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Abstract: Recently, network attacks launched by malicious attackers have seriously affected modern
life and enterprise production, and these network attack samples have the characteristic of type
imbalance, which undoubtedly increases the difficulty of intrusion detection. In response to this
problem, it would naturally be very meaningful to design an intrusion detection system (IDS) to
effectively and quickly identify and detect malicious behaviors. In our work, we have proposed
a method for an IDS-combined incremental extreme learning machine (I-ELM) with an adaptive
principal component (A-PCA). In this method, the relevant features of network traffic are adaptively
selected, where the best detection accuracy can then be obtained by I-ELM. We have used the
NSL-KDD standard dataset and UNSW-NB15 standard dataset to evaluate the performance of our
proposed method. Through analysis of the experimental results, we can see that our proposed
method has better computation capacity, stronger generalization ability, and higher accuracy.

Keywords: network intrusion detection (IDS); incremented extreme learning machine (I-ELM);
adaptive-principal component analysis (A-PCA); NSL-KDD; UNSW-NB15

1. Introduction

With the development of modern cyber-technologies, Internet technology has developed rapidly
and we have entered an era of interconnection with everything. The emergence of Internet technology
has brought us into a new world of interconnection, which now makes networking a very important
and indispensable part of our modern life, providing us with convenience and promoting the current
progress of society.

However, this technology also brings us lots of security problems caused by malicious network
intrusions. According to the report of Kaspersky Laboratory in the second quarter of 2018, more than
962, 947, 023 malicious intrusions have been launched in 187 countries, which is significantly higher
than the number of previous quarters. Moreover, the cyber attacks against mobile devices have
also shown an unexpected trend of explosion (as is shown in Figure 1) due to the popularity of
mobile networking, which aggravates the severity of the situation. The most well-known network
attack is probably the “WannaCry virus” ransomware incident. It affected many computers and
application systems, as well as telecommunication systems, transportation systems, energy production
management systems, and industrial control systems in 2017.

In addition, more and more malicious attackers have begun to pay their attention to critical
infrastructures, such as the smart city, power transmission, and so on. Once these facilities are
subjected to cyber attacks, there will be tremendous trouble in the future. Therefore, protecting devices
and systems against malicious attacks has become an important and urgent task, since this intrusion
can result in great risks.
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Figure 1. Global mobile threat situation.

IDS, proposed by Anderson [1], is a method/way to protect application systems from malicious
attacks, which is considered as the second defending line. It collects, analyses, and distinguishes valid
information, including the packet size, packet characteristics, attacker behaviour models, and access
rules. Today, IDS has become a hot research topic and a thorny issue [2] due to the increasing amount
of data generated by the Internet. Therefore, it makes sense to design an effective IDS, and it is an
active security defending strategy that is used widely in the information field.

There are many studies on IDS, and it can be divided into two parts: the signature-based IDS,
and the anomaly-based IDS. In order to design and improve the performance of IDS, scholars have
proposed many methods, including statistics [3], data mining [4], the artificial immune system [5],
clustering-based method [6], decision tree (DT), [7] and so on. What captured our attention was
the methods based on machine learning algorithms, such as the artificial neural network. Although
these methods are effective at detecting malicious behavior, they are also unable to cope with many
other problems.

However, the updated hacker technology and powerful attack abilities can generate a massive
amount of data with so many characteristics, such as a huge number of samples, many new attack
types, and imbalanced data distribution. Those problems are prevalent in the current cyber world,
which undoubtedly reduces the performance of IDS. As is known to us, the traditional IDS cannot
perform well while grappling with these issues, such as the HT-assisted DoS attacks (sinkhole and
blackhole attacks) in embedded systems [8]. Besides, the requirement of fast detection is also an urgent
thing. Therefore, discovering how an IDS can be designed to satisfy this need is still a huge challenge.

In order to help improve the detection accuracy and solve these problems, a method is proposed
by us in this paper. It combines the incremental extreme learning machine [9] (I-ELM) with adaptive
principal component analysis (A-PCA) as our IDS’s detection algorithms. The A-PCA is used to extract
effective features automatically according to the parameter constraints, and the I-ELM is responsible
for detecting malicious attacks, as is shown in Figure 2.

The major contributions of our paper are summarized as follows: (1) A new method based on
I-ELM is proposed in IDS, which is an adjustable network structure ELM and can minimize training
error to solve the over-fitting problem, so as to enhance the anomaly detection accuracy. (2) Our
method has better performance to identify new types of cyber-attacks. (3) This method provides more
computation capacity than SVM, BP, and CNN, which is suitable for dealing with massive data. (4) The
proposed method proposed by us has shown different characteristics that are very suitable for IDS,
and not only provides better performance but also reduces the consuming time.

The rest of this paper is organized as follows: in Section 2, we present some related research about
IDS to explain the reasons for applying the algorithm. A method named the incremented extreme
learning machine with adaptive principal component analysis" is selected by us to detect abnormal
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network action in Section 3. Then, Section 4 introduces the NSL-KDD dataset and NSW-NB15 dataset
to test our method of IDS, which is followed by the experimental results and discussion. Finally,
Section 5 concludes the whole paper. The last part describes future work.

Figure 2. The network detection process of IDS.

2. Related Work

The IDS was firstly proposed by Anderson, and was designed to be a security device used to detect
malicious actions on communication networks. The critical part of IDS is the classification method.
Many people have been devoted to designing an IDS to protect application systems from intrusions.
The traditional IDS was aimed at distinguishing abnormal actions of network environments, which is
usually based on statistics technology. However, traditional IDS cannot deal with the above-mentioned
problems in Section 1.

Anomaly detection is actually a two-class problem; that is to say, it can separate normal data from
abnormal data by its functions. Due to the research and development of artificial intelligence, lots of
machine learning algorithms have been widely applied in IDS. Usually, the model of IDS is trained
by the training dataset with known attack types. Therefore, many surveillance models are designed
to distinguish anomalies in the working environment, such as a collision-free surveillance model in
the Internet of things [10], data mining in a smart grid [11], and a UAV surveillance framework in the
smart city [12]. However, the most typical and common surveillance learning algorithms in IDS models
are the deep belief network [13], the artificial neural networks (ANN) [14], the support vector machine
(SVM) [15], the extreme learning machine [16], the Convolutional Neural Network (CNN) [17], and so
on, which have also made IDS achieve great progress in anomaly detection. The above-mentioned
methods can be used alone or combined with other algorithms.

Although they have all achieved good performance in IDS, they still have many inevitable
problems. If we want to obtain a perfect classification efficiency when we use these methods, we must
get a great quantity of high-quality datasets to train them, which is usually difficult to meet due to
the network dataset with massive samples and imbalanced distribution. Besides, they all have their
shortcomings. The BP neural network algorithm has some obvious weaknesses, such as the slow
convergence speed, long training time, and the local optimum instead of global optimality. SVM is
suitable for processing a small dataset, but is unsuitable for a huge dataset with lots of samples.
The CNN is required to adjust its parameters. Moreover, they will lead to a high false alarm rate
and take more time to train their networks. Faced with the cyber-dataset with new types of attacks,
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huge number of samples, uneven and imbalanced data distributions, and highly complex structures,
they tend to be more incompetent.

However, we found that there was another neural network algorithm named the incremental
extreme learning machine (I-ELM), which is an improvement of ELM [9,18]. It possesses many
advantages, such as stronger learning ability, faster convergence and training, the convenience of
approximating a nonlinear function, higher detection efficiency, and especially its training speed,
which is thousands of times faster than other methods [18,19]. It is obvious that these capabilities
are well-suited for dealing with such massive samples of datasets. I-ELM is an adjustable network
structure ELM, and can minimize the training error by adding nodes to solve the overfitting and
under-fitting [9,20,21], which overcomes some disadvantages that it needs to optimize all parameters,
and lacks appropriate activation functions. Usually, a one-hot encoding method is adopted to keep
the original information of the dataset and avoid distribution interference of samples, which is also
able to increase the dimension degree and decrease the cost time in the training network, as well as
over-fitting. An adaptive principal component analysis (A-PCA) is helpful for reducing the feature
dimension and retaining as much information as possible. Therefore, we figured that a combination
of these would be ideal for our security framework design. The NSL-KDD dataset, with a massive
amount of data and imbalanced sample distributions, can be applied to test our method.

However, the dataset of NSL-KDD used by us was derived from KDD-CUP99 datasets. It also
has many shortcomings of the KDD-CUP99 dataset [22–25], such as: (1) the lack of new attack types,
(2) a lack of real cyber-world property, (3) a failure to solve the constant changes in attacks and network
architectures, (4) little new network service features, and (5) unclear emergence of the selection of
network traffic. It is important that the values of the connection’s content features are always set to be
greater than zero, which will affect the capabilities of machine learning algorithms without a doubt.
The low detection accuracy of “R2L” and “U2R” could be a result of this reason. Although this dataset
deletes a great deal of redundant samples in KDD-CUP99, it does not have enough of a proper reason.
All of these serious flaws may lead to a lack of practicability and validity in our model. As a result,
in order to further verify detection effectiveness and make it as least time-consuming as possible,
the latest dataset, named UNSW-NB15, was also chosen for application in our paper [25–27].

3. Principles of the Method

In this section, we demonstrate a method named incremental ELM (I-ELM), which is an
improvement from ELM, and adaptive principal component analysis (A-PCA), which is a combination
of the adaptive control idea and PCA.

3.1. I-ELM

I-ELM is a kind of incremental adjustable structure ELM, which is different from the feedback
neural network algorithm, such as the BP-neural network. Due to the lack of feedback calculation,
ELM obviously has stronger learning capabilities, and faster convergence and training. A typical
I-ELM structure is shown in Figure 3.

The parameters αi and bi of the hidden nodes of I-ELM are usually independent of each other.
Firstly, we assumed that we had a dataset N = {(xi, oi)|xi ∈ Rn, oi ∈ Rm, i = 1, · · · , N}, and this
network construction has n hidden nodes. Thus, the output function of the network is:

on(x) =
n

∑
i=1

βigi(x), x ∈ Rd, βi ∈ R (1)

where αi ,βi, and gi are the training parameters of I-ELM. Among them, αi and βi denote the input
weights and the connection linking the output weights of the ith hidden node, respectively. bi is the
threshold value of the ith hidden node, and gi(x) denotes the ith hidden node’s output. If another
node is added, this output becomes gi(x) = g(αi · x + bi).
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In the I-ELM construction, it firstly always sets a new hidden node. Then, we can change the
network structure through randomly adding a node one-by-one to the network. en ≡ o− on represents
the network error function of the current I-ELM with n hidden nodes, and o ∈ L2(x) is the output
function we want to achieve. Thus, the following I-ELM iteration function can be obtained:

on(x) = on−1(x) + βng(αn · x + bn) (2)

Huang et al. [9,19,20] also proved that if Hr
n βn = (〈en−1, Hr

n〉/‖Hr
n‖2), and Hr

n(x) = H(αn · x + bn)

are any type of function sequence, it could get a probability of 1 when limn→∞ ‖o− (on−1 + βnHr
n)‖ = 0:

oj =
n

∑
i=1

βigi(xj) =
n

∑
i=1

βig(αi · xj + bi), j = 1, · · · , N (3)

where αi, βi and bi are the training parameters of I-ELM. Among them, αi is the input weight, βi is
the output weight, and bi represents the bias of the the hidden node, respectively. g(αi · xj + bi) is
the output activation function, and oj is the output for the hidden node, j. Usually, due to the need
to calculate the integral in reverse, I-ELM adopts the activation function sig(sigmoid) and tan(tanh).
The function sig can map the input variables from (−∞,+∞) to (0, 1), which meet the probabilistic
requirements (0, 1). This excellent property makes ELM always use it as an activation function.
The purpose of choosing the appropriate activation function and training process using this machine
learning is to find some appropriate parameters that can match the training dataset without error.
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Figure 3. The I-ELM structure.

3.2. A-PCA

Usually, the same kind of data in datasets have a higher concentration and different types of data,
which means the variance in the former data is smaller. Principal component analysis (PCA) is based
on this principle, and it constructs a set of orthogonal bases to project the high-dimensional data to a
hyperplane to convert the high-dimensional data to relative low-dimensional data. At the same time,
making the variance of the reduced dataset as large as possible is helpful for retaining most of the
original information.

PCA is a data-driven approach, which is applied to data compression and image processing [28],
artificial intelligence [29], fault diagnosis [30], decision analysis, and so on. The purpose of using PCA
is to reduce the dimensionality of the dataset and keep the original variation by preserving the most
important information as much as possible.

The following is the principle of PCA. We have a dataset N = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i =

1, · · · , N} with N samples, as mentioned above. It can be assumed that every sample has a feature
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set Xi = {x1i, x2i, · · · , xmi}, of which m is the maximum sample feature. Thus, the whole dataset
X = [X1, X2, · · · , Xn] can show that:

X =


x11 x12 x13 · · · x1n
x21 x22 x23 · · · x2n
x31 x32 x33 · · · x3n

...
...

...
. . .

...
xm1 xm2 · · · · · · xmn


Firstly, an average observed value µ and an average deviation of observed value δ are defined here:

µ =
1
n

n

∑
i=1

xi (4)

Then, it can be get the δ from the decentralization of all samples:

δi = xi − µ = xi −
1
n

n

∑
i=1

xi (5)

And we get the covariance matrix of the dataset:

Cov =
1
n

n

∑
i=1

(δi)(δi)
T =

1
n

n

∑
i=1

(xi − µ)(xi − µ)T (6)

Thus, we can use the singular value decomposition to get the eigenvalue {λ1, λ2, · · · , λp} and the
eigenvector {µ1, µ2, · · · , µp} of the covariance matrix Cov, which correspond to each other, respectively.
Furthermore, {µ1, µ2, · · · , µp} is the maximum linearly independent eigenvector with 1 ≤ p ≤ m.
Therefore, it can reconstruct a new sample space by choosing some eigenvectors according to the value
of the eigenvalue.

Adaptive principal component analysis (A-PCA) is a method that combines the adaptive control
theory with PCA, which selects the features after being decomposed by PCA by comparing the given
performance indicators we set by automatically adjusting the step size α of r to compress the dataset
according to the value of Acc and dimension after using PCA.

This can be defined as f (r, ηAcc), with the following details.

f (r, ηAcc) =



max(ηAcc)

∑
p
i=1

∑m
i=1
≥ r

p = PCA(X)

s.t.0 < r ≤ 1

s.t.1 ≤ p ≤ m

(7)

where r is the ratio of A-PCA, and ηAcc is the accuracy of I-ELM.
Finally, the work of I-ELM and A-PCA can be described in Figure 4.

3.3. Evaluation Criteria

In this subsection, we want to select some standard performance criteria to evaluate the IDS’
performance. There are many quotas to evaluate it. For this paper, we chose the most commonly
used indicators, including detection accuracy (ηAcc), detection rate (ηDR), detection of the false alarm
rate (ηFAR), and the training and testing time of IDS (T). They are shown in Table 1, and a confusion
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matrix shown in Table 2. We will show some concepts before we give the specific definitions of the
evaluation criteria.

Table 1. Evaluation criteria calculation about different detection algorithms.

Name Detection Accuracy ηAcc Detection Rate ηDR Detection of False Alarm Rate ηFAR Time

Formula nTP+nTN
nTP+nTN+nFP+nFN

nTP
nTP+nFP

nFP
nFP+nTN

T(s)

Table 2. Confusion matrix.

Label
Predicted Label

Positive_Sample Negative_Sample

Positive_Sample nTP nFN
Negative_Sample nFP nTN

Where, “Positive_Sample” is the normal sample in dataset and “Negative_Sample” is the abnormal sample in dataset.

Start End

Input original 

Dataset 

Initialization and 

Data Processing 

Set parameter r  

A-PCA

New Dataset

Classification 

Accuracy

I-ELM(Traning)

I-ELM(Testing)

Accuracy 

Optimal

Yes

No

Figure 4. The work-flow chart of IDS.

• The Number of True Positive (nTP)

This is the sum of the normal sample in the dataset, which is judged by IDS as a normal sample.

• The Number of False Positive (nFP)

This is the sum of the abnormal sample in the dataset, which is misjudged by IDS as a normal sample.

• The Number of False Negative (nFN)

This is the sum of the normal sample in the dataset, which is misjudged by IDS as an abnormal sample.

• The Number of True Negative (nTN)

This is the sum of the abnormal sample in the dataset, which is judged by IDS as an abnormal sample.

• The Starting Time of IDS (Ts)

• The Ending Time of IDS (Td)

Therefore, the following can be obtained:
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ηAcc =
nTP + nTN

nTP + nTN + nFN + nFP
(8)

ηDR =
nTP

nTP + nFN
(9)

ηFAR =
nFP

nFP + nTN
(10)

T = Td − Ts (11)

Therefore, the larger the ηAcc is, the higher the detection accuracy will be; the larger the ηDR is,
the more normal samples can be identified; and the smaller ηFAR is, the fewer the samples which can
be misidentified, which shows that the model’s performance of IDS is better.

4. Experiment

4.1. Experiment Platform

In order to avoid interference from the operating platform, all methods are limited to running on
the same platform and using the same programming language as shown in the following Table 3.

Table 3. Experimental platform configuration.

Index Name Details

1 OS Windows 7 Ultimate x64
2 CPU Intel Core i5 M560 *2 2.67 GHz
3 RAM 8.0 G
4 DISK 320 G
5 Software Platform Matlab2016b
6 Program Language M-Language

4.2. Dataset Explanation

4.2.1. NSL-KDD Dataset

The KDD-CUP99 dataset contains more than 5 million training samples and more than 2 million
testing samples. Due to the large number of redundant samples in KDD99, a larger recognition and
classification error is caused [17]. NSL-KDD [31] is optimized from the KDD-CUP99 dataset, which
removes redundant and duplicate records and becomes the most typical dataset in IDS. The NSL-KDD
dataset also has 41 features, which contain 9 discrete features and 32 continuous features. They include
five types: (1) “DoS” attacks, (2) “probe” attacks, (3) “U2R” attacks, (4) “R2L” attacks, and (5) “normal”.
In addition, the testing dataset contains a number of different attack patterns from the training dataset,
whose details are shown in the Table 4.

Table 4. Specific attack type.

Index Type Training Dataset Testing Dataset

1 DoS 6 10
2 Prob 4 6
3 R2L 8 15
4 U2R 4 8
5 Normal 1 1
6 Total 23 40
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The NSL-KDD is divided into four datasets: KDDTrain+, KDDTest, KDDTrain+_20percent
(a subdataset of KDDTrain+), and the KDDTest21(a subdataset of the KDDTest). The specific data
distribution of four datasets are shown in Table 5.

From Table 5, it can be seen that the category of normal, that is, of no attack, has the most samples,
which accounts for more than half of the training dataset. However, the attack categories of “R2L”
and “U2R” are less than 1%. The situation of this problem—we call it “imbalance data”—will lead
to a great identification bias. As is known to us, although the NSL-KDD dataset is lacking in new
practicality, its imbalanced distribution of data can also be applied to test our method.

Table 5. The specific data distribution of four datasets.

Index Type KDDTrain+ KDDTest+ KDDTrain+_20Percent KDDTest-21

1 DoS 45,926 7458 9234 4342
2 Probe 11,655 2421 2289 2402
3 U2R 52 200 11 200
4 R2L 995 2754 209 2754
5 Normal 67,345 9711 13,449 2152
6 Total 125,973 22,544 25,192 11,850

4.2.2. UNSW-NB15 Dataset

The UNSW-NB15 dataset was created by the Australian Center for Cyber Security (ACCS) in
2015. It is a new dataset about IDS in research. The purpose of this dataset is to solve the inherent
problems of classical KDD99 and improve the NSL-KDD dataset, which contains some new types
of cyber attacks and has modem normal traffic scenarios [26,27]. The UNSW-NB15 dataset has nine
different modern attack types with 49 features, which has five more attack types than NSL-KDD.

This dataset consists of 2,540,044 samples, and includes 9 attack types, known as “Fuzzers”,
“DoS”, “Analysis”, “Reconnaissance”, “Exploit”, “Shellcode”, “Worm”, “Backdoor”, and “Generic”,
whose specific amount is shown in Table 6. For easy use, it was divided into two parts: a training
dataset (175,341 samples) and a testing dataset (82,332 samples). Clearly, the UNSW-NB15 dataset also
has an imbalance distribution situation. The first category, “Analysis”; second category, “Backdoor”;
eighth category, “Shellcode”; and ninth category, “Worms”, are also very few, whose sum is less than
2.29% of the total samples.

Table 6. Details of the UNSW_NB15 dataset.

Index Attack Types Training Set Testing Set

1 Analysis 2000 677
2 Backdoor 1746 583
3 DoS 12,264 4089
4 Exploits 33,393 11,132
5 Fuzzers 18,184 6062
6 Generic 40,000 18,871
7 Reconnaissance 10,491 3496
8 Shellcode 1133 378
9 Worms 130 44

10 Normal 56,000 37,000
11 Total 175,341 82,332

4.3. Data Preprocessing

4.3.1. Data Encoding for Symbolic Features

The NSL-KDD dataset contains different features, which are divided into two parts (categorical
and continuous). It must convert categorical features to continuous features to ensure the deep learning
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can deal with them. In the NSL-KDD dataset, the second feature (protocol type), third feature (network
service type of target host), and fourth feature (connection status) are symbolic, which cannot be used
directly in machine learning. Other features are discrete. For our paper, we adopted a one-hot code
to encode those same types of features and also to take an example of a second feature, as shown in
Table 7. After encoding, the second feature (protocol) changed from 1 to 3.

Table 7. Example of a one-hot code for the second feature (protocol feature).

Index Specific Feature One-Hot Code

1 TCP 100
2 UDP 010
3 ICMP 001

We used the same encoding method to encode the third feature (service) that includes 70 service
types, meaning this feature changed from 1 to 70. In the same way, the fourth feature (flag) changed
from 1 to 11. Therefore, the entire features of the dataset became 122 features (38 + 3 + 70 + 11 = 122).
By using the same encoding method, all 49 features of the UNSW-NB15 dataset became 183 features
(39 + 133 + 11 = 183).

4.3.2. Data Normalization

Different features contained in the dataset usually have different dimensions or dimensional
units, and this would affect the results of data analysis. Due to this fact, it is important to
eliminate the dimensional influence. At the same time, it is necessary to keep the values of each
sample feature distributed uniformly [32]. There is no doubt that normalization is the best way
to resolve these problems. After data normalization, the problem of comparability between the
original data’s characteristic indicators lies in the unified data scale, so as to facilitate comprehensive
comparative evaluation.

For this paper, we adopted the min–max normalization method to normalize data samples,
which transforms the original value to make sure that it is mapped between [0, 1]. The function is
as follows:

x′ =
(x−min(x))

max(x)−min(x)
(12)

where x′ is the new value after normalization, and min(x) and max(x) are the minimum value and
maximum value of the sample of the x−fitting feature, respectively.

4.4. Experiments of NSL-KDD Dataset

In order to evaluate the performance of our proposed method, rigorous experiments were
performed on the NSL-KDD dataset. These experiments also include SVM, the BP neural network,
CNN, ELM, and I-ELM. The experimental results show that our method showed better performance.

In the paper, we used the NSL-KDDTest+ as a test dataset to test our proposed method. The details
of NSL-KDDTest+ are shown in Table 5, and we selected the best test results and recorded them
a hundred times. The parameters of the algorithm are referenced in Section 3. By adjusting the
parameters, we ensured that the training accuracy was between 97.80% and 98.50%.

Firstly, five confusion matrices can be obtained from the experimental results, which are shown
in Tables 8–13. Each of them shows the detail of detection on five network behaviors (including four
abnormal actions and one normal action), respectively.

From these confusion matrices, we can know that the algorithm of ELM has the best performance
of detection on a third category (33, total 200), and the algorithm of I-ELM has the best performance
of detection on the second category (6301, total 7458), fourth category (963, total 2754), and fifth
category (9361, total 9711), and the proposed algorithm has the best performance of detection on the
first category (1849, total 2421). However, the performance of our method of the other four terms is
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close to the best, which are (6217, total 7458), (22, total 200), (891, total 2754), and (9332, total 9711),
respectively, which also shows that the generalization capability is stronger than others in identifying
new attack methods.

Table 8. Confusion matrix of SVM.

Label DoS Probe U2R R2L Normal

DoS 1295 71 2 0 1053
Probe 50 5704 2 0 1702
U2R 17 0 31 4 148
R2L 1 0 41 380 2332

Normal 265 56 12 17 9361

Table 9. Confusion matrix of BP.

Label DoS Probe U2R R2L Normal

DoS 1328 373 175 116 429
Probe 185 5474 693 242 864
U2R 11 15 28 98 48
R2L 1 3 12 819 1919

Normal 152 92 431 148 8888

Table 10. Confusion matrix of CNN.

Label DoS Probe U2R R2L Normal

DoS 1215 768 0 1 437
Probe 65 6234 0 5 1154
U2R 2 111 0 4 83
R2L 5 34 0 504 2211

Normal 233 474 0 45 8959

Table 11. Confusion matrix of ELM.

Label DoS Probe U2R R2L Normal

DoS 1689 237 11 24 460
Probe 70 6068 1 296 1023
U2R 17 0 33 6 144
R2L 3 11 9 580 2151

Normal 183 87 6 30 9405

Table 12. Confusion matrix of I-ELM.

Label DoS Probe U2R R2L Normal

DoS 1062 940 0 0 419
Probe 45 6301 0 0 1112
U2R 0 5 1 16 178
R2L 0 45 0 963 1746

Normal 84 88 0 79 9460

Table 13. Confusion matrix of I-ELM+A-PCA.

Label DoS Probe U2R R2L Normal

DoS 1849 258 0 36 278
Probe 12 6217 0 1 1228
U2R 85 0 22 7 86
R2L 1 2 2 891 1858

Normal 234 88 7 50 9332
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The proposed algorithm can still achieve good performance in both of the two categories,
especially in the third and fourth classes with fewer samples, which indicates that it is a better
solution to the problems of dataset imbalance. Even compared with the accuracies of Wu et al. [17],
the detection accuracy of this method is the highest.

It can be seen that the detection rates ηDR of all algorithms are similar and have little difference
between them. However, the method we proposed has the best detection accuracy ηAcc and lowest
detection of false alarm rates ηFAR, which indicates better performance. The time consumed is also
the least, besides the method of ELM from Table 14 and Figure 5, which also shows our method has a
stronger computation capacity. We can also see the detection details of four abnormal actions, and one
normal behaviour from Figure 6.

Table 14. The values of evaluation criteria of different detection algorithms (NSL-KDD).

Method ηAcc ηDR ηFAR T(s)

SVM 0.7439 0.964 0.4226 20.991619
BP 0.7335 0.9153 0.404 106.2232239

CNN 0.7502 0.9226 0.3803 133.0159
ELM 0.7885 0.9685 0.3478 2.5349877

I-ELM 0.7845 0.9564 0.3456 35.3617911
I-ELM+A-PCA 0.8122 0.961 0.3003 19.97091

Figure 5. The average time and maximum accuracy of different methods.

Figure 7 shows that we can get different detection accuracies, different dimensions of new feature
descriptions, and different average times after different ratios of A-PCA processing when we choose
the NSL-KDD dataset. It is clear from Figure 7 that the A-PCA algorithm makes the characteristics of
new dataset space less than those of the original dataset. We can see that there are 85 dimensions of new
feature space and the ηAcc = 79.41% when r = 0.998, and that there are 86 dimensions of new feature
space and the ηAcc = 81.22% when r = 0.9985—whose accuracies are better than those of different
algorithms in [17]—and the ηAcc = 78.88% when we used 122 dimensions of new feature space.

Besides, it is obvious that we can get the ηAcc = 78.80% with 17 dimensions of new feature space
when r = 0.92. These analysis results also show that the algorithm of A-PCA can reduce the dimension
of the data without affecting the inherent nature of the dataset. Therefore, our proposed method has
better performance than the I-ELM method without A-PCA. At the same time, our proposed method
can reduce the time of training and testing.
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Figure 6. The confusion matrices analysis of different methods (NSL-KDD).
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Figure 7. The different ratio of I-ELM+A-PCA (NSL-KDD).

4.5. Experiments of UNSW-NB15 Dataset

There exists a different distribution problem in the training dataset and testing dataset of the
NSL-KDD dataset, which could also lead to a great identification bias and efficient disturbing of our
IDS model. In order to further verify the performance of our proposed method, some experiments
were also performed on the UNSW-NB15 dataset. These algorithms also include SVM, BP, CNN, ELM,
and I-ELM.
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In this paper, we used the training dataset of the UNSW-NB15 dataset to train our algorithm.
Table 15 shows that the detection accuracy ηAcc, the detection rates ηDR, and the detection of false
alarm rates ηFAR of all methods are different to each other. However, the method we proposed has the
highest detection accuracy ηAcc and the highest detection rate ηDR. Besides, the costing time is also
lower than SVM, BP, and CNN. The detection details of nine attacks and one normal behaviour are
displayed in Figure 8.

Table 15. The values of evaluation criteria of different detection algorithms (UNSW-NB15).

Method ηAcc ηDR ηFAR T(s)

SVM 0.6573 0.6357 0.3231 5266.2600
BP 0.6260 0.6289 0.3764 714.8700

CNN 0.6355 0.6754 0.3972 3055.4718
ELM 0.6784 0.6035 0.2604 4.9271

I-ELM 0.6701 0.6575 0.3196 384.6250
I-ELM+A-PCA 0.7051 0.7736 0.3509 476.1880

SVM

CNN

I-ELM
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1 2 3 4 5 6 7 8 9 10
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c
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SVM BP CNN ELM I-ELM I-ELM+A-PCA

Figure 8. The confusion matrices analysis of different methods (UNSW-MB15).

From Figure 9, we can get different detection accuracies, different dimensions of new feature
descriptions, and different average times after different ratios of A-PCA processing when we use
the UNSW-NB15 dataset. It is very clear that the A-PCA algorithm makes the characteristics of new
dataset space less than those of the original dataset. When we set r = 0.9995, the highest detection
accuracy score of 70.51% can be achieved, which is greater than the detection accuracy of 65.23% when
r = 0.999, and the detection accuracy of 69.82% when r = 0.9999.

From the above Table 15, and Figures 8 and 9, we know that the proposed method also has better
performance by using the UNSW-NB15 dataset, not only in the field of detection accuracy but also the
costing time of detection.

Although the UNSW-NB15 dataset has massive samples with many new network types,
which brings a great knotty problem in IDS, the proposed method can also achieve good performance.
From the Figures 6–9, it can be seen that our method can perform well whether you use the NSL-KDD
dataset with an imbalanced data distribution or the UNSW-NB15 dataset.
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Figure 9. The different ratio of I-ELM+A-PCA (UNSW-NB5).

5. Conclusions

As we all know, the function of IDS is to find the abnormal data quickly and effectively in the
dataset. Due to the imbalanced and huge amount of NSL-KDD datasets, it is necessary for the detection
to solve these problems. In our research, we proposed a method used in IDS which combines I-ELM
and A-PCA to detect anomalies in the network dataset.

We have compared our method with other algorithms of IDS, such as SVM, the BP neural network,
CNN, ELM, and I-ELM on the performance of IDS at detecting cyber attacks using the NSL-KDD
dataset and UNSW-NB15 dataset, all of which are repeated one hundred times with the same dataset
on the same platform. What’s more, some indicators were selected to explain the performance of
different methods. Finally, the experimental results using datasets processed by A-PCA show that the
detection method proposed by us can obtain a stronger capability for detecting new attacks, meaning
stronger computing power and highest accuracy, and proving that our method is a better solution to
the problems of the dataset with imbalance and massive samples.

6. Future Work

The experimental results show that our method has better performance than other algorithms.
This network intrusion detection method can be studied further to improve the detection accuracy and
extend our result to industrial control systems.

Author Contributions: J.G. established experiment platform, provided experimental data after conducting
numerous experiments and then composed the first draft of this paper; S.C. provided research methods for this
paper and also improved it; B.Z. helped revise and finalize the paper; Y.X. revised the paper, and provided the
research methods.

Funding: This work has been supported by National Natural Science Foundation of China (No. 61573061).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ehrenfeld, J.M. WannaCry, Cybersecurity and Health Information Technology: A Time to Act. J. Med. Syst.
2017, 41, 104. [CrossRef] [PubMed]

2. Yu, Y.; Kang, S.L.; Qiu, H. A new network intrusion detection algorithm: DA-ROS-ELM: INTRUSION
DETECTION ALGORITHM DA-ROS-ELM. IEEJ Trans. Electr. Electron. Eng. 2018, 13. [CrossRef]

http://dx.doi.org/10.1007/s10916-017-0752-1
http://www.ncbi.nlm.nih.gov/pubmed/28540616
http://dx.doi.org/10.1002/tee.22606


Energies 2019, 12, 1223 16 of 17

3. Amrita, M.A. Fusion of Statistic, Data Mining and Genetic Algorithm for feature selection in Intrusion
Detection. Int. J. Adv. Res. Comput. Eng. Technol. 2013, 2, 1725–1731.

4. Nadiammai, G.V.; Hemalatha, M. Effective approach toward Intrusion Detection System using data mining
techniques. Egypt. Inf. J. 2014, 15, 37–50. [CrossRef]

5. Powers, S.T.; He, J. A hybrid artificial immune system and Self Organising Map for network intrusion
detection. Inf. Sci. 2012, 178, 3024–3042. [CrossRef]

6. Jiang, S.; Song, X.; Wang, H.; Han, J.-J.; Li, Q.-H. A clustering-based method for unsupervised intrusion
detections. Pattern Recognit. Lett. 2006, 27, 802–810. [CrossRef]

7. Vuong, T.P.; Loukas, G.; Gan, D.; Bezemskij, A. Decision Tree-based Detection of Denial of Service and
Command Injection attacks on Robotic Vehicles. In Proceedings of the IEEE International Workshop on
Information Forensics and Security, Rome, Italy, 16–19 November 2015; pp. 1–6.

8. Zhang, L.; Wang, X.; Jiang, Y.; Yang, M.; Mak, T.; Singh, A. Effectiveness of HT-assisted Sinkhole and
Blackhole Denial of Service Attacks Targeting Mesh Networks-on-chip. J. Syst. Archit. 2018, 89, 84–94.
[CrossRef]

9. Huang, G.-B.; Chen, L.; Siew, C.-K. Universal approximation using incremental constructive feedforward
networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892. [CrossRef] [PubMed]

10. Kim, H.; Benothman, J. A Collision-Free Surveillance System Using Smart UAVs in Multi Domain IoT.
IEEE Commun. Lett. 2018, 22, 2587–2590. [CrossRef]

11. Choi, K.; Chen, X.; Li, S.; Kim, M. Intrusion Detection of NSM Based DoS Attacks Using Data Mining in
Smart Grid. Energies 2012, 5, 4091–4109. [CrossRef]

12. Kim, H.; Mokdad, L.; Ben-Othman, J. Designing UAV Surveillance Frameworks for Smart City and Extensive
Ocean with Differential Perspectives. IEEE Commun. Mag. 2018, 56, 98–104. [CrossRef]

13. Liu, Y.; Zhang, X. Intrusion Detection Based on IDBM, Dependable, Autonomic and Secure Computing.
In Proceedings of the Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress, Auckland, New Zealand, 8–12 August 2016;
pp. 173–177.

14. Al-Zewairi, M.; Almajali, S.; Awajan, A. Experimental Evaluation of a Multi-Layer Feed-Forward Artificial
Neural Network Classifier for Network Intrusion Detection System. In Proceedings of the International
Conference on New Trends in Computing Sciences, Amman, Jordan, 11–13 October 2017; pp. 167–172.

15. Hui, L.I.; Guan, X.H.; Xin, Z.; Han, C.Z. Network Intrusion Detection Based on Support Vector Machine.
J. Comput. Res. Dev. 2003, 6, 1–4.

16. Cheng, C.; Tay, W.P.; Huang, G.B. Extreme learning machines for intrusion detection. In Proceedings of the
International Joint Conference on Neural Networks, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8.

17. Wu, K.; Chen, Z.; Li, W. A Novel Intrusion Detection Model for a Massive Network Using Convolutional
Neural Networks. IEEE Access 2018, 6, 50850–50859. [CrossRef]

18. Huang, G.; Zhu, Q.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006,
70, 489–501. [CrossRef]

19. Huang, G.B.; Li, M.B.; Chen, L.; Siew, C.K. Incremental extreme learning machine with fully complex hidden
nodes. Neurocomputing 2008, 71, 576–583. [CrossRef]

20. Feng, G.; Huang, G.-B.; Lin, Q.; Gay, R. Error minimized extreme learning machine with growth of hidden
nodes and incremental learning. IEEE Trans. Neural Netw. 2009, 20, 1352–1357. [CrossRef]

21. Miche, Y.; Sorjamaa, A.; Bas, P.; Simula, O.; Jutten, C.; Lendasse, A. OP-ELM: Optimally Pruned Extreme
Learning Machine. IEEE Trans. Neural Netw. 2010, 21, 158–162. [CrossRef]

22. Mchugh, J. Testing Intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection
system evaluations as performed by Lincoln Laboratory. Acm Trans. Inf. Syst. Secur. 2000, 3, 262–294.
[CrossRef]

23. Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.; Tachtatzis, C.; Atkinson, R.C.; Bellekens, X.J.A. A taxonomy
and survey of intrusion detection system design techniques, network threats and datasets. arXiv 2018,
arXiv:1806.03517.

24. Hindy, H.; Hodo, E.; Bayne, E.; Seeam, A.; Atkinson, R.; Bellekens, X. A taxonomy of malicious traffic for
intrusion detection systems. arXiv 2018, arXiv:1806.03516.

25. Al Tobi, A.M.; Duncan, I. KDD 1999 generation faults: A review and analysis. J. Cyber Secur. Technol. 2018, 2,
164–200. [CrossRef]

http://dx.doi.org/10.1016/j.eij.2013.10.003
http://dx.doi.org/10.1016/j.ins.2007.11.028
http://dx.doi.org/10.1016/j.patrec.2005.11.007
http://dx.doi.org/10.1016/j.sysarc.2018.07.005
http://dx.doi.org/10.1109/TNN.2006.875977
http://www.ncbi.nlm.nih.gov/pubmed/16856652
http://dx.doi.org/10.1109/LCOMM.2018.2875477
http://dx.doi.org/10.3390/en5104091
http://dx.doi.org/10.1109/MCOM.2018.1700444
http://dx.doi.org/10.1109/ACCESS.2018.2868993
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2007.07.025
http://dx.doi.org/10.1109/TNN.2009.2024147
http://dx.doi.org/10.1109/TNN.2009.2036259
http://dx.doi.org/10.1145/382912.382923
http://dx.doi.org/10.1080/23742917.2018.1518061


Energies 2019, 12, 1223 17 of 17

26. Moustafa, N.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the
UNSW-NB15 data set and the comparison with the KDD99 data set. Inf. Syst. Secur. 2016, 25, 18–31.
[CrossRef]

27. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In Proceedings of the Military Communications & Information Systems
Conference, Canberra, ACT, Australia, 10–12 November 2015.

28. Cocianu, C.; State, L.; Vlamos, P. A new adaptive PCA scheme for noise removal in image processing.
In Proceedings of the International Symposium ELMAR, Zadar, Croatia, 10–12 September 2008.

29. Castaño, A. PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach Based on Principal
Component Analysis. Neural Process. Lett. 2013, 37, 377–392. [CrossRef]

30. Hu, Z.; Chen, Z.; Gui, W.; Jiang, B. Adaptive PCA based fault diagnosis scheme in imperial smelting process.
ISA Trans. 2014, 53, 1446–1455. [CrossRef] [PubMed]

31. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set.
In Proceedings of the IEEE International Conference on Computational Intelligence for Security & Defense
Applications, Ottawa, ON, Canada, 8–10 July 2009.

32. Dash, T. A study on intrusion detection using neural networks trained with evolutionary algorithms.
Soft Comput. 2017, 21, 2687–2700. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/19393555.2015.1125974
http://dx.doi.org/10.1007/s11063-012-9253-x
http://dx.doi.org/10.1016/j.isatra.2013.12.018
http://www.ncbi.nlm.nih.gov/pubmed/24439836
http://dx.doi.org/10.1007/s00500-015-1967-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Principles of the Method
	I-ELM
	A-PCA
	Evaluation Criteria

	Experiment
	Experiment Platform
	Dataset Explanation
	NSL-KDD Dataset
	UNSW-NB15 Dataset

	Data Preprocessing
	Data Encoding for Symbolic Features
	Data Normalization

	Experiments of NSL-KDD Dataset
	Experiments of UNSW-NB15 Dataset

	Conclusions
	Future Work
	References

