Supplementary Materials

(Detailed description of the numerical analysis model)

1. Shear-stress transport (SST) k- ω model

In the shear-stress transport (SST) k- ω model to predict the flow of rim seal is as follows, the turbulent kinetic energy k and the specific rate of dissipation ω are calculated using the following transport equation.

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j}\left(\Gamma_k \frac{\partial k}{\partial x_j}\right) + G_k - Y_k + S_k$$
$$\frac{\partial}{\partial t}(\rho \omega) + \frac{\partial}{\partial x_j}(\rho \omega u_j) = \frac{\partial}{\partial x_j}\left(\Gamma_\omega \frac{\partial \omega}{\partial x_j}\right) + G_\omega - Y_\omega + D_\omega + S_\omega$$

 G_k : the production of turbulence kinetic energy.

 G_{ω} : the generation of ω , $G_{\omega} = \alpha \frac{\omega}{k} G_k$

 Γ_k and Γ_{ω} : the effective diffusivity of *k* and ω .

 Y_k and Y_{ω} : the dissipation of *k* and ω due to turbulence.

 D_{ω} : the cross-diffusion term.

 S_k and S_ω : user-defined source terms.

2. Species transport model

The local mass fraction of each species, Y_i , is predicted through the solution of a convectiondiffusion for the *i*th, species. This conservation equation takes the following general form.

$$\frac{\partial}{\partial t}(\rho Y_i) + \nabla \cdot \left(\rho \vec{V} Y_i\right) = -\nabla \cdot \vec{J}_i + R_i + S_i$$

 R_i : the net rate of production of species *i* by chemical reaction.

 S_i : the rate of creation by addition from the dispersed phase plus any user-defined sources.

 \bar{J}_i : the diffusion flux of species *i*, which arises due to gradients of concentration and temperature.

The mass diffusion in turbulent flows is as follows.

$$\vec{J}_i = -\left(\rho D_{i,m} + \frac{\mu_t}{Sc_t}\right) \nabla Y_i - D_{T,i} \frac{\nabla T}{T}$$

 $D_{i,m}$: the mass diffusion coefficient for species *i* in the mixture.

 $D_{T,i}$: the thermal (Soret) diffusion coefficient.

 Sc_t : the turbulent Schmidt number. $Sc_t = \frac{\mu_t}{\rho D_t}$, where μ_t is the turbulent viscosity and D_t is the turbulent diffusivity.

Reference

1. ANSYS Fluent. 15.0 Theory Guide.