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Abstract: Biogas resulting from anaerobic digestion can be utilized for the production of liquid
fuels via reforming to syngas followed by the Fischer-Tropsch reaction. Renewable liquid fuels are
highly desirable due to their potential for use in existing infrastructure, but current Fischer-Tropsch
processes, which require operating pressures of 2–4 MPa (20–40 bar), are unsuitable for the relatively
small scale of typical biogas production facilities in the EU, which are agriculture-based. This paper
investigates the feasibility of producing liquid fuels from biogas-derived syngas at atmospheric
pressure, with a focus on the system’s response to various interruption factors, such as total loss of
feed gas, variations to feed ratio, and technical problems in the furnace. Results of laboratory testing
showed that the liquid fuel selectivity could reach 60% under the studied conditions of 488 K (215 ◦C),
H2/CO = 2 and 0.1 MPa (1 bar) over a commercial Fischer–Tropsch catalyst. Analysis indicated
that the catalyst had two active sites for propagation, one site for the generation of methane and
another for the production of liquid fuels and wax products. However, although the production of
liquid fuels was verified at atmospheric pressure with high liquid fuel selectivity, the control of such
a system to maintain activity is crucial. From an economic perspective, the system would require
subsidies to achieve financial viability.

Keywords: biogas; anaerobic digestion; liquid fuels; biofuels; Fischer–Tropsch; ambient pressure;
atmospheric pressure; farm-scale

1. Introduction

Global energy consumption is estimated to increase by 77% between 2008 and 2050 [1]; increases
to date have been coupled with increases in gasoline and diesel fuel consumption [2]. The combustion
of fossil fuels results in damaging environmental effects associated with increasing greenhouse gas
(GHG) emissions [3]. New regulations for GHG emissions, together with increasing fuel demands,
volatile oil prices, and geopolitical uncertainty of oil supply [4–7], are driving the development of liquid
biofuels which can contribute to meeting fuel demands in a sustainable manner through compliance
with legislation such as the EU Renewable Energy Directive (2009/28/EC). Biogas, which mainly
consists of carbon dioxide (CO2) and methane (CH4), is a renewable energy source that is generated
from the anaerobic digestion (AD) of biomass [8]. Primary energy production from biogas is on an
upward trend and in Europe increased from 2.1 Mtoe in 2000 to 16.1 Mtoe in 2016 [9], with the number
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of biogas plants rising from 6227 to 17,662 between 2009 and 2016 [10]. The majority of biogas is
combusted directly on site for electricity and/or heat generation with a growing proportion upgraded
to biomethane (i.e., natural gas standard) [9]. Biogas can also be used as a feedstock for syngas
production using technologies that are currently applied extensively for reforming natural gas [11].
Syngas is a mixture of hydrogen (H2) and carbon monoxide (CO), and can be utilized in the production
of various biofuels, including liquid fuels, through the Fischer-Tropsch (FT) process [12].

As liquid fuels offer compatibility with available infrastructure for electricity, heat, transportation,
and storage [13], the investigation of FT synthesis (FTS) and reforming with existing AD plants is an
area of considerable interest. While parallel research has investigated the optimization of the reforming
process [11], the focus of this paper is on FTS. Although FTS is a well-established technique, it is only
recently that the conversion of biomass-derived syngas to liquid fuels via FT has become an area of
research interest [14]. A key advantage of FT liquid transportation fuels is that they can directly replace
the fossil fuel equivalent, and thus do not affect efficiencies or require changes to existing vehicles [14].
There is a large existing market for oil products in the EU; 595 Mtoe of oil was used in the EU28 in
2016, with the transport sector, which is 94% dependent on oil, accounting for 48% of this [15].

In general, FT products are characterized with a broad carbon distribution (C1 to C30+).
Industrially, in order to produce desired fuels (i.e., those in the hydrocarbon range of C5+, such
as gasoline, diesel, and kerosene), FT products undergo further chemical transformations such as
hydrocracking [16]. Unlike AD, which occurs at atmospheric pressure, current commercial FT processes
operate at high pressures of 2–4 MPa (20–40 bar) [17]. These high pressures raise safety concerns and
increase the complexity of the process, making plants more expensive to build and operate. Lowering
the reaction pressure simplifies the process [18], particularly for small-to-medium scale operations,
and allows its direct coupling to AD and reforming systems. Agricultural, rather than large industrial,
plants account for the majority of AD installations (70% in the EU) [10], and operation at ambient
pressure is therefore a key factor for the practical application of biogas-to-liquids by FT on a typical
AD plant. The aim of this paper is to investigate through laboratory experimentation the technical
feasibility of the conversion of biogas-derived syngas to liquid fuels by FT at ambient pressure.

FTS has been examined in multiple studies [14,19–22], and it has been shown that pressure has a
profound effect on the product selectivity of FT reactions [23]. Information on ambient pressure FT is,
however, scarce in the literature, and focuses largely on the impact of the catalyst formulation on the
reaction. Dinse et al. [24] investigated a 12% Co/SiO2 catalyst using a fixed bed reactor and found
that at FT conditions of H2/CO = 2 and 493 K (220 ◦C) with process conditions of 1 atm (0.1 MPa),
CO conversion reached 50% with 38% CH4 selectivity and 30% C5+ selectivity. Tavasoli et al. [25]
studied the effect of bed residence time on hydrocarbon selectivity at 0.1 MPa (1 bar) and H2/CO = 2
for a 15wt% Co on Al2O3 catalyst. The results showed that up to CO conversion values of 15%,
CO conversion is directly proportional to increased bed residence time, after which CH4 selectivity
decreases accompanied with an increase in liquid hydrocarbon selectivity. Mirzaei et al. [26] studied
the effects of FT reaction parameters (feed ratio, temperature, and pressure) on the CO conversion and
product selectivity over a 50%Fe/50%Mn/5wt% Al2O3 catalyst. At optimal conditions of H2/CO = 1
and operating temperature of 633 K (360 ◦C), it was found that CO conversion reached 84.4% when
tested at 0.1 MPa (1 bar), leading to liquid fuel (C5+) selectivity of 13.8% and CH4 selectivity of
29.8%. Most reported studies did not show promising results for C5+ selectivity, with selectivity to
CH4 always being higher. However, a recent study by Savost’yanov et al. [27] found that for a 20%
Co-2%Al2O3/SiO2 catalyst tested at FT conditions of 0.1 MPa (1 bar), H2/CO = 2, and operating at 463
K (190 ◦C), the achieved CO conversion was 44% with C5+ selectivity of 74.4%. The objectives of the
study were focused on optimization of the catalysts, specifically the effect of Al2O3 promoter loadings,
and studying its effect on FT activity over six days. No work was found in the literature where a
small-scale Fischer-Tropsch process was undertaken at atmospheric pressure for longer than six days.
This paper addresses this gap in knowledge through demonstrating the process for a duration of
seven days.
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In addition, research on achieving a high selectivity to liquid fuels (C5+) has focused
predominantly on the catalysis aspect of the FT reaction with little attention paid to the system
as a whole. System analysis is an approach that addresses a subject in terms of interlinked subsystems
to create a broader understanding of the key factors affecting the success of the system [28]. Although
a systems approach has been used to analyze aspects of biogas and FT fuel production [29–31] and
optimization [32], no literature was found on liquid fuel production from biogas and none of the
literature adopted a systems approach to investigate the effect on overall activity and liquid fuel
selectivity of sudden interruptions during operation as could occur in an AD plant, such as feed
gas shutdown, temporary electric cut-off, loss of continuous heating, and feed ratio alterations, for
more than six days of continuous operation. This knowledge is needed to inform the real-world
application of the technology, and this paper addresses this novel area of research. With the overall
aim of investigating the feasibility of biogas-derived syngas to liquid fuels by FT at ambient pressure,
the objectives of this paper were to (a) show the feasibility of FT at low pressures and to optimize the
reaction at 0.1 MPa (1 bar), (b) use a systems approach to investigate the effect on overall activity and
liquid fuel selectivity of sudden interruptions during operation, and (c) analyze the economic viability
of the process. The research proved the feasibility of producing liquid fuels at 0.1 MPa and 488 K (1 bar
and 215 ◦C), and showed that the process had an overall sturdy response to external factors.

2. Materials and Methods

2.1. Experimental Rig Setup and Reaction Refinement

The FTS reaction was carried out in a downflow stainless steel fixed bed reactor (Figure 1). Three
reaction tests were conducted with experimental refinement performed at each stage (Tables 1 and 2)
with the aim of increasing the production of liquid fuels in the range C5+. As the focus of the experiment
was on system feasibility and robustness rather than on catalyst development, a commercial FT catalyst
was used. The catalyst, which was supplied by Clariant®, was in pellet form, and reactions were
carried out on the as-received catalyst and also after crushing and sieving the catalyst to 250–300 µm
particles. Due to the exothermicity of the FT reaction, the catalyst was mixed with SiC in a 1:2 ratio for
all reactions. The catalyst was held in a three-zone furnace (Carbolite SN: 6/01/1603) which allowed
temperature consistency over the reactor length. The temperature at the centre of the catalyst bed was
monitored with a thermocouple (Type K, Omega). All gases (industrial grade 99.9% purity CO, H2

and N2) were supplied by BOC and the gas flows were controlled by AERA mass flow controllers.
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Figure 1. Experimental rig setup.

Prior to reaction, the catalyst was reduced in situ in a flow of 40% H2 in He at 26 mL/min. The
temperature was ramped up from ambient to 673 K (400 ◦C) at a rate of 5 K/min (5 ◦C/min) and held
for 16 h after which it was cooled at 5 K/min to 373 K (5 ◦C/min to 100 ◦C). This reduction temperature
is typical for H2 reduction of Co-based FT catalysts [33], which are the most popular for FTS [34,35].
The reactor was then purged with He for 15 min, before introducing the syngas feed (H2 and CO) at
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32.5 mL/min, which included 7.6% volume of N2 as the internal standard. The temperature of the
reactor was then increased at 1 K/min (1 ◦C/min) until it reached the desired operating temperature
of 488 K (215 ◦C). The operating pressure was held at 0.1 MPa (1 bar) (i.e., atmospheric) and a H2/CO
ratio of 2 was used for all tests.

Table 1. Reaction process refinement tests.

Reaction Purpose of Test

R1 Preliminary setup to test if the commercial catalyst was active for reaction at atmospheric pressure

R2 To test the impact of catalyst quantity and to verify that the catalyst’s activity and conversion
could be boosted by increasing the quantity of catalyst

R3 To test the impact of reactor dimensions and system configuration on conversion and activity

Table 2. Testing parameters for R1, R2, and R3.

Parameters R1 R2 R3

Reactor length (cm) 50 50 50
Reactor internal diameter (ID) (cm) 0.6 0.6 1.2

Catalyst mass (g) 0.2 0.44 0.44
SiC mass (g) 0.4 0.88 0.88

Total catalyst bed height (cm) 8 16 4
Feed flow rate (mL/min) 32.5 32.5 32.5

Gas hourly space velocity (GHSV) 1 (hr−1) 862.83 430.46 463.46
H2 in He reduction gas flow rate (mL/min) 26 13 13
Pressure increase during reduction (MPa) 0.2 0.1 0.05
Pressure increase during reaction (MPa) 0.15 0.1 0.05

System configuration No trap No trap Added trap 2

1 GHSV = feed flow rate/reactor catalyst bed volume. 2 This was a room temperature trap located vertically at the
bottom of the reactor to facilitate monitoring of the formation of any liquid fuels.

The outlet from the reactor passed through heated >373 K (>100 ◦C) stainless steel tubing to
minimize condensation of liquid products and into an online Tracera gas chromatograph (GC) with
barrier discharge ionization detector (BID) (Tracera BID-GC solution, Shimadzu, Japan) equipped
with three columns provided by Restek. Two of them were packed columns (2 m shin carbon ST
80/100 of 0.53 mm ID and 1 m stainless steel Porapak N packed of 2 mm ID), and were used for the
analysis of H2, N2, CO, CH4, and CO2. The third column was a capillary column (30 m RT alumina of
0.53 mm ID), and was used for the analysis of products between C2 and C10. The addition of a room
temperature liquid trap to the system allowed collection of liquid/wax products during the reaction; a
portion of the liquid sample was removed at intervals during the reaction, diluted in dichloromethane
and analyzed by gas chromatography-mass spectrometry (GC-MS) (Agilent Technologies 7890B GC
system, 5977A MSD G7038A-USA). Postreaction analysis of the catalyst by thermogravimetric analysis
(TGA) (Mettler Toledo TGA/DSC 1 STARe System CH-8603-Switzerland) and thermal desorption
GC-MS (Perkin Elmer turbo matrix hs50 head space sampler ATD 400-USA) was also performed to
probe the carbon number range of hydrocarbons retained on the catalyst. Further details are given in
Appendix A.

Catalyst activity is described by the percentage conversion of CO (XCO) (Equation (1)) and the
percentage hydrocarbon product selectivity (SCn) (Equation (2)).

XCO(%) =

Area (CO bypass)
Area (N2 bypass) −

Area (CO reaction)
Area (N2 reaction)

Area (CO bypass)
Area (N2 bypass)

× 100 (1)

where Area (CO bypass) and Area (N2 bypass) are the initial peak areas of CO and N2, respectively,
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obtained from five bypass runs, while Area (CO reaction) and Area (N2 reaction) are the peak areas of
CO and N2, respectively, obtained from the GC postreaction.

SCn(%) =
Area (Cn)

∑ Area (Cn)
× 100 (2)

where Area (Cn) is the peak area of a hydrocarbon with n number of carbons [36].

2.2. Testing the FTS System’s Robustness by the Introduction of Interruption Factors

R4 (Table 3) was setup based on the findings of the reaction refinement stage, and the system
robustness was studied in four different zones in an attempt to regenerate the catalytic activity and to
investigate the system’s response to interruption in gas feed ratio, electric shutdowns, or gas stream
shutdowns (Table 4). The activity and selectivity were monitored by GC with liquid/wax samples
collected at days 3, 6, 11, and 16. The catalyst was collected after 16 days of reaction and analyzed
by TGA and temperature programmed desorption (TPD) (also known as thermal desorption (TD)).
Further details are given in Appendix A.

Table 3. Testing parameters for R4.

Parameters R4

Reactor length (cm) 50
Reactor internal diameter (cm) 1.2

Unsieved catalyst mass (g) 1
SiC mass (g) 2

Feed flow rate (mL/min) 32.5
H2 in He reduction gas flow rate (mL/min) 13
Pressure increase during reduction (MPa) 0.02
Pressure increase during reaction (MPa) 0.02

Table 4. Zones investigated in R4 for testing the system robustness.

Zone Parameter Investigated Experimental Steps

A Feed gas interruption of supply

Reaction was stopped at day 11.5, then cooled in He from 488
K (215 ◦C) to 373 K (100 ◦C) at 10 K/min (10 ◦C/min). Reactor

was kept under He flow for 30 min. Reacting feed was
introduced at 373 K (100 ◦C). Temperature was increased

under feed conditions from 373 K (100 ◦C) to 488 K (215 ◦C) at
1 K/min (1 ◦C/min).

B Technical problems that could
interrupt the reaction 1

Reaction was stopped at day 12.3. Gas supply was shut down
and the reactor cooled to 303 K (30 ◦C) (by turning off the

furnace). Temperature was increased under feed conditions
from 303 K (30 ◦C) to 488 K (215 ◦C) at 10 K/min (10 ◦C/min).

C The feasibility of regenerating and
reusing the catalyst

Reaction was stopped at day 13.5, then cooled in He (by
turning off the furnace) until temperature of 303 K (30 ◦C) was

recorded. Re-reduced in H2 (as per prereaction process).

D
The catalyst’s behavior if the feed
ratio was interrupted or altered

during the reaction

At day 16, after 9 h of reaction, the H2:CO feed ratio was
altered from 2:1 to 3:1 for 15 h. The ratio was then changed to

1:1 until day 19.
1 e.g., electricity shutdown, mass flow controllers malfunctioning, or furnace heating technical problems.

2.3. Economic Feasibility of the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels

The economic feasibility of liquid fuels produced from biogas-derived syngas was investigated
for the heat (H) and transport (T) markets, as they are both large existing consumers of fossil liquid
fuels and have lagged behind the electricity sector in terms of progress towards renewable energy
targets (in the EU in 2016 there was 18% of renewables in final heating and cooling energy and 7% in
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final transport energy, compared to 30% in the electricity sector [37]). The results were compared to
the more conventional routes to market via compressed and liquefied natural gas (CNG and LNG)
under the following scenarios.

• Scenario H1/T1: AD » biogas » reforming » syngas » Fischer-Tropsch » liquid fuel » heat/transport
• Scenario H2/T2: AD » biogas » upgrading » biomethane » compression » CNG » heat/transport
• Scenario H3/T3: AD » biogas » upgrading » biomethane » liquefaction » LNG » heat/transport

This case study was based in Northern Ireland, UK; an AD plant producing approximately
860,000 m3/year of biogas from grass silage was assumed based on (a) typical farm size and type in
the region [38], (b) previous work by the authors on the analysis of the grass biogas system [39], and (c)
the typical size of small to medium scale AD plants in the region, which is <500 kWe [40]. The biogas
production cost was assumed to be St£0.4/m3 [41,42] (values in British pounds Sterling). Clean biogas
at 55% CH4 and 45% CO2 was assumed.

Profitability calculations were carried out using the return on capital employed (ROCE) technique
(Equation (3)). The annual profit is calculated by subtracting the total annual expenditure from the
total annual income. Expenditure and income are broken down into variable and fixed components:
fixed costs are expenses which do not change with output, e.g., machinery, buildings, depreciation, and
interest rates, while variable costs/income vary directly with output, e.g., gas and electricity costs. The
annual expenditure is comprised of capital costs and the costs for maintenance and operation (Table 5).
Due to a lack of cost information in the literature on small-scale reforming and Fischer-Tropsch, the
costs for these technologies were estimated from data from larger plants (Equation (4) [43]) to account
for the increased costs per unit output with decreasing plant size. The annual capital investment
costs are the yearly costs for the capital loan for buildings, machinery, and any additional equipment
required (Equation (5)). Straight line depreciation was applied (Equation (6)) and added to the yearly
expenditure. The plant lifetime was assumed to be 15 years [41].

Income was from the sale of the produced fuels and other by-products (Tables 6 and 7). The
Northern Ireland Renewable Heat Incentive (RHI) provided support in the heat sector. The RHI
gave an upfront payment of St£2500 and a tariff of St£0.075/kW (2015). However, the RHI incentive
was suspended for new customers on the 29th February 2016 due to concerns over the scheme setup.
Calculations with and without the support scheme were therefore performed. (When RHI is considered
it is simply added to the wholesale gas price (where applicable) in the heating income formula.) To
highlight the importance of support schemes in pushing technologies forward, current tariffs were
adjusted to profitable values based on the minimum return required from the renewable sector (7.25%
ROCE [44], which is seen as a minimum acceptable level for these type of investments due to the high
investment risk and the short project lifetime of 15 years). Further details are presented in Appendix B.

ROCE =
Total Annual Pro f it

Total Annual Expenditure
× 100 (3)

(
Production Rateactual size

Production Ratesize at which price is known

)0.6

=

(
Priceactual size

Pricesize at which price is known

)
(4)

C =
r × p

1 − (1 + r)−N (5)

where C is the annual repayment amount (St£/y), r is the annual interest rate (fraction), P is the capital
invested (St£), and N is the number of payment terms (i.e., number of years to pay back the loan).

Annual depreciation = Total capital investment × 1
Total payback time

(6)
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Table 5. Capital and operation and maintenance costs based on an AD plant producing ~860,000
m3/year of biogas.

Technology Capital
Expenditure (St£)

Operation and
Maintenance (St£/yr) Source

Conventional upgrading
(membrane separation) 341,021 57,055 Average calculated from Smyth

et al. and Paturska et al. [41,45]

Reforming 1,332,642 133,264 Estimated from Blesl and Bruchof
[46] using Equation (6)

Fischer-Tropsch 3,285,500 131,420 Estimated from Blesl and Bruchof
[46] using Equation (6)

LNG 200,000 30,000 Estimated from Songhurst [47]
using Equation (4)

Table 6. Assumptions and prices (UK) used for income calculations.

Details Value 1 Source

Wholesale gas price St£0.0181/kWh Calculated from
Energy Solutions [48]

Average CNG price St£0.89/kg [49]

Average diesel price St£1.222/litre [50]

Fuel tax duty (diesel, petrol and biodiesel) St£0.5795 [51]

Fuel tax duty (CNG) St£0.247/kg [51]

Connection to gas grid St£213,000 [41]

Cost for transporting LNG per km 2 St£1.86/km for 36,370 l lorry [52]

Biomethane grid injection RHI St£0.075/kWh [53]

Average density of liquid fuel 874.74 kg/m3 -

Methane slip (conventional upgrading) 0.04% [54]

Liquid fuel conversion efficiency via FT 33% [55]

CH4 density 0.69 kg/m3 -

CH4 thermal energy 11.19 kWh/m3 -

H2 molecular weight 2 g/mol -

CH4 molecular weight 18 g/mol -

CO molecular weight 28 g/mol -

H2 to CH4 molar ratio 3 3 -

CO to CH4 molar ratio 3 1 -

Steam reforming reaction conversion
efficiency (decimal) 1 Best case scenario

Liquid fuels produced 4 233.06 m3 -
1 The following exchange rates were used to convert to pounds Sterling; €1.408 to St£1.00; US$1.53 to St£1.00;
13.157 SEK to St£1.00 (rates at 7/12/2015). 2 A distance of 138 km was assumed to represent the distance from an
agricultural AD facility in the west of Northern Ireland to the main city in the region, Belfast. 3 This value is based
on stoichiometry from methane steam reforming. 4 This calculation assumed 100% methane conversion to syngas
(CO and H2) via steam methane reforming and 33% conversion of syngas to FT liquids. Biogas is assumed to be
55% methane, and the assumed methane density is 0.69 kg/m3, so 860,000 m3/year × 0.55 × 0.69 = 328,000 kg of
methane. See Table 7 for further details.
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Table 7. Income calculation methodology for the investigated routes in the heat and transport sectors
excluding the Renewable Heat Incentive (RHI).

Scenario Calculation Steps

T1/H1

Biogas » reforming » syngas » Fischer-Tropsch » liquid fuel » heat/transport

CH4 mass (kg) = biogas production (m3/year) × biogas purity × CH4 density (kg/m3)
Mass of H2 produced (kg) = (H2 molecular weight/CH4 molecular weight) × (H:CH4 molar

ratio) × [mass CH4 (kg)] × (reaction conversion efficiency)
Mass of CO produced (kg) = (CO molecular weight/CH4 molecular weight) × (CO:CH4 molar

ratio) × [mass CH4 (kg)] × (reaction conversion efficiency)
Liquid fuel produced (m3) = [mass of CO produced (kg) + mass of H2 produced (kg)] ×

(Fischer-Tropsch conversion efficiency to liquid fuels) × [liquid fuel average density (kg/m3)]
Income = (Liquid fuel produced (m3)/1000) × [liquid fuel sale price (St£/l) − diesel fuel tax

duty (St£/l)]

T2/H2 and T3/H3

Biogas » upgrading » biomethane » compression/liquefaction » CNG/LNG » heat/transport

CH4 produced (m3) = [biogas production (m3/yr) × CH4 purity] − [CH4 slip during
upgrading (m3)]

Heating income = CH4 produced (m3) × CH4 energy density (kWh/m3) × wholesale gas
price (St£/kWh)

Transport income = CH4 produced (m3) × methane density (kg/m3) × [CNG filling station
price (St£/kg) − CNG fuel tax duty (St£/kg)]

3. Results and Discussion

3.1. Iterative Refinement of the FT Reaction at 0.1 MPa (1 bar) (R1, R2, and R3)

As the mass of catalyst was increased from 0.2 g (R1) to 0.4 g (R2), the average CO conversion
after three days on stream at 488 K (215 ◦C) increased from 2% to 7% (Figure 2), however methane
was the major product formed with 97% selectivity for the 0.2 g reaction (Figure 3) and 72% selectivity
for the 0.4 g reaction (Figure 4). During the time on stream (TOS) of 3.5 days, a small increase in
pressure from 0.1 MPa to 0.15 MPa (1 bar to 1.5 bar) was noted in the reactor (R1). TPD and TGA
analyses of the catalysts postreaction (3.5 days on stream) were performed to investigate if hydrocarbon
products formed were being retained on the catalyst causing this pressure increase during the reaction
(Figures A1–A6). TPD under nitrogen showed hydrocarbons in the C13–C28 range were desorbed from
the catalysts after both reactions (0.2 g and 0.4 g), and TGA analysis revealed a weight loss of 18% for
the 0.4 g catalyst reaction while only 8% was lost for the 0.2 g reaction. This is in-line with the higher
conversion and longer bed length (8 cm vs. 16 cm) for the 0.4 g catalyst reaction.Energies 2019, 12 9 
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To increase the CO conversion while not increasing the catalyst mass and bed length further, a
wider reactor (1.2 cm ID) with 0.4 g of catalyst was used (R3). Increasing the mass of catalyst resulted
in a small increase in conversion, with an average CO conversion of 10% after three days on stream
(Figure 2). For the reaction in the smaller diameter catalyst, the higher pressure drops resulted in an
increase in fluid velocity, reduced residence time and, thus, lower conversion. The pressure during R3
(3.5 days on stream) only reached 0.05 MPa (0.5 bar) and analysis of the catalyst after this reaction again
found hydrocarbons in the C15–C26 range (Figure A6). For this reaction the selectivity to methane was,
again, still higher than desired to liquid fuel products. However, some liquids and waxy compounds
were collected in the trap during the 3.5 days of reaction. Analysis of these products at the end of
the reaction showed that hydrocarbons in the C14–C17 and C12–C32 range (peaking at C20) had been
collected during the reaction (Figure A8). These products are within the desired range of products and
confirm that, at atmospheric pressure, hydrocarbon polymerization was taking place.
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3.2. Optimising the Final FTS Refined System Setup (R4)

3.2.1. Conversion and Selectivity Results

While increasing the reactor diameter reduced the pressure build-up noted during the reactions
with the catalyst in crushed powder form, further increasing the catalyst mass under these conditions
would not be advantageous. Therefore, a reaction with 1 g of catalyst used in pellet form in the
50 cm × 1.2 cm ID reactor was performed and run for 11.5 days under the FT feed at 488 K (215 ◦C)
(Table 3). The increase in catalyst mass resulted in an increase in the average CO conversion from
10% (0.4 g) to 18% (1 g of catalyst) (Figure 5). Initially, with 1 g of catalyst, the CO conversion reached
25% but an initial deactivation of the catalyst was observed over the first two days of reaction and a
steady conversion of 18% was achieved from days 3 to 7. While this reaction provided the highest
CO conversion, most importantly, the selectivity to C5+ products was greater than methane. The C5+

selectivity was 54% on average (with a high of 60%) compared to an average of 36% (with a high of
45%) for methane (Figure 6) during this period of the reaction (days 1–7). The collected liquid and wax
products (sampled at days 3, 6, and 11) contained hydrocarbons in the range C12–C15 in all samples
with the wax products in the range C10–C34, peaking at C14–C16 (Figures A9–A11). It was not possible
to quantify the amount of liquid fuel/wax products formed during the reaction. The higher selectivity
to liquid fuel products during the first seven days on stream shows the feasibility of running the FT
reaction at lower pressures than those currently used industrially. As the reaction proceeded past
day 7, the CO conversion decreased to an average of 15% between days 8 and 11.5 (Figure 5). For all
the reaction conditions investigated, deactivation of the catalyst was observed with time on stream.
The decrease in conversion came with a decrease in liquid fuel selectivity and an increase in methane
selectivity (Figure 6).Energies 2019, 12 11 
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It is usually expected that increasing the amount of catalyst while maintaining a constant flow
rate will keep increasing the conversion; however, results showed that the rate-determining step in
conversion could be limited by the mass transfer of desorbed products. The decrease in conversion,
and switch in selectivity from liquid fuels to methane, between days 7 and 11.5, is an expected trend
as reported for both iron and cobalt based catalysts [23]. This could be due to the active sites being
blocked by the formation and retention of liquid fuels, causing the catalyst’s activity to decrease.
Another explanation could be the effect of indigenous water formation during the reaction from days 1
to 7 that inhibits methane selectivity and promotes liquid fuel selectivity. However, after a lengthy
time on stream (7+ days), the effect was reversed, which, as discussed by Storsæter et al. [56], could be
due to the catalyst being saturated with water up until day 7, after which activity started decreasing
and methane became the easiest thermodynamically stable monomer to form. The exact mechanism
of the effect of water is still controversial [23] with oxidation of the metal also reported as a cause of
deactivation. The water can cause a water-gas shift reaction, thus oxidizing CO to CO2 and H2 and
inhibiting the FT reaction. Also, if the metal on the active site of the catalyst becomes oxidized, it might
hinder the polymerization reaction [57]. The FT reaction is highly exothermic and can create hot spots
in the catalyst when an isothermal state is not attained [58]. A nonisothermal state was possible in R4,
as the catalyst (initial pellet form) and the SiC (250–300 µm) were of different particle sizes, causing
uneven mixing and potentially leading to overheating in localized spots on the catalyst, thus resulting
in gradual deactivation and production of undesired products (high methane selectivity). Along with
thermal hot zones, another possible irreversible deactivation scenario is carbon deposition; both can
cause the catalyst to lose integrity and become more susceptible to deactivation. However, the exact
form of deactivation could not be verified due to the nondisclosure agreement that prohibits catalyst
characterization. Catalyst characterization allows for the identification of the active metal phase and
the support used to prepare the catalyst. A series of experiments could then be carried out under
different parameters to test the exact cause of deactivation. Catalysis is beyond the scope of this paper,
which deals with system analysis on a macroscopic level.

3.2.2. Possibility of a Dual α Mechanism

FT product distribution is governed by a factor known as the chain growth probability (α), which
varies between 0 and 1. Ideal (Anderson-Schulz-Flory (ASF)) behavior predicts that as α approaches 1,
the fuel produced becomes heavier (>C15+). At such high α values, methane formation is expected
to be at low values constituting <0.2wt% (refer to van der Laan et al [59] for further details). The
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competing selectivity of CH4 and C5+ in R4 suggested a deviation from ASF. Previous research [60–63]
proposes that this may be due to the presence of two chain growth probability α values that characterize
the catalyst in use. The existence of two sites on the catalyst surface suggests that each site might
independently yield the ideal ASF [59]. Based on the results of R4 and comparing the product
distribution data to literature, the molar fraction distribution of products in R4 was matched to two
chain growth probabilities (Equation (7)), indicating that the commercial catalyst has two different
types of active sites: site A promoting methane production and site B promoting liquid fuel production.

mCn = ∅A(1 − αA)× αn−1
A + (1 −∅A)(1 − αB)× αn−1

B (7)

where mCn is the molar fraction of carbon number n; ∅A is the probability of propagation via site A
(responsible for methanation); (1 −∅A) is the probability of propagation via site B (responsible for the
production of higher hydrocarbons); and αA and αB are the chain growth probabilities at sites A and B,
respectively.

The mCn values for n = 1 – 10 were calculated based on results for the reaction with 1 g of
catalyst plotted against the carbon number (n) (Figure 7). Equation (3) was then solved for n = 1 – 10
by altering the three variables, ∅, αA, and αB, using MS Excel to find the best fit of the plotted
experimental curve. The closest fit to the theoretical (Figure 7) corresponded to two very different α

values (αA = 0.05 and αB = 0.985), as expected.
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The developed model (Equation (8)) predicts the product distribution for the commercial catalyst
under the test conditions of 0.1 MPa and 488 K (1 bar and 215 ◦C). The catalyst activity and C5+

selectivity in the reaction showed an overall decreasing trend over the 11 days of on-stream analysis.
This could be explained by the high chain growth probability (αB = 0.985) which suggests that the
catalyst is designed to produce hydrocarbons with a higher molecular weight (C20+). The heavy
products at such a high α value blocked the pores of the catalyst leading to its gradual decay. The
aim of these reactions was to assess the feasibility of obtaining high C5+ selectivity at 0.1 MPa (1 bar)
and this has been verified for seven days on stream where C5+ selectivity was higher than methane.
Prolonging the activity of the catalyst, and maintaining its high selectivity (>40%) to the desired
products beyond the initial seven days, became the focus of the next phase of the research.

mn = ∅ (1 − αA)α
n−1
A + (1 −∅)(1 − αB)α

n−1
B = 0.13 (1 − 0.05)αn−1

A + 0.87 (1 − 0.985)αn−1
B

= 0.123αn−1
A + 0.013αn−1

B = 0.123 × 0.05n−1 + 0.013 × 0.985n−1 = 0.0062n + 0.0128n (8)
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3.3. Testing the FTS System’s Robustmess by the Introduction of Interruption Factors

3.3.1. Fluctuation in Feed Gas Flow and Reaction Temperature (Zones A, B, and C)

The overall robustness of the FT reaction at atmospheric pressure for small-to-medium scale
applications needs to be assessed to determine if the reaction can withstand loss of feed gas flows or
heating to the reactor without loss of activity and selectivity to liquid products. If the catalyst/system
can maintain activity following shutdown/startup as well as following fluctuations in the feed gas
flow and composition, it improves the viability of the reaction for the small-scale generation of liquid
fuels. After 11.5 days on stream, the CO conversion was 12% and the selectivities to methane and to
C5+ products were stable at 54% and 34%, respectively. At this point, different interruption factors
such as loss of feed gas and loss of heating were used to assess if the activity/selectivity could be
regenerated (Table 3).

Zone A (Figure 8) shows the CO conversion and selectivity to methane and C5+ products for the
period of reaction immediately following a switch from the feed gas to He while lowering the reactor
temperature to 373 K (100 ◦C), before reintroduction of the FT feed and ramping the temperature back
to 488 K (215 ◦C). During the first day of reaction after the interruption, the CO conversion decreased
to a minimum of 10% (compared to 12% before the interruption), but then increased to the initial value
of ~20% (Figure 8) when the reaction was stopped. Interestingly, as the system stabilized after the
interruption, the selectivity to C5+ products increased from 34% to 54% with a drop in the selectivity to
methane. This could be due to the switch from CO + H2 to He as the reactor temperature was reduced
to 373 K (100 ◦C), and the elution of some C5+ hydrocarbon products from the catalyst which had
formed over the previous 11.5 days of reaction. These hydrocarbons could be eluted under the flow
of He, with the effect of cleaning the catalyst surface, and, as the reaction was initiated again (feed
reintroduced at 373 K (100 ◦C) and bought back to 488 K (215 ◦C)), the catalyst was returned to a more
active state (more active sites available for hydrocarbon formation) allowing it to reproduce liquid
fuels at higher selectivity (60%).
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In a more exaggerated interruption to the reactor, after 12.5 days of reaction, the system underwent
complete shutdown with all gas flows to the reactor stopped and the temperature reduced to 303 K
(30 ◦C) before reintroduction of the feed at 303 K (30 ◦C) and temperature increase to 488 K (215 ◦C)
(Zone B). The selectivity to liquid fuels (C5+) remained higher than methane following shutdown, with
values comparable to those after the first interruption event of 53% and 38%, respectively. The active
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sites regenerated after the first interruption event were not affected by the shutdown of the catalyst.
This is interesting as complete loss of gas flow did not result in loss of activity of the catalyst but rather
the activity and selectivity reached comparable values after stabilizing upon returning to the normal
reaction temperature. However, this regeneration was not sustained, as rapid deactivation began
after ~13 days on stream which could have been due to accumulation of higher molecular weight
hydrocarbons on the catalyst that were removed in the earlier flush with He. While the catalyst activity
could not be regenerated for a sustained period of time, the initial ability to reverse the selectivity in
favor of liquid fuel products (by removal of some adsorbed hydrocarbons) and the robustness of the
system following complete shutdown are promising for the proposed application. As deactivation
was still an issue, after 13.4 days of reaction the system was stopped (set to 303 K (30 ◦C) under He)
and the catalyst was re-reduced (673 K (400 ◦C) in H2 for 16 h).

Reactivation by hydrogenation is one of the most discussed regeneration techniques [64] and
hydrogenation has been reported to allow heavy products, such as wax, to elute from the pores of the
catalyst, thus aiding in reactivating sites and regenerating the catalyst to a level close to the original
activity [65]. During the reduction step, hydrocarbon products were detected which could be (a)
eluting from the catalyst at the reduction temperature of 673 K (400 ◦C), indicating that the compounds
had high hydrocarbon chain length (waxy products C20+ of boiling point >623 K (>350 ◦C)) and (b)
that H2 facilitated wax/hydrocarbon hydrogenation, both of which could regenerate the active sites.

After re-reduction, the activity of the catalyst was found to have returned to that observed for the
fresh catalyst (day 1) reaching 23% CO conversion for ~12 h, before decreasing to a stable value of 10%
(Zone C, Figure 8), lower than observed previously for days 3–7. With this increase in activity came
an increase in the selectivity to methane (from 45% to 65%), while selectivity to liquid fuels and light
hydrocarbons decreased from 35% to 25% and from 17% to 13%, respectively (Zone C, Figure 8).

Re-reduction helped the catalyst to regain its activity for only the first hours and the boost in
activity was accompanied with a higher selectivity to methane over liquid fuels (C5+). The higher
temperature treatment under H2 could have been more effective in removing hydrocarbons from the
catalyst, having a negative effect on the selectivity as opposed to the interruption and shutdown events,
where hydrocarbons were likely still retained on the catalyst. These hydrocarbons could be acting
as a promoter for liquid fuel production, e.g., if C14 was coating the catalyst when the FT reaction
started, the C14 would act as a template for polymerization leading to C15, C16, and C17+ (long chain
polymerization). Long chain polymerization was prevented after re-reducing the catalyst as the H2

caused hydrogenation/elution of products trapped on the catalyst. As a result, polymerization could
begin with CH2, which is the most abundant monomer intermediate of CHx monomers generated
on the surface of a catalyst and is readily incorporated in the chain during polymerization [65]. This
would result in a higher selectivity to methane over higher hydrocarbons as observed herein.

The remaining active sites on the catalyst were expected to lose activity as the time on stream
reached 16 days, hence hindering the possibility of further polymerization for liquid fuel production
in line with the further drop in selectivity to C5+ products at day 15.5. Another factor that stimulates
polymerization is hydrocarbons readsorbing on the surface of the catalyst. Zones A and C had similar
conversions (~14%) and methane selectivity (~60%), but the lights selectivity (C2-C4) increased from
A to C (from 8% to 13%), implying that shorter hydrocarbons (C2-C3-C4) were formed and released
instead of readsorbing on the surface of the catalyst, as is usually expected [65]. Regenerating the
catalyst with H2 hydrogenation resulted in a higher selectivity to methane which was undesirable.

3.3.2. Effect of Feed Ratio on Catalyst Activity (Zone D)

At day 16, the conversion continued at 10% for 9 h, then decreased to ~8%. The H2/CO ratio was
then switched to 3:1 for another 15 h after which it was changed to 1:1. Increasing the H2 content to
a H2/CO ratio of 3:1 increased conversion to 17% and was accompanied by an increase in methane
selectivity from 45% to 53% (Figure 9); decreasing the H2/CO ratio to 1:1 decreased conversion to
7% and methane selectivity to an average of 32%. Various studies have investigated the influence of
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process variables, specifically H2/CO ratio, on the activity and selectivity of syngas conversion [66,67].
The reactant stoichiometry is important for the selectivity of the FT reaction. Increased H2 in the feed
gas, as in the 3:1 feed ratio, decreases the probability of chain growth (less probability of producing
liquid fuels) [68,69] because H2 diffuses faster than CO [70] leading to excess H2 moving towards the
center of the catalyst and inhibiting the formation of long chains of hydrocarbons. As a result, the
selectivity to methane increases.

Energies 2019, 12 15 

 

The observed decrease in methane selectivity at 1:1 could mean that liquid fuel production was 

enhanced at this ratio, similar to the results reported by Lualdi et al. [71]. However, according to 

stoichiometry, the ideal H2/CO ratio is 2:1. This ratio helps to produce water that inhibits methane 

production over time, while still providing enough H2 for polymerization [72]. As previously 

mentioned, H2 migrates faster than CO [70], but CO adsorption is stronger than that of H2 on the 

catalyst which, at a 2:1 ratio, facilitates polymerization for liquid fuel production through carbon-to-

carbon coupling instead of releasing short carbon chains. This, in turn, limits methane formation [72]. 

 

Figure 9. CO conversion and methane selectivity for different feed ratios in Zone D in R4 (refer to 

Tables 3 and 4 for reaction details). 

3.4. Overall Findings for the Technical Feasibility of Liquid Fuel Production from Biogas at Atmospheric 

Pressure 

The iterative refinement steps in R1, R2, and R3 allowed R4 to be sustained and successful in 

producing liquid fuels at 0.1 MPa (1 bar) (Table 8). External factors were introduced in R4 to test the 

system’s robustness and to investigate if the high selectivity to liquid fuels could be recovered; 

positive results in terms of activity showed that the system became resilient to interruption factors 

and was able to proceed for 16 continuous days without complete loss of activity. However, the 

catalyst’s ability to maintain high selectivity to liquid fuels decreased with time on stream. Analysis 

showed that the catalyst was likely characterized by two active sites (dual α), promoting methane 

and liquid fuel production, respectively, making it difficult to suppress methane production as the 

catalyst began to deactivate. Our results highlight the importance of having a catalyst cleaning and 

regeneration section within the system to allow constant cleaning and to maintain high catalytic 

activity and selectivity to liquid fuel production. 

Although further research is required to develop the system, address issues surrounding low 

CO conversion (which is typical for low pressure FT [73]), and move from laboratory to pilot to full-

scale, the laboratory experiments proved that it is feasible to produce liquid fuels from biogas through 

FT at 0.1 MPa (1 bar). However, it should be remembered that this is not the only route for biogas-to-

liquid fuels, with other options including bio-LNG (liquefied natural gas) and plasma reforming. 

Building on previous work by the authors of this paper [74], it is recommended that a comparative 

study be undertaken to investigate the technical, economic and environmental aspects of the novel 

and existing biogas-to-liquid routes in comparison to other biogas utilization routes. The wider 

options for integrated Fischer-Tropsch systems in the context of energy demands and cost 

competitiveness are also of interest [75] and warrant investigation. Knowledge of the total 

environmental impact of transport options is key for informing policy- and decision-making [76]. 
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Decreasing the H2/CO ratio to 1:1 resulted in similar conversions to the 2:1 ratio of ~8%. However,
the 1:1 ratio showed lower methane selectivity of 35% as compared to 45% in the 2:1 ratio. The observed
decrease in methane selectivity at 1:1 could mean that liquid fuel production was enhanced at this
ratio, similar to the results reported by Lualdi et al. [71]. However, according to stoichiometry, the
ideal H2/CO ratio is 2:1. This ratio helps to produce water that inhibits methane production over
time, while still providing enough H2 for polymerization [72]. As previously mentioned, H2 migrates
faster than CO [70], but CO adsorption is stronger than that of H2 on the catalyst which, at a 2:1 ratio,
facilitates polymerization for liquid fuel production through carbon-to-carbon coupling instead of
releasing short carbon chains. This, in turn, limits methane formation [72].

3.4. Overall Findings for the Technical Feasibility of Liquid Fuel Production from Biogas at Atmospheric
Pressure

The iterative refinement steps in R1, R2, and R3 allowed R4 to be sustained and successful in
producing liquid fuels at 0.1 MPa (1 bar) (Table 8). External factors were introduced in R4 to test
the system’s robustness and to investigate if the high selectivity to liquid fuels could be recovered;
positive results in terms of activity showed that the system became resilient to interruption factors and
was able to proceed for 16 continuous days without complete loss of activity. However, the catalyst’s
ability to maintain high selectivity to liquid fuels decreased with time on stream. Analysis showed that
the catalyst was likely characterized by two active sites (dual α), promoting methane and liquid fuel
production, respectively, making it difficult to suppress methane production as the catalyst began to
deactivate. Our results highlight the importance of having a catalyst cleaning and regeneration section
within the system to allow constant cleaning and to maintain high catalytic activity and selectivity to
liquid fuel production.
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Table 8. Summary of overall findings.

Parameters Investigated Conclusions

Iterative refinement

R1 Commercial catalyst was active at 0.1 MPa (1 bar) producing 96% methane

R2 An increase in the amount of catalyst increased the activity and selectivity to
liquid fuel production which reached 20%

R3
Doubling the reactor’s internal diameter, while using the same amount of

catalyst as R2, increased the catalyst’s activity to an average of 12%, compared
to 7% in R2

Optimization

R4
Using the same reactor as R3 but further increasing the amount of catalyst

boosted conversion to an average of 18% within the first week with liquid fuel
selectivity reaching 60%

System robustness (R4)

Zone A
Cooling the reactor to 373 K (100 ◦C) in the presence of He helped regain
catalyst activity at FT conditions, as CO conversion increased to 20% with

higher selectivity to liquid fuels than methane

Zone B
Complete shutdown of gas supply and cooling to 303 K (30 ◦C) caused CO

conversion to drop (<10% at FT conditions) but higher selectivity to liquid fuels
(53%) was maintained

Zone C
Catalyst re-reduction with H2 helped eliminate waxy products stuck on the

catalyst but enhanced methane selectivity with a drop in CO conversion (from
23% to 10%)

Zone D H2/CO feed ratio of 2:1 was the most suitable for FT reaction at 0.1 MPa (1 bar)

Although further research is required to develop the system, address issues surrounding low CO
conversion (which is typical for low pressure FT [73]), and move from laboratory to pilot to full-scale,
the laboratory experiments proved that it is feasible to produce liquid fuels from biogas through FT at
0.1 MPa (1 bar). However, it should be remembered that this is not the only route for biogas-to-liquid
fuels, with other options including bio-LNG (liquefied natural gas) and plasma reforming. Building
on previous work by the authors of this paper [74], it is recommended that a comparative study
be undertaken to investigate the technical, economic and environmental aspects of the novel and
existing biogas-to-liquid routes in comparison to other biogas utilization routes. The wider options
for integrated Fischer-Tropsch systems in the context of energy demands and cost competitiveness
are also of interest [75] and warrant investigation. Knowledge of the total environmental impact of
transport options is key for informing policy- and decision-making [76].

3.5. Economic Feasibility of the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels

The small plant size (producing 98 m3/h of biogas) resulted in a loss (Table 9) of
~St£1,200,000/year when biogas is sent via FT to produce liquid fuels for transport and/or heat
(T1/H1). The total annual expenditure of T1/H1 was approximately double that of other exploitation
routes due to high costs associated with the reforming and FT plants at small scale. When the RHI
was excluded, mimicking the real-life scenario, none of the routes were viable and all had negative
ROCE values; when the RHI was included, only route H2 (conventional upgrading), used for heating,
returned positive results with a ROCE value of 1% (Figure 10). With an expected return of 7.25%, the
minimum subsidies required to give the routes at small scale a reasonable return are St£1.55/m3 of
biogas for liquid fuels via FT for heat or transport (T1/H1) and ~St£0.40/m3 of biogas for upgrading
to biomethane for transport (T2–T5) (Table 9). This analysis assumed a plant lifetime of 15 years (from
Smyth et al. [41]); however, future research should investigate extending the plant lifetime to 30 years,
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which is the typical lifetime for industrial biological treatment plants, e.g., wastewater treatment
plants [77].

Table 9. Results of economic analysis.

Scenario 1

Total
Annual

Expenditure
(St£/year)

Total
Capital

Expenditure
(St£)

Profit Ex
RHI

(St£/year)

Profit
(St£/m3

biogas)

ROCE
(%)

Appropriate
Profit Level

(St£/m3

biogas) 2

Required
Subsidy
(St£/m3

biogas) 3

T1/H1 1,382,949 4,618,142 −1,233,209 −1.44 −89.17 0.12 1.55
H2 485,926 554,021 −390,213 −0.45 −80.30 0.04 0.50
T2 485,926 554,021 −275,025 −0.32 −56.60 0.04 0.36
H3 519,360 541,021 −423,647 −0.49 −81.57 0.04 0.54
T3 519,360 541,021 −308,458 −0.36 −59.39 0.04 0.4

1 T1/H1: AD-reforming-FT-liquid fuel; H2/T2: AD-upgrading-compression-CNG; H3/T3:
AD-upgrading-liquefaction-LNG. 2 Appropriate profit level is the profit level for 7.25% ROCE. 3 Required subsidy
= appropriate profit level − profit.

Figure 10. Return on capital employed (ROCE) for routes in the heat and transport sectors.

The unviability of the FT route is in line with Rafati et al. [13], who stated that the production of
FT biofuels would only be economically viable at very high oil prices or with a substantial subsidy.
Unpredictable crude oil prices, varying from for example $12/barrel in 1998 to over $90/barrel in
2008 [78], mean that the liquid fuel market is risky for investors. There is, however, a strong argument
for subsidies, which have historically played an important role in energy markets. The UK coal sector,
for example, received funding from the government for years in order to keep it afloat [79], thus
supporting indigenous jobs and ensuring secure fuel supply. Looking at the wider context, it has
also been argued that wars in the Middle East were initiated to secure access to oil reserves in those
regions [80], another form of subsidy. Subsidies are not unprecedented and could play an important
role in improving the sustainability of the heat and transport sectors.

4. Conclusions

The ultimate goal of this research is to provide a route to the liquid fuels market for anaerobic
digestion plants. The aim of this paper was to investigate the FT conversion of biogas-derived syngas to
liquid fuel at atmospheric pressure at laboratory scale. Feasibility at atmospheric pressure is important
to ensure ease of operation in typical anaerobic digestion plants, which are based in the agricultural
sector. The paper also explored the ability of the system to maintain its operational integrity in response
to external interruption factors, which is important for the assessment of possible scale-up. Liquid
fuel selectivity of up to 60% was observed under specific FT conditions of 488 K (215 ◦C), H2/CO
= 2, and 0.1 MPa (1 bar) at 25% CO conversion. This result was maintained for almost seven days,
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longer than any previous work in the literature, beyond which both catalyst activity and liquid fuel
selectivity started decreasing, with an accompanying increase in methane selectivity which reached
58% at day 11. The feasibility of producing liquid fuels from biogas-derived syngas at 0.1 MPa (1 bar)
and 488 K (215 ◦C) was verified with an overall sturdy response of activity to external factors; however,
the system is not yet ready for scale-up and further research is needed to investigate system operation
and control so that continuous production of the desired products (C5+ liquid fuels) can be achieved.
A systematic operational procedure that is not dependent on detailed knowledge of the catalyst is
required. Under current conditions, the biogas-to-liquid route would require subsidies to ensure
financial viability, but such subsidies could be an important driver of change to more sustainable fuels
in the heat and transport sectors. Comparison of this biogas utilization route with alternatives in terms
of technical, environmental, and economic impacts is advised to build a solid scientific base to support
decision-making on biogas utilization.
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Abbreviations

AD anaerobic digestion
ASF Anderson Schulz Flory
BID barrier discharge ionization detector
CNG compressed natural gas
FID flame ionization detector
FT Fischer–Tropsch
FTS Fischer–Tropsch synthesis
GC gas chromatograph(y)
GC–MS gas chromatography–mass spectrometry
GHG greenhouse gas
GHSV gas hourly space velocity
ID internal diameter
LNG liquefied natural gas
RHI Renewable Heat Incentive
St Sterling
TD thermal desorption
TGA thermogravimetric analysis
TOS time on stream
TPD temperature programmed desorption
VOC volatile organic compounds
wt weight

Appendix A. Additional Information on Testing and Characterization

Appendix A.1. Thermogravimetric Analysis

The thermogravimetric analysis (TGA) technique measures the weight loss of a sample as it is being heated
or cooled in a furnace. The sample specimen is exposed to an inert or reactive purge gas which creates a controlled
atmosphere as the temperature is monitored over time. The instrument used (Mettler Toledo TGA/DSC 1 STARe
System CH-8603- Switzerland) measures weight loss in the form of solvent, water, or any residue that is found

www.atbest.eu
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on the catalyst. In the case of the Clariant® catalyst, the sample used nitrogen as an inert gas for purging. This
allowed the sample to only react to temperature during decomposition, thus undergoing pyrolysis. The TGA
gives insight on whether the catalytic pores had been blocked by a certain material to cause inactivity or decrease
in activity. It also quantifies the amount that was burned off which in turn varies depending on the size of the
catalyst used, the size of the reactor’s internal diameter, and the amount of catalyst used.

A lower onset temperature was observed for R2 indicating the possibility of lower hydrocarbons retained in
the catalyst bed. It is worth noting that the increase in material weight removed from the catalyst explained the
texture of the catalyst post run, which had the consistency of a wax through visual inspection; liquid products
in more significant amounts were formed in this reaction in line with enhanced CO conversion. Upon heating
postrun catalyst samples (for the three reaction sets) to 873 K (600 ◦C) for TGA, materials present on each of
the samples started desorbing at different onset temperatures of 559 K (286 ◦C), 503 K (230.45 ◦C), and 523 K
(>250 ◦C), corresponding to 8%, 18%, and 5% of the sample weight loss for reactions R1, R2, and R3, respectively
(Figures A1–A3).
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Appendix A.2. Thermal Desorption (TD)

After performing TGA analysis and quantifying the material that was on the catalyst, it became necessary to
assess qualitatively the type of material. The technique of the analytical TD instrument (Perkin Elmer turbo matrix
hs50 head space sampler ATD 400-USA) is based on using a sorbent onto which volatile organic compounds
(VOCs) are collected. The sorbent is heated in the presence of a gas flow which allows the release (desorption) of
VOCs. The desorbed compounds are then concentrated into smaller and smaller volumes of gas. This process
made GC compatible with low concentration compounds (analytes) which were otherwise impossible to detect
with this method. The gas streams were injected in a GC where they were analyzed showing a product distribution
of the various compounds found on the catalyst (Figures A4–A6). It was important to see the nature of products
formed on the catalyst as it allowed a full understanding of the relationship between catalyst activity and
robustness as the particle size and reactor internal diameter were varied.
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Appendix A.3. BID

The GC used (Tracera BID-GC solution, Shimadzu, Japan) involves the BID technology, which is combined
with a GC-2010 Plus capillary gas chromatograph. Together, they create a GC system that is sensitive to low
concentrations and trace components that can be difficult to identify in any other GC detectors. H2, N2, CO, CH4,
and CO2 were separated by Shincarbon- and Porapak-packed columns and analyzed on the BID. Products C2–C10
were separated by an alumina capillary column and quantified on the BID allowing for determination of the C5+
selectivity (SC5 ). A typical GC with a flame ionization detector (FID) cannot differentiate between molecules that
elute at similar retention times and a mass spectrometer might result in a similar pattern of ionized fragments.
Using a coupled system reduced the possibility of such uncertainty. The relative concentrations of the atomic
masses in the generated spectrum were analyzed comparatively via an online spectrum library. This enabled
results to be matched with already existing sample characteristics allowing identification of the materials present.

Appendix A.4. GC–MS

The system (Agilent G7038A-USA) utilized a capillary column that promoted separation of molecules in
mixtures according to their relative affinity to the column’s stationary phase. The molecules eluted from the
column at different retention times; then, the mass spectrometer captured, ionized, and detected them as ionized
molecular fragments based on their mass-to-charge. The collected samples were diluted with dichloromethane
prior to GC–MS analysis (Figures A7–A11).
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Appendix B. Additional Information on Economic Calculations

ROCE calculations for the heat and transport sectors are presented in Tables A1–A6.

Table A1. Expenditure for the reforming of biogas for the production of liquid fuels via FT (routes
T1/H1).

Details Capital Expenditure (St£) Annual Expenditure (St£/year)

Capital costs - -
Reforming plant 1,332,645 137,213

FT plant 3,285,500 338,284
Total 4,618,142 475,497

Fixed costs - -
Reforming operation and maintenance - 133,264

FT operation and maintenance - 131,420
Depreciation - 307,876

Biogas production - 334,892
Total - 907,452

Combined total cash expenditure - 1,382,949
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Table A2. Income, profit and ROCE for the reforming of biogas for the production of liquid fuels via
FT (routes T1/H1).

Details Value

Income -
Liquid fuels sold (£/year) 149,740
Total cash income (£/year) 149,740

Profit (£/year) −1,233,209
Profit (£/m3 biogas) −1.44

ROCE (%) −89.17

Table A3. Expenditure for conventional upgrading of biogas for use as CNG (routes T2/H2).

Details Capital Expenditure (St£) Annual Expenditure (St£/year)

Capital costs - -
Conventional upgrading plant 341,021 35,112

Connection to gas grid 213,000 21,931
Total 554,021 57,044

Fixed costs - -
Upgrading operation and maintenance - 57,056

Depreciation - 36,935
Biogas production - 334,892

Total - 428,883
Combined total cash expenditure - 485,926

Table A4. Income, profit and ROCE for conventional upgrading of biogas for use as CNG (routes
T2/H2).

Details Including RHI Excluding RHI

Income (H2) - -
Grid injection 491,812 95,713

Total cash income - 95,713
Income (T2) - -

Grid injection - 210,902
Total cash income - 210,902
Profit (H2) (£/year) 5886 −390,214

Profit (£/m3 biogas) 0.01 −0.45
ROCE (%) 1.21 −80.30

Profit (T2) (£/year) - −275,025
Profit (£/m3 biogas) - −0.32

ROCE (%) - −56.60

Table A5. Expenditure for conventional upgrading of biogas for use as LNG (routes T3/H3).

Details Capital Expenditure (St£) Annual Expenditure (St£/year)

Capital costs - -
Conventional upgrading plant 341,021 35,112

LNG plant 200,000 20,593
Total 541,021 55,705

Fixed costs - -
Upgrading operation and maintenance - 57,056

LNG operation and maintenance - 30,000
Transportation of LNG - 5639

Depreciation - 36,068
Biogas production - 334,892

Total - 463,655
Combined total cash expenditure - 519,360
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Table A6. Income, profit and ROCE for conventional upgrading of biogas for use as LNG (routes
T3/H3).

Details Including RHI Excluding RHI

Income (H3) - -
LNG sold 491,812 95,713

Total cash income - 95,713
Income (T3) - -
LNG sold - 210,902

Total cash income - 210,902
Profit (H3) (£/year) −27,548 −423,647

Profit (£/m3 biogas) −0.03 −0.49
ROCE (%) −5.30 −81.57

Profit (T3) (£/year) - −308,458
Profit (£/m3 biogas) - −0.36

ROCE (%) - −59.39
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