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Abstract: Many cities around the world are facing immense pressure due to the expediting growth
rates in urban population levels. The notion of ‘smart cities’ has been proposed as a solution to
enhance the sustainability of cities through effective urban management of governance, energy and
transportation. The research presented herein examines the applicability of a mathematical framework
to enhance the sustainability of decisions involved in zoning, land-use allocation and facility location
within smart cities. In particular, a mathematical optimisation framework is proposed, which
links through with other platforms in city settings, for optimising the zoning, land-use allocation,
location of new buildings and the investment decisions made regarding infrastructure works in smart
cities. Multiple objective functions are formulated to optimise social, economic and environmental
considerations in the urban space. The impact on underlying traffic of location choices made for
the newly introduced buildings is accounted for through optimised assignment of traffic to the
underlying network. A case example on urban planning and infrastructure development within a
smart city is used to demonstrate the applicability of the proposed method.

Keywords: sustainable smart city; mathematical optimisation; urban design; bilevel modelling;
location theory; traffic assignment; infrastructure expansion; building location

1. Introduction

Existing statistics state that almost 55% of the population of the world currently resides in urban
regions [1,2], with estimates that this rate will increase to 70% by 2050 [3]. As this progression towards
greater urban centres continues to increase, a need has emerged to find ways for supporting this
growth in a sustainable manner. Furthermore, there is the challenge of dealing with the pollution levels
that result from exacerbated activities in cities [4]. Along with the surging rates of urbanisation and
pollution, the world has also experienced a breakthrough in the use of technologies, specifically those
related to information and communication technologies (ICT) [5]. Updates in connectivity between
various electronic platforms has led to the development of the Internet of Things (IoT), which is based
on networks formed between physical devices and appliances to allow data transfer and exchange for
enhanced operations [6].

The integration of ICT and IoT is thought to lead to an enhanced system for the management of
cities. As a result, the notion of smart cities has arisen in response to the need for sustainable cities
that can accommodate the growing population numbers, hence enhancing cities’ liveability and the
wellness and living standards of citizens [7]. Even though universal agreement on a specific definition
of a ‘smart city’ is still lacking, its main domain lies in the use of information and ICT in sectors
such as infrastructure, buildings and energy [8]. In particular, concepts from ICT and IoT are being
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increasingly reflected in the operations of existing cities, resulting in an interrelated platform between
large numbers of citizens, transport networks, services and urban assets and facilities [9].

Decision-making in planning and operations of smart cities needs to be structured around two
main considerations, namely strategic and tactical decisions [10]. Yet, current emphasis in the literature
is on the technical interfaces making up the various data-exchange enabling platforms placed within
the cities, with little emphasis on the strategic and tactical urban planning aspects of smart cities.
Within the area of strategic decision-making in city planning, zoning of the city and the location of
its operating facilities, including schools, hospitals and so forth, are both of significant relevance [11].
An appropriate selection of zone clusters and the subsequent selection of locations to place buildings
in form the main components that are involved in city design. In cities, the positioning of new
buildings leads to the generation of traffic demand in the existing network structure [12]. This causes
additional traffic loadings on the existing network, and if not well planned for, can result in major
transportation delays to network users. Traffic congestion is thought to result in over $121 billion
in losses [13] and can increase the amount of carbon emissions from traffic by more than 53% [14].
Another important strategic consideration is the development of the underlying travel network of the
region. Specifically, the development of the transport network will be based on the capacities required
to handle the initiated travel on the transport networks, while the operations of the network will in
turn be associated with the established capacity of the network, along with the traffic loading patterns
on the links (roads) of the network. Decisions related to the transport network are determined based on
population rates and estimated travel via the various transport modes utilised in the region [15]. As a
result, the zoning of the city will have a direct impact on the locations available for the facilities required
to service the underlying population, which in turn would also impact the traffic and operation of the
transportation network [16]. It is vital to thus integrate the decision-making that is involved in the
zoning, facility location and transport network capacity design of the underlying smart city.

The attention in this article is directed towards the concept of location planning in smart cities.
The proposed approach can be divided into three main areas: (i) the need for establishing a framework
for the construction of a smart city from scratch, where zoning and land use need to be specified;
(ii) the location of buildings in smart cities and the investment decisions made regarding the expansion
of the existing road network structure and capacity, which involves the consideration of attributes
that influence the decision of positioning buildings such as schools, hospitals and offices; and (iii) the
determination of the resulting impacts caused by such location decisions based on the triple bottom-line
of sustainability, via formulation of appropriate social, environmental and economic cost objective
functions. As a result, three main decisions, which form the essence of urban planning and design
in smart cities are targeted: namely, the decisions made regarding the allocation of zones and the
assignment of buildings to locations in the region, the expansion decisions related to the road structure
of the city and the expansion of the capacity of existing links in the network (if one already exists).

In this paper, a range of mathematical optimisation problems are integrated, including the
clustering problem [17], the assignment problem [18], the facility location problem [19] and the urban
traffic design problem [12], in order to model key strategic decisions in smart city design and planning.
The work proposed herein is expected to form an integral component of the urban design of smart
cities. In particular, such a framework will find applicability in prospective smart city planning
designs, to ensure a sustainable and integrated city structure where buildings and road networks are
strategically planned for. The framework can be used both for new smart city development and for
decisions to be made within an existing smart city and which impact the urban design morphology of
the existing city.

Remainder of this article is divided as follows: the next section provides a review of the
literature on smart city planning in terms of zoning, facility location and transport network design.
The proposed mathematical optimisation framework for strategic planning of smart cities is then
presented. Following that, the algorithm and formulations developed are outlined. A numerical
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example of a case project is used to validate the proposed framework. Concluding remarks are
provided at the end.

2. Literature Review

A significant number of research studies examine the concept of smart city and its use for
sustainable urban planning. The literature reviewed herein falls under, but is not limited to, one of the
following fields that are imperative building blocks in smart cities: energy management, city structure
zoning and location, intelligent transport systems and smart infrastructure.

Key aspects regarding IoT and its use in smart cities were reviewed in [20]. A bibliometric analysis
in [21] examines frequent city categorisation, including smart cities, used for sustainable urbanisation.
A comprehensive review was conducted in [22] for energy management and sustainable planning in
smart cities [23]. Spatiotemporal forecasting methods, which exploit time series data from various
locations within the context of smart cities, and their applications for smart city transport and building
management were evaluated in [24].

Several studies focused on energy management in smart cities [25]. Wojnicki and Kotulski [26]
proposed an outdoor lighting control system for smart cities. An activity-aware system to automate
building systems in smart cities was developed in [27]. A framework to optimise energy management
on smart campuses was proposed in [28]. A heating and cooling modelling system was proposed
for minimising electricity consumption in smart cities [29]. A smart city architecture was developed
in [30] for addressing challenges in smart grid distribution. A comparative assessment of smart energy
systems to ensure sustainable, clean and reliable energy in smart cities is found in [31].

In terms of location optimisation, the authors of [32] proposed an optimisation approach that
relies on integrating geographic information systems (GIS) with a fuzzy-analytical hierarchy process
(FAHP) for choosing suitable wind farm sites. Impacts of location choices made on wind turbine
operations were discussed in [33]. In the context of infrastructure planning for smart cities, the authors
of [34] developed a city navigation approach for electric vehicles, where locations of charging stations
were assumed to be unknown. A business model tool for smart cities to facilitate undertaking strategic
decision-making promptly was proposed in [35]. In [36], a localisation-based key management system
for meter data encryption in smart cities was proposed. The utilisation of smart parking lots in smart
cities was investigated in [37].

In terms of urban planning and structuring, an integrated model which considers land use,
transportation and energy systems for future smart cities was presented in [38]. A framework for a
smart city in China, which focuses on use of big data for infrastructure city planning and management,
was developed by the authors of [39]. Use of smart technology for enhancing the sustainability
of the construction sector through targeting demolition waste was discussed in [40]. Even though
an investigation on algorithms deployed for sustainable transport policy in cities has been carried
out, as detailed in [41], there is no link that has been developed to account for location decisions
of new buildings and their impacts on the smart city urban design structure. New ways to achieve
systematic-based solutions that augment the process adopted in urban design and planning, and which
can lead to future viability and prosperity in metropolitan regions, need to be developed.

As is apparent, there is little focus on developing mathematical optimisation models that integrate
location and transportation decisions for use in urban design of smart cities. In particular, there is an
apparent lack in studies that focus on addressing operational research problems that are relevant to the
strategic planning of urban areas. This is especially imperative in urban design of smart cities, where
emphasis on the interconnectivity of key features within the city environment, including transportation
systems and adjoining city layout, is highly regarded. As a result, in this work, the aspect within smart
city design which will be examined refers to an automated and systematic urban planning procedure
that relies on the use of mathematical optimisation frameworks. Such mathematical frameworks
can be utilised for a range of applications in smart cities, including intelligent transport planning
systems, intelligent energy monitoring and delivery and smart urban design approaches. The main
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contributions of this study are as follows: (i) the development of a mathematical method for dividing
the proposed smart city region into zonal clusters; (ii) formulation of an assignment problem for
land-use selection in zonal clusters; and (iii) development of a mathematical framework for enhancing
the sustainable planning of location decisions made regarding building placement, and for measuring
their impact on the routing of traffic within the smart city, through automated infrastructure investment
decisions. The research presented herein thus integrates strategic aspects of location planning and
traffic assignment involved in the urban design of smart cities. The next section outlines the main
components making up the developed framework.

3. Smart City Zoning, Facility Location and Transport Network Planning Framework

The main motivation behind the framework proposed in this study is to ensure the efficient
planning and design of city zoning, building location and transport network of smart cities, while
accounting for environmental, social and economic considerations. As was previously discussed,
the layout and location planning decision in smart cities considers two main planning aspects, namely
strategic and operational planning; this is displayed in Figure 1. As can be seen, in terms of the strategic
planning decisions, the main variables that need to be modelled in the proposed framework are the
zoning of the region, the link expansion variables on the existing network, network extension through
addition of new links, and the positioning of buildings. Apart from future population growth, which
creates a slight increase in the demand induced in the regions, the focus in the developed framework
is mostly on traffic demand generated by the placement of buildings.

Energies 2019, 12, x FOR PEER REVIEW 4 of 24 

 

development of a mathematical method for dividing the proposed smart city region into zonal 
clusters; (ii) formulation of an assignment problem for land-use selection in zonal clusters; and (iii) 
development of a mathematical framework for enhancing the sustainable planning of location 
decisions made regarding building placement, and for measuring their impact on the routing of 
traffic within the smart city, through automated infrastructure investment decisions. The research 
presented herein thus integrates strategic aspects of location planning and traffic assignment 
involved in the urban design of smart cities. The next section outlines the main components making 
up the developed framework. 

3. Smart City Zoning, Facility Location and Transport Network Planning Framework 

The main motivation behind the framework proposed in this study is to ensure the efficient 
planning and design of city zoning, building location and transport network of smart cities, while 
accounting for environmental, social and economic considerations. As was previously discussed, the 
layout and location planning decision in smart cities considers two main planning aspects, namely 
strategic and operational planning; this is displayed in Figure 1. As can be seen, in terms of the 
strategic planning decisions, the main variables that need to be modelled in the proposed framework 
are the zoning of the region, the link expansion variables on the existing network, network extension 
through addition of new links, and the positioning of buildings. Apart from future population 
growth, which creates a slight increase in the demand induced in the regions, the focus in the 
developed framework is mostly on traffic demand generated by the placement of buildings. 

 

Figure 1. Some of the operational research problems that can be considered when planning for urban 
design. 

An outline of the proposed framework in this paper is shown in Figure 2. Three main decisions, 
which form the essence of urban planning and design in smart cities are targeted: namely, the 
decisions made regarding allocation of zones and the assignment of buildings to locations in the 
region, the expansion decisions related to the road structure of the city and the expansion of the 
capacity of existing links in the network (if one already exists). The main concept introduced via the 
developed framework is the vital integration of all three decisions into a single model that 
simultaneously optimises the decision-making process involved. 

Figure 1. Some of the operational research problems that can be considered when planning for
urban design.

An outline of the proposed framework in this paper is shown in Figure 2. Three main decisions,
which form the essence of urban planning and design in smart cities are targeted: namely, the decisions
made regarding allocation of zones and the assignment of buildings to locations in the region,
the expansion decisions related to the road structure of the city and the expansion of the capacity of
existing links in the network (if one already exists). The main concept introduced via the developed
framework is the vital integration of all three decisions into a single model that simultaneously
optimises the decision-making process involved.

The strategic decision for smart cities starts with the division of the region into zones, assuming
the subject is a new city that requires zoning. This step also involves determining the land-use patterns
in the region. In the case that an already existing smart city is considered, then the zoning procedure
can be neglected, and the existing zonal configuration can be adopted instead. The second step involves
the positioning of the buildings within the zones defined and in accordance with the allocated land-use
patterns. Examples of buildings that need to be located include offices, retail shops, hospitals and
schools. The third step is that related to infrastructure development and expansion. Such decisions
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will be influenced by the previous two steps and so it is necessary to assimilate both decisions together
in a fashion that permits the translations of the impacts that the zoning and location decisions have on
the infrastructure investment decisions made by the planners.Energies 2019, 12, x FOR PEER REVIEW 5 of 24 

 

 

Figure 2. Proposed framework for planning in smart cities. 

The strategic decision for smart cities starts with the division of the region into zones, assuming 
the subject is a new city that requires zoning. This step also involves determining the land-use 
patterns in the region. In the case that an already existing smart city is considered, then the zoning 
procedure can be neglected, and the existing zonal configuration can be adopted instead. The second 
step involves the positioning of the buildings within the zones defined and in accordance with the 
allocated land-use patterns. Examples of buildings that need to be located include offices, retail shops, 
hospitals and schools. The third step is that related to infrastructure development and expansion. 
Such decisions will be influenced by the previous two steps and so it is necessary to assimilate both 
decisions together in a fashion that permits the translations of the impacts that the zoning and 
location decisions have on the infrastructure investment decisions made by the planners. 

Given that a chief consideration in smart cities is ensuring effective mobility and robust decision-
making for improving the transport of goods and people, developing an approach that can 
incorporate a forward-looking method for assignment of traffic based on newly introduced buildings 
is thus imperative. To enable this to happen, a multi-objective optimisation model is developed, 
based on a bilevel structure [42]. The bilevel structure is needed in order to model the decision spaces 
of the two main decision-makers in the model: namely, the urban planners and the transportation 
network users. The importance of generating sustainable solutions that target the triple bottom-line 
of sustainability is also accounted for through considering objective functions in the optimisation 
model developed, with focus on environmental, social and economic impacts of the locations and 
infrastructure decisions made. 

The model can then be adapted to continue to be utilised for the strategic decisions to be made 
within the smart city, whenever a change in the structure of the city is induced. The change that is 
emphasised in the framework is related to the introduction of a new zone or building within the 
region. As shown in Figure 2, the procedure loops back to the optimisation model, whose associated 
parameters are updated in response to the induced changes, and a new solution is generated. 
Otherwise, if no change is induced, the algorithm ceases. 

The proposed framework can also be linked to other automated systems that rely on the use of 
ICT in daily management of the city, such as online estimation of origin–destination (OD) matrices 
within the city for enhanced traffic assignment and real-time traffic state estimation and updates [43]. 

Figure 2. Proposed framework for planning in smart cities.

Given that a chief consideration in smart cities is ensuring effective mobility and robust
decision-making for improving the transport of goods and people, developing an approach that can
incorporate a forward-looking method for assignment of traffic based on newly introduced buildings
is thus imperative. To enable this to happen, a multi-objective optimisation model is developed, based
on a bilevel structure [42]. The bilevel structure is needed in order to model the decision spaces
of the two main decision-makers in the model: namely, the urban planners and the transportation
network users. The importance of generating sustainable solutions that target the triple bottom-line
of sustainability is also accounted for through considering objective functions in the optimisation
model developed, with focus on environmental, social and economic impacts of the locations and
infrastructure decisions made.

The model can then be adapted to continue to be utilised for the strategic decisions to be made
within the smart city, whenever a change in the structure of the city is induced. The change that is
emphasised in the framework is related to the introduction of a new zone or building within the region.
As shown in Figure 2, the procedure loops back to the optimisation model, whose associated parameters
are updated in response to the induced changes, and a new solution is generated. Otherwise, if no
change is induced, the algorithm ceases.

The proposed framework can also be linked to other automated systems that rely on the use of
ICT in daily management of the city, such as online estimation of origin–destination (OD) matrices
within the city for enhanced traffic assignment and real-time traffic state estimation and updates [43].
The work in this article is specifically targeted towards enhancing the intelligence of the transport
systems through considering the impacts of newly positioned buildings on the underlying network.

4. Mathematical Optimisation Models

In this section, the mathematical formulations that are integrated in the proposed framework are
outlined. The mathematical optimisation models can be divided into three main types: the first is
associated with the zone division and clustering in the region, the second relates to the assignment of
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land-use patterns to the zone clusters and the third is related to the location of buildings and traffic
assignment to the underlying network, based on infrastructure decisions made in the region. Notations
adopted in the proposed mathematical models are given in Nomenclature.

4.1. Zoning Regions

Assuming an input of free land dispersed in the region is provided by the decision-maker (urban
planner), the first step in zoning a smart city involves clustering the land into discrete zones. This step
will involve the use of a clustering algorithm in order to yield a layout of area nodes clustered into
zones. The second step involves assigning a land-use zone to each cluster created via the clustering
algorithm. Each of these steps will now be explained.

4.1.1. Area Clustering

Each available area is clustered into a set of zones via the use of a clustering algorithm. In this
study, principles from the k-means clustering approach are adopted [44]. The algorithm is summarised
in Figure 3.
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Figure 3. Steps involved in the k-means clustering approach adopted for zoning of the region.
(A) Nodes in the region for positioning new buildings are identified a priori (i.e., circles); (B) centroids
of zones to be created are placed randomly in the region (i.e., squares); (C) each node in the region is
assigned to a centroid based on distance proximity (each node is numbered and assigned to a numbered
centroid; matching displayed through the shading in the figure); (D) the location of the centroid is
recalculated and new nodes are assigned/removed in response; (E) the final clusters are created.

Let A be the coordinate of the area nodes and let Q denote the centroid of the zones to be created
in the region. The underlying urban space should already contain the available spaces for region
development, referred to as the nodes (see Figure 3A). The algorithm starts by placing an input number
of zone centroids in the urban space at random, as demonstrated in Figure 3B. The aim is to then group
the nodes into clusters, forming the discrete zones of the region. The algorithm iterates through all
nodes present in the region, finding the nearest centroid to each node, according to Equation (1).

Qj = arg min
j

D(Ai, Qj) (1)

where D(Ai, Qj) is a distance function.
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Once all nodes have been iterated through, a centroid is allocated to one or more nodes,
as demonstrated via the hatching displayed in Figure 3C. The algorithm then recalculates the position
of each centroid based on the following equation, Equation (2):

Qj =
1
nj

∑
i∈Vj

Ai ∀j ∈ Π (2)

where set Vj is the set of all area nodes allocated to the centroid j ∈ Π in the previous step.
Equation (2) considers the average sum of all area node coordinates clustered around a specific

zone centroid as the determining attribute of the updated centroid position.

4.1.2. Assignment Model

Once the zone clusters are formed, the next step involves developing an assignment model that
allocates each zone to a specific land use in accordance with a given set of criteria. As an example,
the criteria can be based on distance to existing roads, soil surface type of each zone cluster, distance to
cities/towns nearby, etc. In this study, the assignment model developed is represented via a binary
integer programming formulation, where an objective function based on a defined set of criteria is
utilised. One of the common criteria used in zoning is the travel distance between zones. As a result,
the objective function in this study is formulated to minimise the travel between the different land-use
patterns, based on predications of travel of people within the region. Let Π and Λ denote the set of
land-use and zonal clusters available, let akl denote the people that are expected to travel between
land use k and l (e.g., between commercial and residential zones) and let bvo denote the distance of
travel between zone cluster v and o. The integer variable wkv is defined to equal to 1 if land use kεΠ is
assigned to zone cluster vεΛ, and 0 otherwise. The objective function to be minimised (total distance
of travel between land uses allocated to zones), is given as Equation (3):

∑
v,o∈Π

∑
k,l∈Λ

aklbvowkvwlo + ∑
v∈Π

∑
k∈Λ

gkvwkv (3)

Essential constraints that are defined are assignment constraints, which specify that each land use
that planners intend to position in a given region are assigned to a particular land zone, as given by
Equation (4):

∑
V∈Π

wkv = 1 ∀k ∈ Λ (4)

The domain of the binary variables is defined in Equation (5):

wkv ∈ {0, 1} ∀k ∈ Λ, ∀v ∈ Π (5)

Additional sets of constraints that specify other requirements, such as distances that are required
between land uses and required connections to existing roads, etc., can also be formulated. It is
also important to note that other objective functions that target other criteria can be formulated for
assignment of land-use areas to zonal clusters identified. The distance criterion was adopted in this
study due to its high relevance in zone planning in urban regions.

4.2. Building Location and Infrastructure Model

Once the zonal configuration and land use specified for each zone is obtained, the next step
involves formulating a model to (i) locate buildings in the region and (ii) determine the investment
expansions required for existing infrastructure in response. A bilevel model [42] is proposed which
accounts for the decision of two key decision-makers in a smart city setting, namely the urban planners
and the transportation network users. The decision space of urban planners is modelled through
optimising decisions related to the sustainability of the locations chosen for the buildings within the
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urban region, along with optimising the infrastructure investment decisions. The decision space of the
network users is modelled through optimising their choice of links within the network in response
to congestion created and demand generated when an urban planner places new buildings. Since
the transport users respond to changes induced by decisions made by urban planners, the model
proposed is developed based on a two-level hierarchical system, where the upper level represents the
optimisation of the urban planners’ decision, while the lower level models the behaviour of users in
response to decisions made by urban planners.

The upper level of the proposed model is described next.

4.2.1. Upper Level

The main decision variables in the upper level are: (i) the location decision, represented by the
binary variable z f s and which equals 1 if building f is placed in location s, and 0 otherwise; (ii) the
binary variable yij, which specifies whether link (i, j) is constructed or not; and (iii) the continuous
variable φij, which indicates whether an existing link of the network is expanded or not.

Upper-Level Objective Functions

The upper-level model involves the formulation of three objective functions; each function targets
one specific measure of sustainability. The first equation modelled is a proxy for the social pillar of
sustainability (Equation (6)); it minimises the total noise pollution experienced in each zone of the
smart city. Noise is generated by the buildings to be positioned in the region, as measured by the
parameter Mrs.

min
z ∑

t∈T
∑
f∈Ft

∑
s∈Pt

∑
r∈P

z f s Mrs (6)

Equation (7) targets the economic aspect of sustainability, where the cost of constructing buildings
in the zones of the urban region, Cs , is minimised.

min
z ∑

t∈T
∑
f∈Ft

∑
s∈Pt

z f sCs (7)

The final objective function, Equation (8), considers the minimisation of the total carbon emissions
from users on the traffic network. Equation (8) accounts for the emissions from different transportation
modes, εm, which is multiplied by (i) the distance of the links of the network, dij; (ii) the flow on
the links, xij; and (iii) the time of travel on the links of the network, which considers the congestion
impacts on the roads, as given by Equations (9) and (10).

min
x ∑

(i,j)∈LR
∑

m∈Γ
εmdijxijtij

(
xij
)

(8)

tij(xij) = T0
ij

1 + 0.15

(
xij

k0
ij + φij

)4
+

(
1− yij

)
M ∀(i, j) ∈ LN (9)

tij(xij) = T0
ij

1 + 0.15

(
xij

k0
ij + φij

)4
 ∀(i, j) ∈ LR\LN (10)

where T0
ij denotes the free flow travel time, while k0

ij and φ ij denote the existing capacity and the
upgraded capacity of link (i, j), respectively.

In particular, Equations (9) and (10) represent the BPR link cost function developed by the Bureau
of Public Roads (BPR) [45], which accounts for congestion. Equations (9) and (10) encompass the
decisions related to the expansion of the network in order to determine the impacts on congestion levels
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in the network. Specifically, Equation (9) considers the link addition decisions, yij, while Equation (10)
applies for all other link types that fall into LR, apart from the new links LN .

4.2.1.0. Upper-Level Constraints

A number of constraints are defined in the upper-level model to delineate part of the decision
space of the urban planners. In particular, Equation (11) specifies that each building is to be positioned
in a node within the region.

∑
p∈Pt

z f p = 1 ∀t ∈ T, ∀ f ∈ Ft (11)

Equation (12) indicates that each node should host at most a single building:

∑
f∈Ft

∑
t∈T

z f p ≤ 1 ∀p ∈ P (12)

Equation (13) is a budget constraint to ensure that investment decisions related to network
expansion are kept under control.

∑
(i,j)∈LE

cijφij + ∑
(i,j)∈LN

cijyij ≤ B (13)

The domain of the upper-level variables is defined by Equations (14)–(17).

z f p ∈ {0, 1} ∀p ∈ P, ∀ f ∈ F (14)

0 ≤ φij ≤ k0
ij ∀(i, j) ∈ LE (15)

φij = 0 ∀(i, j) ∈ LN (16)

yij ∈ {0, 1} ∀(i, j) ∈ LN (17)

4.2.2. Lower Level

People within the smart city will attempt to reduce their individual travel times when travelling on
the transportation network. These decisions will highly depend on the changes induced by decisions
made by urban planners, in terms of both the location of new buildings and network expansion
decisions related to infrastructure investment.

Lower-Level Objective Functions

Since the transport network users will attempt to minimise their individual travel times, this sort
of selfish behaviour of users can be modelled via a user equilibrium (UE) traffic assignment model [46],
such as Equation (18).

min
x ∑

(i,j)∈LR

xij∫
0

tij(ω)dω (18)

Lower-Level Constraints

The lower-level constraints focus on the flow variable, to assign traffic to different links within
the network. To ensure flow conservation at each node within the network, Equation (19) is defined.

∑
j ∈ D ∪ P :

(i, j) ∈ LR ∪ LV

xu
ij − ∑

j ∈ D ∪ P :
(i, j) ∈ LR ∪ LV

xu
ji = qiu ∀i ∈ D ∪ P, ∀u ∈ U, i 6= b, (i, u) ∈W (19)
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In order to link the decision variable of the upper level with the decisions made by the lower level,
Equations (20) and (21) are defined. In particular, Equation (20) states that flow from the location of
the building to the sink node (which accumulates total travel on the network to the particular building
type, i.e., single destination) is only possible if that specific building is located on the node from which
the link emanates. Equation (21) states that total flow to all destinations on a proposed link within the
network, xij, is not made possible unless the link is assigned to be constructed.

xu
pu ≤ z f p M ∀t ∈ T, ∀p ∈ Pt, ∀ f ∈ Ft, ∀u ∈ Dt (20)

xij ≤ yij M′ ∀(i, j) ∈ LN (21)

Equation (22) is a definitional constraint which specifies that the total flow on a given link is the
sum of all flows heading towards all destinations, u, on that respective link:

xij = ∑
u∈U

xu
ij ∀(i, j) ∈ LR (22)

The domain of the lower-level decision variable is defined via Equation (23).

xu
ij ≥ 0 ∀(i, j) ∈ LR ∪ LV , ∀u ∈ U (23)

5. Solution Approach

The lower-level constraints focus on the flow variable in order to assign traffic to different links
within the network. To ensure flow conservation at each node within the network, Equation (19)
is defined.

In order to solve the proposed bilevel model above, a procedure which relies on converting
the bilevel formulation into a single level model is adopted. A flow chart depicting the major
steps undertaken is presented in Figure 4. In particular, the Karush–Kuhn–Tucker (KKT) equivalent
conditions are used to reformulate the lower-level model, resulting in a single-level representation.
The resulting single level is a mixed integer nonlinear programming (MINLP) model, which is then
linearised through implementing a scheme that is based on piecewise approximation of the convex
BPR function. Given that multiple objectives are considered at the upper level, a multi-objective
optimisation solving approach is required. Lexicographic optimisation [47], which assumes a
particular preference order over the criteria included, is adopted. The next section outlines the
use of Karush-Kuhn-Tucker (KKT) conditions to reformulate the bilevel model.
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5.1. Equivalent Lower-Level Model

The UE conditions of the lower-level program can be represented by a set of first-order equivalent
constraints, namely the KKT conditions [42]. A dual variable µiu is defined for Equation (19).
Complementary slackness conditions of KKT, which are equivalent to the UE of the lower level
and which require either

(
tij − µiu + µju

)
= 0 or xu

ij = 0, are enforced by Equations (24) and (25).

tij − µiu + µju ≥ 0 ∀(i, j) ∈ LR, u ∈ U (24)(
tij − µiu + µju

)
xu

ij = 0 ∀(i, j) ∈ LR, u ∈ U (25)

Since Equation (25) involves the multiplication of two variables and is hence nonlinear,
the single-level model cannot be solved using a linear solver. To overcome this, an appropriate
linearisation scheme to reformulate Equation (25) needs to be applied, as demonstrated in the
next section.

5.2. Linearisinng the KKT Conditions

Let ωiju be an auxiliary binary integer variable, which equals 1 if tij − µiu + µju = 0, and 0
otherwise. The complementary slackness condition, Equation (25), is replaced with the following set
of constraints, Equations (26)–(28), resulting in the linearisation of KKT conditions:

xu
ij ≤ ωijuO ∀(i, j) ∈ LR, u ∈ U (26)

tij − µiu + µju ≤
(
1−ωiju

)
O′ ∀(i, j) ∈ LR, u ∈ U (27)

ωiju ∈ {0, 1} ∀(i, j) ∈ LR, u ∈ U (28)

where O and O′ are large positive constants.

5.3. Linearising the BPR Function

A chain of linked special ordered sets (SOS) conditions is implemented for linearising the BPR
functions in Equations (9) and (10) [48]. The principle idea behind the SOS linearisation scheme
adopted is shown in Figure 5. The domains of xij and φij (i.e., the two continuous variables in the BPR
function) are partitioned into h ∈ H and e ∈ E regions, respectively, based on a grid point structure.
With each grid point, a continuous variable, namely ψijhe, is associated. A necessary condition is
imposed on ψijhe, which states that no more than four adjacent grid points can be nonzero. The flow
and link capacity variables can then be represented by Equations (29) and (30), respectively:

xij = ∑
e∈E

∑
h∈H

xijhψijhe ∀(i, j) ∈ LR (29)

φij = ∑
e∈E

∑
h∈H

φijeψijhe ∀(i, j) ∈ LR (30)

where xijh and φije are predefined, fixed values of flow and capacity, respectively, used in the piecewise
linearisation of the BPR function.

The BPR function is then approximated by the linear formulation through Equations (31) and (32):

tij = ∑
e∈E

∑
h∈H

T0

1 + 0.15

(
xijh

k0
ij + φije

)4
ψijhe +

(
1− yij

)
M ∀(i, j) ∈ LN (31)

tij = ∑
e∈E

∑
h∈H

T0

1 + 0.15

(
xijh

k0
ij + φije

)4
ψijhe +

(
1− yij

)
M ∀(i, j) ∈ LR\LN (32)
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The conditions imposed on ψijhe are given by Equations (33)–(36):

∑
e∈E

∑
h∈H

ψijhe = 1 ∀(i, j) ∈ LR (33)

ξijh = ∑
e∈E

ψijhe ∀(i, j) ∈ LR, ∀h ∈ H (34)

ηije = ∑
h∈h

ψijhe ∀(i, j) ∈ LR, ∀e ∈ E (35)

ξijh, ηije ∈ SOS2 ∀(i, j) ∈ LR, ∀h ∈ H, , ∀e ∈ E (36)

Equation (33) is the usual convex combination requirement in piecewise linear approximation.
Two auxiliary continuous variables, ξijh and ηije, are defined and these are embedded within
Equations (34)–(36), so that at most, four adjacent variables of ψijhe can be nonzero. The combination of
Equations (34) and (36) specifies that two adjacent ψijhe at most in the h ∈ H direction can be nonzero,
while Equations (35) and (36) state that at most two adjacent ψijhe at most in the ∀e ∈ E can be nonzero.
In particular, Equation (36) states that the variables, ξijh, ηije, are of a special ordered set (SOS) of
Type 2 (i.e., SOS2), where a maximum of two of the latter variables that are adjacent can be nonzero.
This becomes obvious from Figure 5, since for the grid structure shown and in accordance with the
latter equations enforced, not more than two adjacent variables of ξijh and ηije can be nonzero in the x
and y directions, respectively. The SOS2 conditions are specified as follows in Equations (37)–(40):

ξijh ≤ ζijh−1 + ζijh:h∈H ∀(i, j) ∈ LR, ∀h ∈ H (37)

∑
h∈H

ζijh = 1 ∀(i, j) ∈ LR (38)

ηije ≤ γije−1 + γije:e∈E ∀(i, j) ∈ LR, ∀e ∈ E, (39)

∑
e∈E

γije = 1 ∀(i, j) ∈ LR (40)

The domain of the variables used to mimic SOS2 is given as follows by Equations (41)–(43):

ζijh ∈ {0, 1} ∀(i, j) ∈ LR, ∀h ∈ H (41)

γije ∈ {0, 1} ∀(i, j) ∈ LR, ∀e ∈ E (42)

ψijhe ∀(i, j) ∈ LR, ∀h ∈ H, ∀e ∈ E (43)

Energies 2019, 12, x FOR PEER REVIEW 12 of 24 

 

structure. With each grid point, a continuous variable, namely ߰௜௝௛௘ , is associated. A necessary 
condition is imposed on ߰௜௝௛௘ , which states that no more than four adjacent grid points can be 
nonzero. The flow and link capacity variables can then be represented by Equations (29) and (30), 
respectively: 

 , R
ijhij ijhe

e E h H
x x i j L

 

  
 

(29) 

 , R
ijeij ijhe

e E h H
i j L  

 

  
 

(30) 

where ̅ݔ௜௝௛  and ߶ത௜௝௘  are predefined, fixed values of flow and capacity, respectively, used in the 
piecewise linearisation of the BPR function. 

 

Figure 5. Grids defined for piecewise linearisation of the BPR function. 

The BPR function is then approximated by the linear formulation through Equations (31) and 
(32): 

   
4

0 01 0.15 1 ,ijh N
ij ijhe ij

e E h H ijeij

xt T y M i j L
k


 

  
           


 

(31) 

   
4

0 01 0.15 1 , \ijh R N
ij ijhe ij

e E h H ijeij

xt T y M i j L L
k


 

  
           


 

(32) 

The conditions imposed on ߰௜௝௛௘  are given by Equations (33–36): 

 1 , R
ijhe

e E h H
i j L

 

  
 

(33) 

 , ,Rijh ijhe
e E

i j L h H 


    
 

(34) 

 , ,Rije ijhe
h h

i j L e E 


    
 

(35) 

 , 2 , , ,,R
ijh ije SOS i j L h H e E        

 
(36) 

Equation (33) is the usual convex combination requirement in piecewise linear approximation. 
Two auxiliary continuous variables, ߦ௜௝௛  and ߟ௜௝௘ , are defined and these are embedded within 
Equations (34–36), so that at most, four adjacent variables of ߰௜௝௛௘  can be nonzero. The combination 

Figure 5. Grids defined for piecewise linearisation of the BPR function.



Energies 2019, 12, 1318 13 of 23

5.4. Linearing Carbon Emissions Objection Function

To linearise the carbon emissions objective function, Equation (8) is replaced by the equivalent
Equation (44):

min
x ∑

i∈P
∑

u∈U
∑

m∈Γ
εmdiuπiuqiu (44)

where πiu highlights the shortest travel time between origin i and destination u.

5.5. Lexicographic Optimisation

Given that the bilevel model proposed for the urban design of smart cities contains multiple
objectives that need to be satisfied, no single solution will optimise all criteria at once. As a result,
the concept of optimality adopted in single-objective optimisation is replaced with the concept of
Pareto optimality.

A solution z∗ of a multi-objective optimisation problem is said to be Pareto optimal if there is no
other feasible solution z such that fθ(z) ≤ fθ(z∗) ∀θ ∈ Θ and fρ(z) ≤ fρ(z∗) for at least one index
ρ ∈ Θ, θ 6= ρ, where Θ is the set of objective functions solved in the multi-objective problem.

Lexicographic optimisation involves assigning a preference order over all objective functions
considered and solving the problem over a number of stages [49]. In this paper, the lexicographic
optimisation approach is adopted, given that it is likely that urban designers have a preference order
defined over certain criteria when structuring a region. The algorithm developed is displayed in
Algorithm 1.

Algorithm 1 Lexicographic Optimisation
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The k-means clustering algorithm of Figure 3 is utilised; the resulting zonal cluster is displayed in 

The notation adopted for the lexicographic optimisation process is given by the term
lex min[Bv, Bw], which indicates that the model is first solved by minimising the highest ranked
objective, Bv. Once an optimal solution is yielded, the model is re-solved by adopting Bw as the
objective function and by including the constraint Bv ≤ B∗v in the model, where B∗v is the optimal
solution of Bv obtained at the initial stage. The final solution is that attained once all |Θ| − 1 objective
functions have been included as constraints, where Θ is the set of all objective functions involved in
the model.

6. Computational Results

In this section, the computational experiments utilised to demonstrate the applicability of the
proposed optimisation framework are explained. In the first set of experiments, labelled Scenario
1, the framework is tested on a realistic example of a region being developed into a smart city.
The structure of the city is displayed in Figure 6A. Figure 6B displays the available locations for
positioning different buildings in the region. The type of buildings considered in the example
include schools, hospitals, residential dwellings, offices, bus stops and factories. In the second
set of experiments, multiple instances of network structures are generated in order to examine the
performance of the proposed model. For both sets of experiments, the proposed mathematical
optimisation models are coded in AMPL [50]; Python [51] is used as the programming language to
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generate instances in Scenario 2. The model is run on a personal computer with Intel Core i7, 2.2 GHz
CPU and 8 GB RAM. CPLEX 12.7 is adopted as the linear solver [52].
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Figure 6. (A) Region examined in the case example; (B) available locations for placing buildings in
the region.

6.1. Scenario 1

The first step of the framework involves partitioning the region into a number of zonal clusters.
The k-means clustering algorithm of Figure 3 is utilised; the resulting zonal cluster is displayed
in Figure 6A. A total of eight zonal clusters within the region have been identified. The next step
involves assigning a land use to each zonal cluster. This enables the allocation of zones for positioning
different building types in. This is achieved via the assignment model represented by Equations (3)–(5).
It is desired to place four land-use zone types, namely three residential zones, two mixed-use zones,
two commercial zones and one industrial zone. The resulting zones assigned are displayed in Figure 7B
and Table 1. The building types desired to be placed, along with the associated maximum noise
generated and noise sensitivity thresholds for each building, are displayed in Table 2.
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Table 1. Land-use distribution.

Land Use Zone Cluster Location Nodes

Residential 1 1, 2
Residential 2 3, 4
Residential 3 5, 6
Mixed use 4 7, 8

Commercial 5 11, 12
Mixed use 6 9, 10

Commercial 7 13, 14
Industrial 8 15, 16, 17, 18, 19

Table 2. Building type and associated noise characteristics.

Building Type Maximum Noise Generated (dB(A)) Noise Sensitivity Threshold (dB(A))

Office 70 70
School 80 55

Residential 75 60
Hospital 65 40
Bus Stop 85 75
Factory 85 75

The construction cost associated with each node is as follows: for nodes 1, 5, 7, 10, 17 and 18,
construction cost is given as $503,124; for nodes 2, 3, 6, 13, 14, 15 and 19, construction cost is $209,353;
and for nodes 4, 8, 9, 11, 12 and 16, the construction cost is given as $100,111.

The third stage involves an implementation of the strategic decision-support model for allocating
buildings and determining the traffic assignment and any investments required in the connecting
infrastructure of the region. Since the region is new, no existing network is present. A sample network
shape utilised to outline the expected linking structure between the eight zones identified is depicted
in Figure 8.
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The preference assumed over the objective functions is given as follows: B3 � B2 � B1, where
the relationship a � b highlights the preferential ranking of a in comparison to b. In the first stage,
the carbon emissions on the transport network, B3, are minimised (via minimising the total system
travel time of the network). The emission factors associated with each transportation mode analysed
in the smart city are given in Table 3, as obtained from [53]. Preference in the second stage is given to
minimising the total sum of noise pollution within the region: B2. In the final stage of the lexicographic
approach, the construction cost involved with constructing buildings at each location is minimised.
Through applications of the lexicographic algorithm, the lexicographic Pareto optimal solutions
obtained are displayed in Table 4. As is displayed, in the initial run, carbon emissions are minimised,
while the rest of the objectives are evaluated (without being optimised yet). In the second lexicographic
run, the carbon emissions remain at their minimum level, while noise pollution decreases by 45% and
construction costs increase by 21%, in comparison to the first stage of the lexicographic run. In the third
lexicographic run, both carbon emissions and noise pollution stay at their minimum levels (due to the
constrained optimisation), while construction cost cannot be minimised further without violating the
constraints placed on the carbon emissions and noise pollution functions.

Table 3. Emission factors for each transportation mode analysed.

Transportation Mode Emission Factor (kg CO2−eq pkm−1)

Car 0.183
Bus 0.056

Intercity Train 0.041

Table 4. Lexicographic optimisation with the order B3 � B2 � B1 .

B3 (Carbon-Equivalent kg CO2-eq) B2 (dB(A)) B1 (AUD $) Constructed Links

lex min[B3] 19,786 679 5,287,456 All links
lex min[B3, B2] 19,786 375 6,427,212 All links

lex min[B3, B2, B1] 19,786 375 6,287,456 All links

6.2. Scenario 2

In the second set of experiments, the case example of Figure 5 is slightly modified to allow for
an extensive computational analysis of the model developed. A total of 350 random instances are
generated for examining the behaviour of the bilevel model. The size of the networks considered starts
at 10 nodes and is incremented by 5 nodes until 40 nodes are reached. Travel distances are assumed to
be proportional to the Euclidian distance between the zones, while buildings to be placed are assumed
to be 40–90% of the number of nodes considered in the instance generated, in order to generate an
encompassing set of scenarios. Figure 9 displays the average computational time required to yield an
optimum solution, along with the percentage of instances solved to optimality within a 1000 s time
limit. As can be seen, beyond 20 nodes, as the instance size increases, the average computation time
increases and the percentage of instances solved to optimality decreases.

6.3. Comparison with Other Metaheuristics

In this section, common optimisation algorithm approaches adopted in the literature, including
genetic algorithms (GA) [54] and particle swarm optimisation (PSO) [55], are contrasted with the
proposed exact approach. Based on rigorous tests, the population size, mutation rate and crossover
rate of 250, 0.05 and 0.7, respectively, were adopted in the GA, whereas for PSO, population size
was set as 250, while acceleration constant and weight parameters were set as 3 and 0.4, respectively.
As can be seen from Figure 10A, the solving time of the GA is better than both PSO and the proposed
exact approach, though solution accuracy is better in the proposed exact approach. The results of
Figure 10B highlight that even though the metaheuristic approaches can be faster in producing a
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solution, the solution quality of the exact approach will always be better. In addition, for the case
considered herein, the fastest approach to generate a solution is obtained using a GA, though PSO can
be slightly more accurate in terms of solution quality in contrast to the GA.
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the genetic algorithm (GA), particle swarm optimisation (PSO) and the exact approach.

6.4. Multi-objective Variant

A pure Pareto-based formulation is applied, which relies on optimising all the objective functions
simultaneously. The solution strategy adopted herein is referred to as the ε-constraint method, which
relies on optimising a single objective function while accounting for the remaining objectives using
constraints. A parametric variation of the right-hand side (RHS) of the constrained functions then
ensues to generate the efficient Pareto points on the frontier. The reader is referred to [56] for additional
information on the implementation of the ε-constraint method adopted.

The results obtained on application of the ε-constraint method to the case study presented above
are displayed in Figure 11A–C. In addition, Table 5 presents the optimised values of extreme points
used to plot the tradeoff curve. In Figure 11A, a clear tradeoff exists between minimising noise and
minimising carbon-equivalent emissions. In Figure 11B, a tradeoff is shown between minimising
layout cost and minimising noise, while Figure 11C displays the tradeoff between minimising layout
cost and minimising carbon-equivalent emissions.
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Table 5. Payoff table between all objective functions considered.

Objective Functions B1 = Layout Cost ($) B2 = Noise (dB(A)) B3 = Carbon-Equivalent (CO2−eq)

Min B1 3,825,976 679 131,115
Min B2 8,786,432 276 131,115
Min B3 10,321,452 679 19,786

The importance of the Pareto curves produced lies in the fact that the decision-maker is now able
to visualise the magnitude of the impact associated with each efficient solution produced.

6.5. Discussion and Insight

In comparison to some of the approaches in the literature, the proposed framework targets
key strategic operational research problems that are encountered in the urban design of smart cities.
For instance, in [57], the authors consider using integer optimisation to maximise floor area while
accounting for sunlight in urban design. A mixed integer program was developed in [58] for designing
building interiors. Integer programming was utilised in [59] for urban street network design. As can
be noticed, there is a lack of focus on optimisation problems encountered in the strategic design of
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urban areas, where traffic and building layout are both integrated. The proposed approach in this
article tackles this gap by proposing a mathematical optimisation model which integrates the latter.
In addition, multiple objectives are rarely adopted in urban design optimisation [12]. As a result,
through the proposed framework herein using multi-objective optimisation, the decision-maker can
visualise the different tradeoffs that result when incorporating all objective functions considered.

7. Conclusions

Globally, we have witnessed a shift towards developing smart cities to deal with the challenges of
rising population and urbanisation rates, along with the necessity of ensuring sustainable development.
It seems therefore necessary to incorporate intelligent and robust urban planning frameworks that can
simultaneously target transport and land-use considerations in smart cities.

In this paper, a framework, based on mathematical optimisation for the strategic planning of
zoning, facility location and transport network design in smart cities was proposed. The framework
combines some strategic operational research problems, including the clustering problem,
the assignment problem, the facility location problem and the network design problem, in a systematic
fashion. An algorithm based on k-means clustering is applied to divide a given region into zones,
and an assignment problem is then solved to determine the land-use types within the region. The final
stage of the framework involves solving a bilevel model that accounts for the hierarchical decision
making of urban planners and travel network users. The proposed bilevel model considers the location
decisions of buildings within a smart city setting, along with the investment decisions related to
expansion of the underling transportation network. Multiple objective functions were formulated
to target the triple bottom-line of sustainability in order to ensure a sustainable urban layout of
the smart city. In particular, as a social factor, noise pollution in the region was minimised; as an
environmental factor, carbon-equivalent emissions on the transportation network were minimised; and
as an economic factor, the construction cost of buildings was minimised. A solution approach based
on converting the bilevel model into a single-level model was outlined, along with a linearization
procedure. A lexicographic optimisation approach was utilised to handle the multi-objective nature of
the developed model. In addition, the ε-constraint method, which generates the Pareto front when
considering all objective functions involved, was also adopted.

The proposed model was applied on a realistic case example for the design of the urban structure
of a smart city. A lexicographic approach highlighted variations in cost of up to 52% when carbon
emissions are given first preference by decision-makers. The ε-constraint method highlighted that
a trade-off cost of up to 471% can result when simultaneously optimising the objective functions
involved. In order to examine the computational performance of the proposed approach, a total of 350
instances were solved. Results demonstrate that solving time increased rapidly once the transportation
network size of the instance generated exceeded 30 nodes. On average, the proposed model was able
to solve 72% of the proposed instances within the imposed 1000 s time limit.

A comparison was also conducted between the proposed exact approach and metaheuristic
solving algorithms including a GA and PSO. Results indicated that the GA was the fastest in terms of
solution time, although solution accuracy was on average reduced by 68% compared to the results
obtained when utilising the exact approach.

The proposed framework integrates several key operational research problems that are
representative of certain aspects of the urban design problem involved in smart cities. However,
several limitations are associated with the proposed approach. First, a deeper investigation into all
facets of urban design that are associated with smart cities is lacking, since only several operational
research problems are tackled in the framework developed. Second, the incorporation of tactic
decision-making problems, such as vehicle routing, was missing from the proposed framework. Future
works will thus look at these two areas.
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Nomenclature

Notation Meaning
t ∈ T Type of building to be positioned in smart city
v ∈ Π Set of zone centroids to position in a region
k ∈ Λ Set of land uses to define within the region
m ∈ Γ Set of transport modes on the transport network
D = ∪t∈T Dt Set of dummy nodes, acting as sink nodes for each building type
Ft Set of all building types
LC Existing links that cannot be expanded
LE Existing links that can be expanded
LN New links that can be formed
LR ∪ LC ∪ LE ∪ LN All link types that form the travel network
LV Virtual links that connect to the sink node
Pt Set of potential locations for all building types
P : ∪t∈T Pt Set of all nodes in the region
U Set of all destination nodes in the region
H Set of segments for linearising xij
E Set of segments for linearising φij
H = {h ∈ H : ord(h) < |H|} Set of segments for linearising xij, less 1
E = {e ∈ E : ord(e) < |E|} Set of segments for linearising φij, less 1
An Set of area node coordinates identified in the region, where n ∈ Pt

Qv Set of zonal coordinates of the region, where v ∈ Π
Vv Set of all area nodes allocated to the centroid of a zone
u ∈ U Set of all destinations
W Origin–destination (OD) matrix
Cs Cost of constructing a building at node s ∈ P

Mrs
Noise pollution assessed at node r in the region, resulting due to a building
placed at node s ∈ P

εm Emission factors of transport mode m ∈ ψ in kg CO2− eq pkm−1

dij Distance between nodes
k0

ij Capacity of link (i, j) ∈ LR

B Available budget for expansion of network

xijh
A fixed parameter for the flow on link (i, j) ∈ LR, used in the piecewise
Linearisation of the BPR function

φije
A fixed parameter for the expanded capacity on link(i, j) ∈ LE, used in the
piecewise linearisation of the BPR function

M, M′, O, O′ Large positive constants

wkv
Binary variable, which equals 1 if land use k ∈ Λ is assigned to zone cluster
v ∈ Π, and 0 otherwise

z f s
Binary variable, which equals 1 if type t building, f ∈ Ft, is located at node s ∈ P,
and 0 otherwise

yij
Binary variable, which equals 1 if link is added to the network, and zero
otherwise

xij Flow on link (i, j)εLR

φij Amount of additional capacity added to link (i, j)εLE
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Notation Meaning

ωiju
Auxiliary binary variable for linearising the KKT complementary slackness
conditions

ψijhe Auxiliary binary variable for linearising the BPR function

ξijh
Auxiliary continuous variables for linearising the BPR function, for link (i, j)εLR

and segment

πiu
Continuous variable which highlights the shortest travel time between origin i
and destination u

ηije Auxiliary continuous variables for linearising the BPR function (i, j)εLR

ζijh Binary variable for mimicking SOS2 behaviour, defined over segments h ∈ H
γije Binary variable for mimicking SOS2 behaviour, defined over segments e ∈ E
Bureau of public roads (BPR); Karush-Kuhn-Tucker (KKT); Special Ordered Set 2 (SOS2)
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