cold
conditions, plants experience temperature stress even in greenhouses. To mitigate this problem, there
is a need for new investigations into adaptable heating systems; root zone heating is also a good option
to support plant life during these cold months and minimize energy consumption. A novel type of root
zone heating system was used to verify its effects on the morphology of pepper plants in greenhouses
with the objective of controlling greenhouse RZT during extreme winter conditions. The main purpose
is to verify the effects of root zone heating on the development of winter-grown green pepper plants
and extract valuable information that could be beneficial to farmers in cold regions of China. Moreover,
the objective of this study is to optimize the root zone temperature, which could significantly improve
pepper growth during extremely low temperatures in winter.

2. Materials and Methods

2.1. Experimental Setup

Experiments were conducted at the Engineering College, Nanjing Agricultural University, in a
greenhouse. In this study, five different temperature conditions with three replicates were tested
to check the morphological effects of root zone heating on winter-grown pepper plants. These
treatments were T-15, T-20, T-25, T-30, and control treatment (TC). Treatment T-15 used a 15 ◦C
root zone temperature, T-20 was 20 ◦C RZT, T-25 was 25 ◦C RZT, T-30 was 30 ◦C RZT, and TC was
used as the control treatment without root zone heating. For this study, 15 insulated growing pots
were used for root zone heating and investigating the heat transfer rates to different canopy parts
of the pepper plant during different ambient temperature conditions and the morphological effects,
as shown in Figure 1c,d. To observe and regulate the current root zone heating system, a control
system was also used, as shown in Figure 1, Images A and B. The sensor [21,22] probe was a PT100
model WZP-001PC with a measuring range of −200–500 ◦C, made of stainless steel, with an accuracy
of ±0.5 (Nanpac, Chongqing, China). It was fixed near the root zone inside the soil at a depth of 13 cm,
as shown in Figure 1a. The data collection on hourly root zone temperature was conducted in the
middle point of the growing medium, which corresponded with the root zone. Thermocouple model
REX-C100FK02 (RKC Instrument, Tokyo, Japan), measuring a temperature range of 0 to 400 ◦C with an
accuracy of ±0.5 and working voltage of 220 V, was used to control and measure the soil temperature
differences. Infrared Thermometer model AS852B with measuring temperature range −50–750 ◦C,
measuring accuracy ±2% and powered by a 9 V battery (Smart Sensor, Dongguan, China), was used to
collect hourly data on the plant canopy temperature. This experiment was conducted during extreme
low ambient temperatures (lowest ambient temperature −1 ◦C). The temperature set points on the
temperature control system for the root zone were according to the treatment plan. Whenever the
RZT crossed the set temperature of the controller, it cuts off the power to the heating source. The heat
transfer to root zone, to stem of plants, and finally to leaves of a plant was investigated and carried out
over three days. The treatments for the heating period continued for 32 days. Greenhouse ambient
temperature readings were also collected hourly. Natural ventilation was created when required by
rolling up the plastic cover on the two sides of the greenhouse.
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Figure 1. Root zone heating system: (a) Heating system wire diagram; (b) Thermocouples for heating
control; (c) Heating pot with a heating source; (d) Experimental heating system.

2.2. Plant Material and Growth Conditions

Experiments were conducted from 25 December 2017 to 5 February 2018 using pepper cuttings
with the same height, stem diameter, and the number of leaves. They were transplanted into the root
zone with a base area of 289 cm2 (17 × 17cm) and top area 676 cm2 (26 × 26 cm) while the height of
pot was 26 cm. These cuttings were chosen from a local nursery. Micronutrients were provided to all
plants of all treatments, and necessary irrigation was applied. All initial data on the number of leaves
and plant height were recorded. The growing medium used for the current investigation was coconut
peat (Galuku Pvt. Ltd., Colombo, Srilanka). After transplanting, all plants were left for one week to
achieve homogeneity in the root zone.

Root zone heating was provided to all plants according to the treatment plan, and this heating
process lasted for 32 days. After five weeks all plants were removed from heating pots for further
investigation. Roots and leaves with branches were separated from plants. The height of the stem, root
height, number of leaves, and fresh weight were recorded. All the separated segments were oven-dried
for 72 h at 70 ◦C to obtain the dry mass.

2.3. Energy Consumption

During this experimental investigation, mean daily energy consumption was also calculated
using Equation (1) for more than four weeks. The purpose was to calculate the energy consumption of
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all heated treatments separately during different greenhouse ambient temperature conditions. Specific
energy consumption for root dry mass was calculated using Equation (2).

Mean Daily Energy Consumption (kWh) = (Power of Heating Source)·(Operational Hours) (1)

Specific Energy Consumption (kWh/g) = Total Energy Consumption/Dry Mass (2)

2.4. Simulation

A simulation study was also performed to check the heat flux throughout the pot of growing
media. The COMSOL Multiphysics 5.1a Package software (Comsol, Beijing, China), which has
different kinds of heat transfer models, including heat transfer in porous media, was used in the
current simulation study and the Porous Media Module was used for heat transfer during this
investigation [23–26]. The interval analysis time was one hour. The heating source remained switched
on for six hours and switched off for the next six hours. Heat exchange between the environment
and the system was also permitted. The main equation for the present study is derived from the heat
transfer in the porous media module:

(
ρCρ

)
e f f

∂T
∂t

+ ρCρu.∇T +∇.q = Q + Qvd (3)

In the above equation ρ = Soil density (kg/m3), Cp = specific heat capacity (J/(kg·K)), T = absolute
temperature (K), u = field velocity, q = conductive heat flux (W/m2), α = thermal expansion coefficient
(1/K), Q = additional heat sources (W/m3), and Qvd = Viscous Dissipation.

2.5. Statistical Analysis

For this study complete randomized design was considered as the experimental design with three
replications. For data processing and generation of graphs, statistical analysis Excel 2010 and Statistix
8.1 were used. Analysis of difference (ANOVA) was applied to statistically assess the significance
across all behaviors, and the Tukey HSD (honestly significant difference) multiple comparison tests
with an alpha value of 0.05 was used, which is one of several tests that can be used to determine which
among a set of means differ from the rest.

3. Results and Discussion

Figure 2 illustrates the hourly heat flux throughout the pot in a growing medium. It can be
observed in image A that as the heating process initiated the initial average temperature was 2 ◦C. The
simulated results show ab increased root zone temperature in image A of Figure 2 after one hour. This
root zone temperature incline continued up to image I in Figure 2, while the heat flux throughout the
pot showed a continuous expansion, which can be observed during the last hour, as shown in image
M of Figure 2. Figure 3 illustrates the correlation of the experimental mean root zone temperature
and simulated root zone temperature. The increasing trend of root zone temperature in both methods
is shown in Figure 3 from 12 p.m. to 6 p.m., while after this increase the experimental root zone
temperature showed a slight decline from 6 p.m. to 12:00 a.m. The declining trend of simulated root
zone temperature started from 8 p.m. to 12 a.m., and the maximum simulated root zone temperature
was found at 8 p.m., while the maximum experimental root zone temperature was at 6 p.m.

The temperature analysis of the root zone of different heated treatments, unheated control
treatment, and the ambient temperature is presented in Figure 4 and Table 1. The data were collected
from 12:00 p.m. until midnight (0:00) and, during this time period, the ambient temperature showed
a continuously decreasing trend with extreme values of 3.6 ◦C and 0.3 ◦C. Each plant was supplied
with an identical power source to increase the root zone temperature to 15 ◦C for T-15, 20 ◦C for
T-20, 25 ◦C for T-25, and 30 ◦C for T-30, respectively. Figure 4 shows that the switch-off time was
different depending on the treatment plan, but every plant root zone showed a similar trend in
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temperature. Treatments T15, T20, T25, and T30 attained the required temperature state after 3, 4,
and 5 h, respectively. It was clear that treatments T20 and T25 had the same temperature at 9 p.m. and
showed the same trend thereafter, while the root zone temperature of the control treatment showed a
decreasing trend similar to that of ambient temperature.
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Figure 2. Hourly simulated heat flux in root zone heating pot over 12 hours of heating. Note:
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Figure 4. Temperature analysis in the plant root zone.

Table 1. Hourly root zone temperature variation analysis. The values presented in the table are the
mean ±SD (standard deviation).

Time

Root Zone Temperature (◦C)

Non-Heated Heated

TC T-15 T-20 T-25 T-30

12:00 4.7 ± 0.11 4.6 ± 0.17 4.5 ± 0.20 4.7 ± 0.11 4.6 ± 0.22
13:00 4.4 ± 0.11 6.1 ± 0.12 6.4 ± 0.17 6.2 ± 0.20 6.5 ± 0.10
14:00 4.2 ± 0.20 9.0 ± 0.10 9.0 ± 0.26 9.1 ± 0.27 9.3 ± 0.26
15:00 3.9 ± 0.14 15.0 ± 0.30 15.0 ± 0.20 15.0 ± 0.3 15.0 ± 0.31
16:00 3.3 ± 0.30 14.5 ± 0.26 19.9 ± 0.60 20.1 ± 0.26 19.9 ± 0.35
17:00 3.1 ± 0.10 14.3 ± 0.17 19.0 ± 0.27 24.9 ± 0.35 25.0 ± 0.43
18:00 3.0 ± 0.11 13.6 ± 0.20 17.8 ± 0.20 23.0 ± 0.26 30.0 ± 0.39
19:00 2.8 ± 0.09 12.7 ± 0.15 16.6 ± 0.11 21.0 ± 0.54 27.1 ± 0.43
20:00 2.6 ± 0.12 11.4 ± 0.40 14.0 ± 0.44 18.1 ± 0.34 25.0 ± 0.36
21:00 2.3 ± 0.11 10.0 ± 0.43 12.6 ± 0.11 16.1 ± 0.12 21.3 ± 0.47
22:00 1.5 ± 0.15 8.4 ± 0.12 10.0 ± 0.10 14.0 ± 0.43 18.1 ± 0.12
23:00 1.1 ± 0.11 7.1 ± 0.17 9.2 ± 0.20 12.1 ± 0.14 15.0 ± 0.32
00:00 1.0 ± 0.12 6.2 ± 0.30 8.5 ± 0.35 10.3 ± 0.20 12.9 ± 0.13

The analysis of plant canopy temperature under the result of root zone heating at different
temperatures is presented in Figure 5. The root zone heated with different temperature treatments had
a different temperature at different levels as the whole plant was divided into three parts: the lower
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canopy, middle canopy, and top canopy. The lower canopy got more heat as compared to the middle
and top. The temperature trend (incline versus decline) is similar in all three parts, as can be observed
from Figure 5. The maximum temperature values were found in the lower canopy of T-30, followed
by T-25, while the minimum values were found in control treatment TC with no heating system. The
results of plant canopy heat distribution also illustrate that, as the ambient temperature showed a
continuous drop, the canopy temperature of control treatment also showed a continuous decline.
According to the root zone temperature treatment plan, all treatment temperature values of all parts
of the plant canopy were found to be below the set temperature. The maximum temperature of the
lower canopy was 16 ◦C, found at 6 p.m. in T-30, while the minimum temperature of the lower canopy
was 1 ◦C, found at 12 a.m. in TC. The maximum temperature of the middle canopy was 10.72 ◦C,
established at 6 p.m. in T-30, and the minimum temperature of the middle canopy was 1 ◦C, found at
12 a.m. in TC. The maximum temperature of the top canopy was 10.02 ◦C, observed at 6 p.m. in T-30,
and the minimum temperature of the top canopy was 1.16 ◦C, found at 12 a.m. in TC.

Energies 2019, 12, x FOR PEER REVIEW 8 of 16 

 

The analysis of plant canopy temperature under the result of root zone heating at different 214 
temperatures is presented in Figure 5. The root zone heated with different temperature treatments 215 
had a different temperature at different levels as the whole plant was divided into three parts: the 216 
lower canopy, middle canopy, and top canopy. The lower canopy got more heat as compared to the 217 
middle and top. The temperature trend (incline versus decline) is similar in all three parts, as can be 218 
observed from Figure 5. The maximum temperature values were found in the lower canopy of T-30, 219 
followed by T-25, while the minimum values were found in control treatment TC with no heating 220 
system. The results of plant canopy heat distribution also illustrate that, as the ambient temperature 221 
showed a continuous drop, the canopy temperature of control treatment also showed a continuous 222 
decline. According to the root zone temperature treatment plan, all treatment temperature values of 223 
all parts of the plant canopy were found to be below the set temperature. The maximum temperature 224 
of the lower canopy was 16 °C, found at 6 p.m. in T-30, while the minimum temperature of the lower 225 
canopy was 1 °C, found at 12 a.m. in TC. The maximum temperature of the middle canopy was 10.72 226 
°C, established at 6 p.m. in T-30, and the minimum temperature of the middle canopy was 1 °C, found 227 
at 12 a.m. in TC. The maximum temperature of the top canopy was 10.02 °C, observed at 6 p.m. in T-228 
30, and the minimum temperature of the top canopy was 1.16 °C, found at 12 a.m. in TC. 229 

 230 

Figure 5. Temperature analysis of plant lower, middle, and top canopy. 231 

Figure 6 illustrates the total energy consumption over a month. All treatments had different 232 
values of energy consumption depending on the ambient temperature. The results showed that if the 233 
ambient temperature was higher, the energy consumption was lower, while a decrease in ambient 234 
temperature led to an increase in energy consumption. The ambient temperature trend results 235 
illustrate that from 3 January to 8 January there was a minor fluctuation, but a sharp incline in the 236 
ambient temperature could be observed from 9 January until 13 January. Similarly, the energy 237 
consumption during this period also showed a similar trend to the ambient temperature. In the 238 
period from 14 January to 22 January the ambient temperature dropped from 17.3 °C to 3.7°C, when 239 
there was the lowest energy consumption because of the higher ambient temperature; during this 240 
period T-15 and T-20 had no energy consumption because the heating was not required. The lowest 241 
energy consumption was also found during this period. 242 

Figure 5. Temperature analysis of plant lower, middle, and top canopy.

Figure 6 illustrates the total energy consumption over a month. All treatments had different values
of energy consumption depending on the ambient temperature. The results showed that if the ambient
temperature was higher, the energy consumption was lower, while a decrease in ambient temperature
led to an increase in energy consumption. The ambient temperature trend results illustrate that from
3 January to 8 January there was a minor fluctuation, but a sharp incline in the ambient temperature
could be observed from 9 January until 13 January. Similarly, the energy consumption during this
period also showed a similar trend to the ambient temperature. In the period from 14 January to
22 January the ambient temperature dropped from 17.3 ◦C to 3.7◦C, when there was the lowest energy
consumption because of the higher ambient temperature; during this period T-15 and T-20 had no
energy consumption because the heating was not required. The lowest energy consumption was also
found during this period.

Figure 7 shows the effects of the root zone heating system on plant growth. The analysis was
performed for green pepper plants treated at five different RZT (15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C and at
the ambient RZT TC) for five weeks. The root fresh weight (RFW) was minimal in plants in the
TC treatment, and the maximum RFW was found in T-25 group plants. Treatment T-20 had lower
RFW compared to T-25, but higher RFW compared to T-15, T-30, and Tc. The maximum root dry
weight (RDW) was obtained in T-25, and the minimum RDW was found in TC. Treatment T-20 had
a RDW of 0.47 g, which was less than T-25, while T-20 RDW was higher compared to T-15, T-30,
and TC. Treatment T-25 had a higher root water content (RWC) in the as compared to T-15, T-30,
and TC. The optimal temperature plays a vital role in water and nutrient uptake and shows good root
development. The dry matter of the plant is the key parameter of morphological development. The
different investigators verified in their studies that fertilizer uptake is almost entirely determined by
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plant dry mass creation [27]. The root zone temperature effect on root dry mass could be clarified by
subsequent studies that propose that a continuous uptake of nutrients is sustained over a wide range
of temperature and exterior nutrient concentrations [28]. The roots are perhaps the most significant
part of the plant because the root mass of the plant is directly proportional to the size and production
of the plant. To boost plant growth energy is provided to raise the metabolic rate, to improve the
uptake of nutrients the provision of natural hormones and vitamins that may be missing in hydroponic
nutrient formulations is facilitated [29]. Table 2 illustrates that specific energy consumption for root
dry mass was minimum in T-20 while the maximum specific energy consumption was found in T-30.
Higher root zone temperature had adverse effects on root development and root dry mass production.Energies 2019, 12, x FOR PEER REVIEW 9 of 16 
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Figure 7. Root fresh and dry mass graph. RFW = Root fresh weight (g), RDW = Root dry weight (g)
and RWC = Root water content (g). Tukey honestly significant difference (HSD) multiple comparison
tests with alpha value 0.05 were performed. Standard Error for Comparison (SE) for RFW = ±0.16,
RDW = 0.02 and RWC = ±0.15.
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Table 2. Specific energy consumption for root dry mass.

Specific Energy Consumption (Roots)

Treatment Dry Mass (g) Total Energy
Consumption (kWh)

Specific Energy
Consumption (kWh/g)

T-15 0.2513 9.702 38.61
T-20 0.4713 13.244 28.1
T-25 0.5077 17.71 34.88
T-30 0.1717 21.483 125.11

The root zone heating had an influence on the pepper leaf fresh weight (LFW), leaf dry weight
(LDW), and leaf water content (LWC), as shown in Figure 8. Treatment T-20 showed the maximum
LFW, while the control treatment had the lowest LFW. Treatment T-25 was significantly different and
had a higher LDW as compared to T-15, T-30, and the control treatment, while it had a lower LDW
compared to T-20. Similarly, T-20 was significantly different and had a higher LDW as compared to
T-15, T-25, T-30, and TC. The minimum LDW was found in TC. T-25 had a LDW of 0.7463 g, which
is higher than in T-15, T-30, and TC. High leaf dry matter production was found for T-20 and T-25,
which is close to the findings of Fujishige and Sugiyama [30]. They cultivated cucumber, sweet pepper,
and tomato plants at RZT at 10 ◦C and 35 ◦C for 10 days. Furthermore, they investigated the effect
of RZT, which was relatively less significant at low ambient air temperature as compared to the
observations of Jones et al. [31], Sandwell [32], and Gosselin and Trudel [33].Energies 2019, 12, x FOR PEER REVIEW 11 of 16 
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Figure 8. Leaf fresh and dry mass graph. LFW = Leaf fresh weight (g), LDW = Leaf dry weight (g),
and LWC = Leaf water content (g). Tukey HSD multiple comparison tests with alpha value 0.05 were
performed. Standard Error for Comparison (SE) for LFW = ±0.22, LDW = 0.02 and LWC = ±0.23.

Figure 9 shows that RZH also affected stem fresh weight (SFW), stem dry weight (SDW), and
stem water content (SWC). It was observed that the fresh weight of stem was highest in T-25, at 2.422 g,
and the minimum stem fresh weight was in TC, 0.554 g. Treatment T-30 had higher stem fresh weight
compared to T-15, T-20, and TC. T-20 had higher stem fresh weight as compared to T-15 and TC.
Similarly, RZH showed variations in stem dry weights in all treatments. The maximum stem dry
weight was found in T-25, 1.124 g, and the minimum stem dry weight was observed in TC, 0.359 g.
The dry weight of the stem in T-15 was calculated to be 0.383 g, and in T-20 the stem dry weight was a
little higher, 0.771 g. T-30 had a stem dry weight 1.037 g lower than T-25’s.
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Figure 9. Stem fresh and dry mass graph. SFW = Stem fresh weight (g), SDW = Stem dry weight (g),
and SWC = Stem water content (g). Tukey HSD multiple comparison tests with alpha value 0.05 were
performed. Standard Error for Comparison (SE) for SFW = ±0.16, SDW = 0.07 and SWC = ±0.12.

A relationship between the diameter of the plant stem and RZT (15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C, and at
ambient RZT TC) was also observed under different temperature treatments. An increase in stem
diameter was measured after four weeks of treatment, as shown in Figure 10. The figure shows both
the initial and the final diameter of plant stems under variable temperature conditions, along with the
control treatment. The maximum initial diameter was measured in the T-30 treatment, followed by
the T-15 treatment with 1.71 mm, while the lowest stem initial diameter was found in treatment T-20.
On the other hand, after four weeks the maximum final stem diameter, found in the T-20 treatment,
was 4.48 mm, with a 2.92 mm net increase in diameter, which is 65% higher than the initial plant stem
diameter. T-30 had the lowest increment in stem diameter 1.02 mm (36%) among all the treatments,
while the least net increased diametric growth, 0.82 (33%), was found in the control treatment.
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Figure 10. Stem diameter (mm) growth according to different treatments. Tukey HSD multiple
comparison tests with alpha value 0.05 were performed. Standard Error for Comparison (SE) for DIA I
(diameter initial)= ±0, 06, DIA F(diameter final) = ±0.22 and DIA NI(diameter net increase) = ±0.25.
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The analysis conducted for an average number of leaves under different temperature conditions
for four weeks is shown in Figure 11. The figure depicts the average number of leaves before and at
the final stage of the experiment. The average number of leaves on every plant at the initial and final
stage, along with the net increase in leaves under different temperature conditions, is presented in
this figure. At the initial stage of the experiment, it was found that the plants had the same average
number of leaves in treatments T-20, T-25, and T-30, while the plant in control treatment had the lowest
average number of leaves. The final number of leaves was highest in T-20, with a net increase of 64%,
followed by T-25 (a 54% net increase in leaves). The plants treated at 30 ◦C (T-30) showed the lowest
growth in leaves (33%) among the treatment groups, while the control group produced the fewest
leaves on average (30% less). In some plants, a lower root zone temperature resulted in reduced or
inhibited photosynthesis [34]. A high root zone temperature inhibited the growth and fruit yield of
sweet peppers compared to other treatments [35,36].
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Figure 11. Initial and final number of leaves according to different treatments. Tukey HSD multiple
comparison tests with alpha value 0.05 were performed. Standard Error for Comparison (SE) for
number of leaves initial (NOLi) = ±0.86, number of leaves final (NOLf) = ±1.28 and number of leaves
net increase (NOLni) = ±1.88.

Figure 12 shows the comparative analysis carried out to evaluate the effects of root zone heating
systems on root length (RL) and shoot length (SL) of plants under variable temperature conditions.
The figure shows the growth in terms of root length and shoot length of plants. The plants in the T-25
and T-20 treatments showed significant growth both in root length and shoot length, as shown in the
figure. The growth found in the T-15 and T-30 treatments was non-significant. The plants under control
treatment showed the lowest increase in root length and shoot length. The leafy vegetables cultivated
in a greenhouse were treated at a higher temperature (25 ◦C) and lower temperature (15 ◦C); the RZT
showed a smaller plant size as compared to plants treated at a moderate temperature (20 ◦C) [37].
The increase in plant height because of raised RZT was a result of the long internodes in potato
plants [38]. Moreover, nutrient uptake and root growth were inhibited due to higher and lower
RZT [39,40]. Furthermore, higher and lower RZT affect growth, gas exchange, photosynthesis, and
survival following transplanting [41]. Root zone temperature regulation is important for vegetable
health and production [42].
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Figure 12. Root and shoot length (cm) according to different treatments. Tukey HSD multiple
comparison tests with alpha value 0.05 were performed. Standard Error for Comparison (SE) for
root length (RL) = ±0.39 and shoot length (SL) = ±0.89.

4. Conclusions

The root zone heating system was used to investigate the simulated and experimental root
zone temperature, energy consumption, and heat transfer rates to the plants’ lower, middle, and top
canopy during winter. The developmental response of plants by using different root zone temperature
treatments was also analyzed. The results revealed that if the ambient temperature increases the energy
consumption will be decreased while specific energy consumption for root dry mass production was
found feasible in T-20. The maximum root dry mass production with minimum energy consumption
was found in T-20. Heat transfer analysis for plant canopy indicated that the temperature of the lower
canopy was higher as compared to the middle and upper canopy of the plant as heat transfer was from
the root zone to the top canopy of the plant. In the current system, the heat transfer to the plant canopy
proved more viable as the heating source was within the growing medium, while other root zone
heating systems like a benchtop root zone heating system have lower heat transfer rates to the plant
canopy as the heating source is not fixed within growing medium. The current investigation revealed
that all the heated plants showed viable plant development as compared to non-heated plants.

The results for the dry mass of different segments of plants, such as roots, stem, and leaves,
also showed differences among treatments. T-20 had the highest leaf dry weight, stem diameter,
and number of leaves, while T-25 had the highest root dry weight and stem dry weight. T-30 and
T-15 had the minimum dry weight of plant segments in all heated treatments. TC has the minimum
dry mass production as compared to all root zone heated treatments. The T-20 and T-25 root zone
temperatures were found to be optimal, but the most significant root zone temperature should continue
to be a focus of future research related to pepper plants. It can be concluded that root zone heating is
a viable option to reduce energy consumption and the maintainable development of pepper plants
during extremely low temperatures in the winter. It could be of future interest to study other crop
responses to root zone heating and to optimize specific energy consumption.
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