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Abstract: Electric vehicles (EVs) have become an efficient solution to making a transportation system
environmentally friendly. However, as the number of EVs grows, the power demand from charging
vehicles increases greatly. An unordered charging strategy for huge EVs affects the stability of a
local power grid, especially during peak times. It becomes serious under the rapid charging mode,
in which the EVs will be charged fully within a shorter time. In contrast to regular charging, the
power quality (e.g.,voltages deviation, harmonic distortion) is affected when multiple EVs perform
rapid charging at the same station simultaneously. To reduce the impacts on a power grid system
caused by rapid charging, we propose an optimal EV rapid charging navigation strategy based on
the internet of things network. The rapid charging price is designed based on the charging power
regulation scheme. Both power grid operation and real-time traffic information are considered.
The formulated objective of the navigation strategy is proposed to minimize the synthetic costs
of EVs, including the traveling time and the charging costs. Simulation results demonstrate the
effectiveness of the proposed strategy.
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1. Introduction

With the increasing concern about environmental protection and the energy supply problems,
more attention has been focused on the development of electric vehicles (EVs) [1]. In contrast to the
normal gasoline/diesel powered vehicles, EVs are considered as a kind of zero-emission transportation.
Meanwhile, EVs can function as moving electric storage equipment to help the power balance
between the supply and demand sides [2–4]. The vehicle performances are improved via realizing
the advantages of environmental protection and energy conservation. However, as the number of
EVs grows, the power charging demand increases greatly. The larger-scale and disorganized charging
strategies cause several serious problems for the local power grid. The charging terminals will be
overloaded and the performances of power grids, including the efficiency, stability and reliability will
be directly affected [5,6]. Along with the development of internet of things (IoT) technologies, how to
design an optimal and efficient charging strategy for EVs becomes a critical problem.

Normally, the existing EV charging modes can be classified into: regular (slow) charging, rapid
charging and battery switching [7,8]. In the regular charging mode, the charging power is low. It takes
a longer time for EVs to be fully charged, which can extend EVs’ battery life and reduce the impact of
charging behaviors on the local power grid. Since the charging process is slow, this charging mode
requires a long parking time and the charging stations are often located in the large public/commercial
parking lots or residential underground garages.
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Given the limited capacity of EV battery, the drivers who have a long-distance trip should select
a fast charging mode to refuel their vehicles. Compared with regular charging, the charging time
durations of EVs under the rapid charging and the battery switching modes are reduced. As for the
battery switching mode, the battery parameters and interface standards are different for the various EV
types and manufacturers. Under the battery switching mode, several professional and particular EV
battery switching stations are needed to support the EV traffic [8,9]. It is suitable for public transport
buses, and it has a limited influence on the power grid. Besides battery switching, rapid charging is
another faster charging mode. Under this charging mode, the charging process will be completed in
the charging stations with high power level. It is more convenient and flexible, so the normal drivers
prefer this mode to recharge their EVs to continue driving more quickly.

However, rapid charging may pose threats to the power grid system. A large number of disordered
and random rapid charging behaviors will cause negative effects on the local power grid, especially
during the peak periods. Compared with regular charging, excessive rapid charging loads on the
electric power distribution network can cause more serious problems, such as voltages deviation,
overload of network components (e.g., cables or transformers), and the increase of the harmonic
distortion level of the local power grid [10–12].

To reduce the EV charging impacts on the power grid, many studies have been carried out,
focusing on the charging scheduling design to flatten the peak loads [13,14], via the help of the real
time IoT technologies, such as vehicle-to-grid (V2G) communication, crowd sensing. Ref. [15] proposes
a coordinated architecture to shift the charging loads by dynamic price regulating. Furthermore, in [16],
a fair energy scheduling scheme is proposed to control the charging loads of EVs. By coordinating
both the charging and discharging behaviors, an optimal charging approach is presented in [17] to
achieve peak shaving and minimize the charging power losses. Most of these studies mentioned are
based on the regular charging mode, the main objectives of these scheduling schemes are to change
the charging behaviors of EV drivers. However, when urgent charging demands arrive for the moving
EVs on roads, adjusting the start time of charging reduces the drivers’ satisfaction sharply. When the
EVs are driving on the road outside, the rapid/faster charging modes are needed. It is necessary to
develop a charging navigation strategy for rapid charging EVs.

In the literature about charging navigation, Ref. [18] analyzes the EV navigation problem while
the traveling cost is minimized. Ref. [19] formulates the charging-scheduling problem and proposes an
optimal method to reduce the total charging time of EVs. In terms of navigation in transport sectors,
some necessary navigation applications (e.g., GPS) are installed to guide the EVs to the charging
stations. However, the mentioned navigation strategies [18,19] do not consider the power system
information. Then, the power system performance will be reduced when the mentioned strategies
are utilized for the rapid charging EVs directly. In detail, as the power demand for rapid charging
increases, it causes charging congestion when a large number of EVs arrive at one rapid charging
station at the same time. In China, since the rapid charging stations are generally built in bustling
downtown areas, such behaviors may lead to traffic congestion around rapid charging stations as
well as the power overload of these areas. Likewise, heavy traffic situations also greatly affect the
charging of EVs, including the traveling time on the roads and the waiting time at the charging
stations. An integrated rapid-charging navigation strategy is proposed in [20], that considers both the
traffic condition and power grid status. It develops a strategy considering the total time for charging,
however, the charging expenses are neglected. Ref. [15] formulates an optimized charging model to
minimize the charging cost in response to time-of-use (TOU) price in a regulated market. Even in
the same time period, the charging stations in different areas can adjust their rapid charging prices
according to their operation status. Adjusting the charging prices in real time becomes an efficient
method to control the number of charging EVs. Therefore, besides considering the power grid and
traffic system constraints, it is necessary to satisfy the EVs’ demands with the minimal synthetic cost
(i.e., traveling time and charging expenses) under the rapid charging mode, via the deployed IoT
network in both the traffic and power grid systems.
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In this paper, we develop an optimal EV navigation strategy under the rapid charging
mode, while the synthetic costs, including the traveling time and charging expenses are minimized.
Meanwhile, the traffic congestion and the charging station overloading are mainly considered. In our
work, we only focus on private electric vehicles and specifically aim at the Chinese situation. The real
time traffic data and the power grid operation information are the basis of our proposed navigation
strategy. We propose an intelligent transport system framework for the rapid charging EV system,
the data collection and transmission are processed in the distributed computing manner. The rapid
charging stations regulate the charging power of each charging pole dynamically according to the
power grid operation information, and adjust their charging prices base on TOU tariffs and the queuing
number of EVs. During the driving process of EVs, the charging navigation path is updated in real
time, according to the power grid status and the traffic conditions. Therefore, the charging navigation
paths are always optimal in the driving process. In summary, the contributions of this paper are listed
as follows.

1. We design an optimal charging navigation strategy for rapid charging EVs to reduce EV users’
traveling time and charging expenses flexibly.

2. We propose an intelligent transport system framework for our optimal charging navigation
strategy, while the traffic and power grid operation information are considered.

3. To implement our optimal charging navigation strategy, we use the charging power regulation
scheme to reduce the influence for power grid, and charging price adjustment scheme to balance
the number of EVs at each rapid charging station.

The remainder of this paper is organized as follows. The system model is presented in Section 2.
The optimal charging navigation scheme is proposed in Section 3. Simulation results are proposed in
Section 4. In Section 5, we present the conclusions of this paper.

2. System Model

In this section, we propose a comprehensive system model as illustrated in Figure 1. It contains
three parts: Intelligent Transport System center (ITS center), Rapid-Charging Station (RCS), and EV
terminals. Real-time traffic data and power grid operation information are collected and calculated in
a distributed model via the IoT networks (e.g., crowd sensing). The EV navigation system operates
in the slot-by-slot fashion. The structure of each slot is shown in Figure 2. Each slot has three
frames, including calculation and broadcast frame t1, decision frame t2, and monitoring frame t3.
Normally, t3 >> t1 and t3 >> t2. In order to obtain optimal rapid-charging navigation strategies for
EVs, the navigation paths should be updated in each slot. In the monitoring frame t3, the RCS collects
the power grid operation data, meanwhile, the ITS center collects real-time traffic data. In frame t1, the
RCS and ITS center calculate the collected information respectively and then broadcast the charging
station information and road conditions to the EVs. After receiving the broadcasting data, the EVs
determine the navigation paths in frame t2. The integrated system is described in detail as follows.

2.1. Rapid-Charging Station

As shown in Figure 1, there are multiple RCSs deployed around the road. A distribution
management system (DMS) unit is included in each RCS, which is used to connect the local
power grid. In frame t3 of each slot, the RCS collects the power grid operation data via the DMS.
Then, in frame t1, in order to ensure safe and stable operation of the local power grid, after collecting
the power grid information, the DMS calculates the maximum permissible charging load based on the
power loading level of the distribution power system. According to the maximum accessible charging
capacity released by DMS, each RCS calculates and adjusts their charging plans. Then, it distributes
the charging powers to each charging pole dynamically. In addition, according to the TOU electricity
price issued by power grid company in advance, combined with their profitability and the number of
queuing vehicles, the RCSs adjusts their charging prices in each slot. After that, these planned charging
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power data and the station information (i.e., charging prices, arrival rate and service rate at RCSs) will
be broadcast to the moving EVs.

RCS1

ITS

RCS2

Traffic Network

Power Grid

EVs

Figure 1. System model overview.

3
t2

t
1
t

Figure 2. Structure of a slot.

2.2. Intelligent Transport System Center

With the emerging communication and information techniques, the ITS center becomes a transport
management system, which has the remarkable benefits in reducing traffic congestion. In our work,
the ITS center is connected with the traffic communication network. In frame t3, the ITS center collects
real-time traffic data via crowd sensing or other IoT data collecting technologies. Then, in frame t1 of
the next slot, the ITS center calculates the road conditions (e.g., average driving velocities in each road
segment in the slot) and broadcasts them to the moving EVs.

2.3. EV Terminal

We set that the EVs can obtain the electricity from both the regular and rapid charging modes.
In order to balance the gap between the traveling time and cost, we consider that the EVs obtain
the charging energy via the rapid charging only on the trip. When they arrive the destination, their
batteries will be charged fully via using the regular charging mode. On the basis of the received road
condition data and charging station information, in the frame t2 of each slot, the EV terminals calculate
the synthetic costs for all reachable charging stations and develop optimal navigation strategies for
EVs. Thus, with the dynamic information of charging station and traffic conditions, the navigation
strategies can be proposed dynamically and display the result to EVs in each slot.

3. Optimal Charging Navigation Scheme

Assume that the EV starts traveling from the origin and passes through the complex traffic
network to reach the destination, as shown in Figure 3. During the traveling, at the beginning of each
slot in frame t2, the EV terminal determines whether it needs to be charged. When the remaining
amount of state of charge (SoC) is not enough to finish the trip, the EV terminal should design an
optimal charging navigation strategy with the minimum synthetic cost. During the driving process of
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charging navigation, the navigation path will be updated at the beginning of each slot, based on the
dynamic information EV terminal receives. The EV arrives at the selected RCS and obtains the suitable
charging energy.

Figure 3. Topology structure of road network model.

In the proposed optimal navigation strategy, both the time cost and the charging cost are
considered. In detail, the time cost includes the EV driving time, the waiting time and charging
time at the RCSs. Moreover, the charging cost includes the rapid charging cost in the RCSs and the
regular charging cost at the destination. The details are shown below, and the mathematical symbols
in this paper are listed in Table 1.

Table 1. Mathematical symbols used in this paper.

Symbol Description

Tdrive/Twait/Tcharge Driving/waiting/charging time
C/Crapid/Cregular Total cost/rapid charging cost/regular charging cost

ϕ Weight coefficient
Tij Traveling time between locations i and j
dij Distance between locations i and j

v̄ij,k Average driving velocity between locations i and j during time slot k
(∗)j,k At RCS j during time slot k
δj,k EVs’ arrival rate (EV number per minute)
ηj,k EVs’ service rate (EV number per minute)
pj,k Occupation rate per charger
Pj,k Rapid charging power of each charging pole
Qj,k Charging capacity of RCS j during time slot k
nj,k Number of charging EVs
wj,k Queuing number of EVs
ρ̄j,k Rapid charging price
cj Total number of EV chargers at RCS j
ρt TOU charging price in electricity market(Regular charging price)
ρ∗ Additional charging charges

Eca/Emin
ca Rated battery capacity/minimum storage of battery capacity

ϑrapid Rapid charging efficiency
Pmax Maximum charging power of charging pole

ec Battery energy consumption
Erapid

ch /Eregular
ch Rapid charging amount/regular charging amount

SOC0 State of charge at origin
D1

path/D2
path Driving distance from origin to selected RCS/driving distance

from selected RCS to destination
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3.1. Time Cost

3.1.1. Driving Time

Firstly, let Tdrive represent the total driving time from the origin to the destination, which can be
calculated as

Tdrive = ∑
i,j∈{Ω∪Φ}

Tij, (1)

where Tij is the traveling time between locations i and j. Ω and Φ are the sets for all visited locations
and RCSs.

The driving time between locations i and j is expressed as

Tij =
dij

v̄ij,k
, (2)

where dij is the distance between locations i and j. v̄ij,k is the average driving velocity in time slot
k between locations i and j. Here, k ∈ {1, 2, · · · , K}, K is the total number of time slots. We set that
the ITS center broadcasts the average driving velocity v̄ij,k to all EVs at the beginning of each slot in
frame t1.

We set that the EV can complete its journey with only one charging at the RCS. Let T1
j,drive denote

the driving time from origin to RCS j, T2
j,drive denote the driving time from RCS j to destination.

The total traveling time for RCS j is obtained via the below formula

Tj,drive = T1
j,drive + T2

j,drive

= ∑
i,j∈{Ω∪Φ}

Tij

= ∑
i,j∈{Ω∪Φ}

dij

v̄ij,k
. (3)

3.1.2. Waiting Time

We estimate the waiting time Twait at RCS j based on Queue Theory. Let Tk denote the time
duration of slot k. The number of arriving EVs during Tk is denoted by narrive

j,k and the number of EVs

being charged during Tk is denoted by nservice
j,k . These data can be easily obtained via multiple deployed

sensors or devices in the charging station [21]. Then, at RCS j, the EV arrival rate δj,k (EV number per
minute) and service rate ηj,k (EV number per minute) at time slot k are given as

δj,k =
narrive

j,k

Tk
, ηj,k =

nservice
j,k

Tk
. (4)

According to the queuing model M/M/s of queue theory mentioned in [21–24], the arrival rate
is subject to the poisson distribution with parameter δj,k, the service rate is subject to the negative
exponential distribution with parameter ηj,k. The total idle probability of the RCS j at time slot k is
shown as

P0,j,k =

cj−1

∑
n=0

1
n!

(
δj,k

ηj,k

)n

+
1
cj

(
δj,k

ηj,k

)cj
(

1
1− pj,k

)−1

, (5)
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where n is the number of charging EVs, cj is the total number of EV chargers at RCS j. pj,k is the
occupation rate per charger of RCS j and is expressed as

pj,k =
δj,k

ηj,kcj
. (6)

The length of queue Lq,j is calculated as

Lq,j =
pj,k

cj!(1− pj,k)2

(
δj,k

ηj,k

)cj

P0,j,k, (7)

thus, when a EV arrives at RCS j, the waiting time is

Tj,wait =
Lq,j

δj,k
. (8)

3.1.3. Charging Time

The charging time is related to the charging power of EVs at RCSs. For the safety consideration of
local power grid, we give a rapid charging power regulation scheme similar as Ref. [20]. We define the
maximum rapid charging load of each RCS as the available charging capacity Qj,k. The power system
allocates available charging capacity on the basis of the load condition of power nodes at each slot.
At the RCS, based on the rapid-charging characteristics, the total rapid charging power of all charging
pole should not exceed the available charging capacity Qj,k. Thus, to ensure the safety of a distribution
power grid system, the rapid charging power Pj,k of each charging pole can be obtained from

Pj,k = min

{
Qj,k

nj,k
, Pmax

}
, (9)

where nj,k denotes the number of charging EVs at RCS j at time slot k, and Pmax is the maximum
charging power that charging pole can provide.

Then, the charging time Tj,ch at RCS j is

Tj,ch =
Erapid

ch
Pj,kϑrapid

, (10)

where ϑrapid is the rapid charging efficiency and Erapid
ch is the amount of rapid charging electricity.

3.2. Charging Cost

3.2.1. Rapid Charging Cost

The rapid charging cost is associated with the charging price. From the formulation Equation (9)
of Pj,k, when more EVs perform rapid charging in a RCS simultaneously, the rapid charging power
will be affected. To balance the rapid charging demand of each RCS and avoid overcrowding at the
RCS, we propose a rapid charging price adjustment scheme. We set the rapid charging price base on
TOU tariffs. A parameter ρ∗ is introduced to express the additional charging charges. The charging
price ρ̄j,k at RCS is designed as

ρ̄j,k =

{
λjρt (wj,k = 0)

λjρt + wj,kρ∗ (wj,k > 0)
, (11)
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where ρt denotes the TOU price in electricity market, λj denotes the profit coefficient for RCS j.
The queuing number of EVs is denoted as wj,k (i.e., the number of EVs that waiting to be charged).
If nj,k ≤ cj, we have wj,k = 0, otherwise wj,k > 0. The rapid charging price adjustment scheme is
shown in Figure 4. The charging price will be updated and broadcast to the moving EVs at every time
slot. Once the EV starts charging, the charging price of this EV will remain unchanged during the
whole charging process.

0 c
j

The number of EVs at RCS j

ρ
t

λ
j
ρ

t

T
h
e 

ch
ar

g
in

g
 p

ri
ce

 a
t 

sl
o
k
 k

ρ
j,k

ρ
t

n
j,k

ρ
j,k

Figure 4. The rapid charging price adjustment scheme.

The rapid charging cost is calculated as

Crapid = Erapid
ch ρ̄j,k. (12)

3.2.2. Regular Charging Cost

When arriving at the destination, the EV is parked in the residential area or parking lot with
charging poles. The EV will be charged to the rated capacity of battery using the regular charging
mode. The regular charging price is the TOU price ρt in the electricity market. We denote Eregular

ch as
the regular charging amount, we have

Cregular = Eregular
ch ρt. (13)

3.3. Objective Function and Constraints

In summary, the goal of charging navigation scheduling is to minimize the synthetic cost C.
The objective function is formulated as

min C = ϕ (Tdrive + Twait + Tch) + Crapid + Cregular, (14)

where ϕ is the weight coefficient, which is adjusted according to users’ requests. For example, a higher
ϕ means that the driver is more concerned about the time consumption.

The constraints for the objective function are

EcaSOC0 ≥ ecD1
path + Emin

ca , (15)

EcaSOC0 − ecD1
path + Erapid

ch ≥ ecD2
path + Emin

ca , (16)

EcaSOC0 + Erapid
ch + Eregular

ch − ec(D1
path + D2

path) = Eca, (17)

0 < Eregular
ch < Eca, (18)

0 < Erapid
ch < Eca, (19)
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where Eca is the rated battery capacity, Emin
ca is the minimum storage of battery capacity, SOC0 is the

state of charge at origin, ec is the energy consumption per kilometer. D1
path is the driving distance

from origin to the selected RCS and D2
path is the driving distance from the selected RCS to destination.

In detail, constraint (15) means that the remaining battery energy of EVs at origin should be greater
than the energy consumption from origin to the selected RCS. Constraint (16) means that the battery
energy after rapid charging at RCS should be greater than the energy requirement from the selected
RCS to destination. We assume that the EV will be charged to the rated capacity Eca using the regular
charging mode after arriving at the destination, the battery capacity should satisfy the Equation (17).
The regular charging amount and rapid charging amount should satisfy constraint (18), (19).

3.4. Solution

The optimization problem (14) is a typical mixed integer nonlinear programming (MINP) problem,
it is hard to solve directly. The Dijkstra algorithm is a common tool to solve the shortest path
problem [25]. According to Dijkstra algorithm, the traffic network can be modeled with a weighted
directed graph. The weighted lines of the graph represent the road segment and the nodes represent
the intersection of road network. Normally, the attribute of weight value can be either the distance of
road segment or the average time to drive through the road segment. In this paper, we use the synthetic
cost of traveling the road segment as the weight value. We can rewrite the objective function (14)
as the following formulation:

Weight = ϕTime + Expense. (20)

Time represent the time traveling the road segment, Expense represent the expense of electricity
consumption through road segment. ϕ is the weight coefficient, which is also used in the objective
function (14). According to the expression of objective function, the Weight is expressed as

Wij = ϕTij + ρtEij, (21)

where Wij is the weight value of road segment between location i and j, Eij is the electricity consumption
through road segment between location i and j. According to the weight value of each road segment,
we can use the Dijkstra algorithm to plan the optimal driving path. By using the Optimal Path Planning
Algorithm illustrated in Algorithm 1, we can obtain the optimal driving path and the selected RCS for
EV in each slot. According to the proposed charging navigation strategy, we can obtain the solution
procedure of optimal rapid-charging navigation. The solution procedure is illustrated in Figure 5.
After the real-time data is updated, the Optimal Path Planning Algorithm is employed to search
for optimal driving path and the RCS for EV. During the driving process of charging navigation,
the optimization of path planning will be repeated at the beginning of each time slot. The charging
navigation path is also updated through optimization until destination has been reached.
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Input traffic network topology information,  initial 

node O, destination node D and SoC of the EV

Start point sp=O,

end point ep=D
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of each time slot

By using Optimal Path Planning Algorithm

illustrated in Algorithm 1, the optimal driving 

path and the selected RCS can be obtained

EV terminal displays charging 

navigation strategy to EV user and 
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No
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Figure 5. Solution procedure of optimal rapid-charging navigation.
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Algorithm 1 Optimal Path Planning Algorithm at slot k.

Require:

The traffic network topology information.

The parameters listed in Table 2.

The real-time data δj,k, ηj,k, Pj,k, ρ̄j,k

The start point sp and the end point ep.
Ensure:

1: for each j ∈ Φ do

2: Simulate driving path from sp to RCS j and the path from RCS j to ep based on Dijkstra algorithm.

3: if The driving path satisfy the constraints (15) and (16). then
4: Calculate the total cost

Cj = ϕ
(

Tj,drive+Tj,wait+Tj,ch

)
+Cj,rapid+Cregular,

by solving the optimization model proposed in Section 2.
5: else

6: Cj = in f .
7: end if
8: end for
9: Select the driving path and RCS with the minimum total cost C = min{Cj | j ∈ Φ}.

4. Simulation Results

We consider a 25× 25 km region of a city-center road network, which is similar to Guangzhou
Higher Education Mega Center in Guangzhou, Guangdong Province, China. The topological graph
of the transportation network is shown in Figure 6. The number of RCSs is 4. The RCSs (labeled
with red circle) are located at transportation nodes 17, 21, 37 and 11. Each RCS contains 8 charging
poles with the maximum charging power of 120 kW. The capacity of each EV is 54.75 kWh, and the
energy consumption is 0.147 kWh/km(these data are based on the GACNE Trumpchi GE530 [26]).
We assume the initial SoC of each EV is 20%. The parameters of studied EVs are listed in Table 2.
The TOU charging prices in electricity market are listed in Table 3 [27]. We set the profit coefficient
λj and additional charging charge parameter ρ∗ of each RCS as listed in Table 4. The conventional
load curve over one day is shown in Figure 7. We set that the permissible maximum load of this area
is 25 MW, which means, if the actual load exceeds the maximum load, it will cause a harmful effect
on the power grid. As the conventional load increases, the maximum available charging capacity of
all RCSs decreases as is shown in Figure 8. The charging capacity of each RCS is also dynamically
adjusted as the total available charging capacity changes.

Table 2. Parameters in simulation.

Parameter Values Parameter Values

Eca(kWh) 54.75 Emin
ca (kWh) 2.5

ec(kWh/km) 0.147 ϑrapid 0.9
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Table 3. Time-of-use (TOU) Price of charging in China’s electricity market.

Periods
Bottom Flat Peak

(00:00–06:59)

(23:00–23:59)

(07:00–09:59)

(15:00–17:59), (21:00–22:59)

(10:00–14:59)

(18:00–20:59)

ρt(Yuan/kWh) 0.3818 0.8395 1.3222

Table 4. Profit coefficient and additional charging charge.

Stations RCS1 RCS2 RCS3 RCS4

λj 1.4 1.3 1.25 1.35

ρ∗(Yuan/kWh) 0.15 0.15 0.15 0.15

Rapid-charging station

Figure 6. Transportation network and its topological graph based on Guangzhou Higher Education
Mega Center.
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Figure 7. The conventional load curve.
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Figure 8. The charging capacity of Rapid-Charging Stations (RCSs) at different time.

4.1. Impact Analysis of the Charging Power Regulation Scheme

In our simulation, we test the impacts of two charging approaches: the uncoordinated EV charging
approach and the charging approach using our proposed charging navigation strategy based on the
charging power regulation scheme, as shown in Figure 9. We can find that the uncoordinated EV
charging approach can cause an exceeded load peak over the maximum load. However, with the
proposed charging approach, the charging load can be controlled according to the state of the power
grid, which can effectively avoid overload. Thus, in order to reduce the influence of rapid charging on
the power grid, it is necessary to design an efficient and optimal charging strategy to limit the rapid
charging power, especially at the peak hours.
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Figure 9. Comparison of load curves to demonstrate the impacts of Electric vehicle (EV) charging approaches.
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4.2. Impact Analysis of the Proposed Rapid Charging Price Adjustment Scheme

In Figure 10, we simulate 7 EVs that start from node 1 to node 9. We set their weight coefficients
ϕ = 0.2 (Yuan/min). They start every 5 min one by one from 18:00 to 18:30 under two cases as follows.

Case 1 : Using the proposed rapid charging price adjustment scheme. The rapid charging price is
obtained by Equation (11).

Case 2 : Using the conventional rapid charging price scheme. The rapid charging price is based
on TOU price, i.e., ρj,k = λjρt.

From the Figure 10, we find that, in Case 1, the proposed rapid charging price adjustment scheme
adjusts the charging price according to TOU price and the number of queuing vehicles. The studied
EVs select different RCSs based on minimum synthetic cost. In Case 2, the EVs choose the same
RCS based on the conventional rapid charging price. Obviously, the proposed rapid charging price
adjustment scheme can balance the rapid charging demand of each RCS effectively. When the charging
demand is large, the EVs can be more balanced distributed in each RCS, reducing their waiting time
and the operation pressure of stations.
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Figure 10. Comparison of two rapid charging price scheme.

4.3. Impact Analysis of the Proposed Optimal Navigation Strategy with Different Weight Coefficient

In Figures 11 and 12, the performance of the proposed optimal navigation strategy is compared
with the simple shortest path strategy with different coefficients. The shortest path strategy is that the
EVs choose the path with shortest distance to travel. We select one EV that starts from node 1 to node
9 during the hours between 08:00 and 22:00. Under these two different charging strategies, the total
cost comparisons are shown in Figure 11. The comparisons of average traveling time and charging
cost is shown in Figure 12.
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In Figure 11, with different weight coefficient ϕ, we can find that the total cost of the proposed
charging navigation strategy is lower than the simple shortest path strategy. When ϕ = 0.5 (Yuan/min),
at 18:00, the total cost is reduced about 25% using the proposed charging navigation strategy. This
is because at peak times, when the congestion occurs in some road segments or charging stations,
the proposed charging strategy can update the driving path timely and select other RCS to minimize
the overall cost with a weight coefficient.

In Figure 12, we compare the time costs and charging costs separately under different weight
coefficients. When ϕ = 0 (Yuan/min), the objective is to minimize the charging cost. The average
charging cost of the proposed charging strategy is lower than the shortest path strategy, while their
average time costs are very close. This is because when ϕ = 0 (Yuan/min), the proposed navigation
strategy only considers the charging cost. It selects the path with minimum charging cost even though
the time cost is high. As the weight coefficient increases, the objective is more concerned with the
time consumption and the average traveling time of proposed charging strategy is reduced a lot.
When ϕ = 0.2 (Yuan/min), the average traveling time is reduced about 11 (min). When ϕ = 0.5
or ϕ = 1 (Yuan/min), the average traveling time is reduced about 15 (min). This is because when
ϕ > 0.5, it is difficult to further reduce the time cost under the same road conditions. As the results
show, the proposed strategy can optimize charging navigation path and reduce EV users’ traveling
time and charging expenses flexibly depending on different weight coefficients.
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Figure 11. Total cost comparison of two different navigation strategies.
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Figure 12. Comparison of traveling time and charging cost with different weight coefficients by two
navigation strategies.

5. Conclusions

In this paper, we propose an optimal charging navigation strategy for rapid charging EVs,
taking into consideration power grid operation and the real-time traffic information. With the
proposed charging strategy based on the charging power regulation scheme, the proposed strategy can
effectively avoid overload and mitigate the peak load in the distribution network. The proposed rapid
charging price adjustment scheme can balance the rapid charging demand of each RCS, thus reducing
waiting time of EV users and the operation pressure of stations. Moreover, we compare the total cost
with shortest path strategy under different weight coefficients at different times. Both the time cost
and the charging cost with different coefficient are analyzed. The modified Dijkstra algorithm is used
to find the optimal solution. The simulation shows that the proposed strategy can effectively reduce
EV users’ charging navigation cost depending on different optimization objectives.
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Abbreviations

The following abbreviations are used in this manuscript:

EV Electric Vehicle
IoT Internet of Things
V2G vehicle-to-grid
TOU time-of-use
ITS Intelligent Transport System
RCS Rapid Charging Station
DMS Distribution Management System
SoC State of Charge
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