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Abstract: Short-term forecasts of direct normal irradiance (DNI) from the Integrated Forecasting System
(IFS) and the global numerical weather prediction model of the European Centre for Medium-Range
Weather Forecasts (ECMWF) were used in the simulation of a solar power tower, through the System
Advisor Model (SAM). Recent results demonstrated that DNI forecasts have been enhanced, having
the potential to be a suitable tool for plant operators that allows achieving higher energy efficiency
in the management of concentrating solar power (CSP) plants, particularly during periods of direct
solar radiation intermittency. The main objective of this work was to assert the predictive value of
the IFS forecasts, regarding operation outputs from a simulated central receiver system. Considering
a 365-day period, the present results showed an hourly correlation of ≈0.78 between the electric energy
injected into the grid based on forecasted and measured data, while a higher correlation was found
for the daily values (≈0.89). Operational strategies based on the forecasted results were proposed for
plant operators regarding the three different weather scenarios. Although there were still deviations
due to the cloud and aerosol representation, the IFS forecasts showed a high potential to be used for
supporting informed energy dispatch decisions in the operation of central receiver units.

Keywords: short-term forecasts; direct normal irradiance; concentrating solar power; system advisor
model; operational strategies; central solar receiver

1. Introduction

With the simultaneous increase of solar energy conversion units installed worldwide and
computational technology, interest has been growing in using direct normal irradiance (DNI) forecasts
in the field of solar power, at a regional or global scale, particularly for an efficient production of energy
from concentrating solar power (CSP) plants. A strong reason for such an effort is the fact that CSP
systems are able to provide high-quality dispatchable power at affordable prices, when compared to
photovoltaic storage capacity, using molten salt as heat storage, a cheap, safe, and easily accessible
material [1,2]. For a CSP plant operator, information concerning the day-ahead (up to 48 h) DNI
values is required for an efficient energy planning and scheduling [3], allowing higher-penetration of
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commercial solar power, into the electricity market. In particular, it is during periods of direct solar
radiation intermittency that CSP technologies demand accurate forecasts of DNI [4], since these periods
are characterized by scattered clouds (which can differ in type and dynamic coverage [5]) and aerosols
species [6], which are two primary factors that affect the direct solar resource at the ground level.

To accurately characterize DNI, a combination of the state-of-the-art monitoring and assessment
techniques, with advanced numerical weather prediction (NWP) modeling is recommended. NWP
models are based on the numerical computation of dynamic flow equations that allow solving the
state of the atmosphere and its evolution, up to several days-ahead [7]. However, despite being able to
provide satisfactory results [8], current models still demand developments towards DNI forecasting,
particularly the parameterization of cloud cover [9] and the use of real-time aerosol information,
considering that nowadays an aerosol climatology is still used, despite recent advances [10]. Moreover,
an accurate conversion of predicted DNI to predicted energy output values from simulated power
plant models is also necessary. In this context, user-friendly software such as the System Advisor
Model (SAM) can be used to simulate a CSP plant. This method has been carried out by the authors in
a previous work [11], where forecasted data from the IFS was used in the simulation of a linear-focus
parabolic trough (PT) system, with a configuration similar to the Andasol 3, a 50 MWe power plant [12]
located in Granada (Spain). Although the PT technology has dominated the solar thermal power
industry in the last decades, central receiver (CR) units have been emerging, due to the potential that
these have for higher efficiency and lower cost. This is possible because apart from having higher
concentration ratios (300–800 suns versus only 25–30 in conventional linear concentration), modern CR
technology uses molten salt as a heat transfer fluid (HTF) and, directly, as heat storage fluid. Most
commercial PT solutions operate with thermal oils as HTF and even when heat storage is also performed
with molten salts, the overall operating temperature is much lower (≈400 ◦C contrasting with 540 ◦C in
the CR systems). In CR systems the higher temperatures place more stringent requirements on energy
management and control of power block efficiency, than on lower temperature PT system [13].

Taking into account the aforementioned aspects, the present work uses day-ahead (24-h) forecasts
of DNI from the Integrated Forecasting System (IFS), the global NWP model of the European Centre for
Medium-Range Weather Forecasts (ECMWF) that possesses the highest scores regarding medium-range
global weather forecast [14], together with a set of meteorological variables, in the simulation of a CR
power plant. Moreover, an advantage in using the IFS, instead of higher resolution models, is that it
allows the implementation of the present analysis and proposed method in any region of the world,
with high prospects in the installment of CSP units. In this work, in order to convert DNI values to
energy output forecasts of the modeled CSP system, the simulation of a CR power plant similarly
configured as the 19.9 MWe Gemasolar thermosolar power plant [15] (located in the province of
Sevilla (Spain)), was carried out. The obtained energy outputs based on DNI predictions and local
measurements of the simulated CR power plant were assessed and then compared with the results
obtained for a PT system [11]. This simulation used the same dataset, i.e., input variables (DNI and
meteorological data), as for the PT simulation, being related to the same period and location in Southern
Portugal, in which it showed substantial improvements towards the prediction of DNI, due to the new
operational radiative scheme of the IFS.

The proposed work has been structured as follows. In Section 2, a description is provided regarding
the measured and forecasted data, the CSP plant model, and the adopted methodology; results and
respective discussions are given in Section 3; operational strategies for the three different weather scenarios
are given in Section 4; and in Section 5, conclusions and future work perspectives are summarized.

2. Data and Methodology

2.1. Measurements

Measurements of DNI were used from a ground-based station located in Évora city (38.567686◦N,
7.911722◦W), from the Institute of Earth Sciences (ICT—Instituto de Ciências da Terra) in Southern
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Portugal, a semi-arid region [16] with a high frequency of clear sky day occurrences and annual energy
maximums around 2100 kWh/m2 [17].

Pyrheliometers (model CHP1) from Kipp and Zonen instruments were used, being calibrated
every 2 years. With an estimated daily uncertainty of <1%, these instruments follow the international
organization for standardization, the 9059:1990 standard [18], as first-class instruments. To compare
with NWP values, hourly mean values were obtained by averaging the sixty 1-min records. The Évora
station (denominated EVO station) had a strict and regular code for the maintenance of the instruments,
being subjected to quality control tests, prior to the analysis. The DNI at the EVO station showed
only 0.003% of missing data for the considered year of continuous measurements. This showed how
well-maintained the EVO station is, and why it was used in this work as a reference station. This station
allowed us to provide high-quality data, showing only very small gaps that could have resulted from
sudden power shut downs. To fill gaps, adopted filters for the location of study were used, including
standard data quality filters, the Baseline Surface Radiation Network (BSRN) for Global Network
quality check tests V2.0 [19] and gap-filling procedures. The latter, consisted in the use of hourly values
from the nearest ground-based measuring station located at Mitra, MIT (38.530522◦N, 8.011221◦W),
installed approximately 9.6 km from EVO, to fill gaps that have more than two hours of missing records.
For the gaps with less than two hours of missing records, a linear interpolation between the previous
and the next hours was then used to fill the missing periods.

Similarly, as performed in [11], continuous measurements of local atmospheric variables, such as air
temperature, relative humidity, wind speed, and atmospheric pressure at ground level, were also acquired
by nearby standard meteorological measuring equipment. Since atmospheric pressure was not measured
at the EVO station and the local wind was disturbed by existing neighboring buildings, not being
representative of the measuring location, hourly data from a nearby station (≈4 km apart)—maintained
by the Portuguese Meteorology Service (IPMA—Instituto Português do Mar e da Atmosfera)—was used
for the considered period of study.

2.2. Forecasts

The IFS is the atmospheric model and data assimilation system from the ECMWF (which is
currently operational) that was used to perform global medium-range weather forecasts. The model
is able to provide deterministic predictions of a large set of meteorology-related variables, including
DNI. The radiative variables, in both short and longwave spectral bands, were computed using the
Rapid Radiative Transfer Model [20]. Operational high-resolution (HRES) deterministic forecasts
were set to have an issue time to start at 00:00 or 12:00 UTC (the latter option is used in this work).
The current IFS cycle uses a triangular-cubic-octahedral global grid, with a horizontal resolution of
0.125◦ × 0.125◦ (≈9 km), 137 terrain-following vertical levels from the surface up to 1 Pa (≈80 km
height), and a 7.5-min time step. The radiation scheme is updated every hour, on a grid with 10.24
times fewer columns than the rest of the model [21]. Contrary to the previous versions of the IFS,
in which the DNI was not a direct output of the model, the current version was able to directly calculate
hourly accumulated direct irradiation values (J/m2), which were then converted to mean power values
(W/m2), in order to enable a straight comparison with measurements. The output of the IFS used
here as representative of DNI is the dsrp parameter, i.e., the direct solar radiation, incident on a plane
perpendicular to the Sun’s beams.

To perform accurate forecasts of DNI, NWP models have to take into account several parameters
that can affect such forecasts, for instance the local weather (e.g., air temperature, relative humidity,
wind speed and direction, and surface pressure). Along with weather conditions, the forecast horizon
can also affect the prediction of DNI, since it has an associated uncertainty that tends to be smaller
with the use of shorter time horizons. However, these are closely linked to a high computational
cost [22]. Forecast horizons can range from: (i) the intra-hour scale, where persistence models [23]
and all-sky imagers [24] are used; to (ii) the intra-day scale, where artificial neural networks [25], and
satellite-based and NWP models [26] are used; and (iii) up to several days (i.e., day or week-ahead
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forecasts) in which NWP models are able to perform [27]. Apart from the weather conditions and
forecast horizons, initial conditions implemented in NWP models also play an important role [28].
These include the atmosphere, oceans, and ground surfaces physics, which are composed by a series of
complex dynamical processes that comprise the spatial distribution of a large number of atmospheric
parameters. Moreover, aside from these aspects that can hinder the prediction of DNI, particular
attention has been given towards cloud microphysics and aerosol representation. The former is closely
related to the complex parameterization of cloud cover and type [9], mainly during overcast periods,
while the latter is usually based on monthly mean aerosol climatologies, which increases the errors of
predicted DNI, especially during clear sky conditions. In particular, it is during very clean atmosphere
periods that the implemented aerosol climatology affects the prediction of DNI more. This has been
previously observed with day-ahead forecasts of DNI from the IFS [11,29], where the radiative effects
of clouds and aerosols were, respectively, under- or over-estimated by the model, compared to local
measurements. For instance, at the EVO station it was found that the predicted mean annual DNI
had an overestimation of ≈7%, compared to local measurements [29], being essentially related to
an underestimation of the cloud cover.

To improve DNI forecasts, the radiative schemes of NWP models have been constantly upgraded
to new versions. One example is the current ecRad scheme that was recently implemented in the
IFS [10], becoming operational in July 2017 (cycle 43R3). A detailed description of the ecRad and its
use in the IFS can be found in [21]. Presently, the ecRad is composed of the following IFS atmospheric
variables—pressure, temperature, cloud fraction, and the mixing ratios of water vapor, liquid water,
ice, and snow. The cloud effective radius was computed diagnostically, using the parameterization
stated in [30], for liquid clouds, and that stated in [31], for ice clouds. The optical properties for ice
were computed using the scheme stated in [32] and that for liquid water were expressed in terms of
a Padé approximation [33]. The mixing ratios for ozone, carbon dioxide, and an arbitrary number
of aerosol species were computed from a climatology obtained from the Copernicus Atmospheric
Monitoring Service (CAMS), being more realistic than the previous versions, in which the Tegen aerosol
climatology [34] was implemented. The optical properties of aerosols were added to those of gases,
with the assumption that aerosols were horizontally well-mixed, within each model grid box. Aerosol
optical properties were computed off-line, using an assumed size distribution and the Mie theory,
for 14 shortwave and 16 longwave bands. Moreover, in addition to an improved code that allowed us
to reduce computational costs, ecRad was able to reduce numerical noise in cloudy periods, which
enabled better DNI predictions than the previous radiative scheme [21]. A recent analysis [11] has
shown that improvements of day-ahead forecasts of DNI from the ecRad were attained, in comparison
to the previous version (McRad, cycle 41R2). Hourly and daily correlations of 0.87 and 0.91 between
predicted and measured data in EVO were found for the same dataset used in the present work.
Although the IFS still overestimated measurements, a relative difference of ≈1.2% was found regarding
the annual mean values of DNI in EVO, which was much lower than the previous value obtained with
the McRad (≈10.6%).

In this work, day-ahead forecasts produced by the ecRad were used to estimate the energy output
from a CR power plant simulated through the SAM. Results were assessed by comparison with those
obtained using the local measurements.

2.3. CSP Plant Model

The SAM software [35], version 2017.9.5, developed by the U.S. Department of Energy and National
Renewable Energy Laboratory (NREL), was used here to assess the usefulness of DNI forecasts from
the IFS, for the energy management of a CR power plant. Regarding the simulation of CSP systems, the
SAM uses the transient system simulation (TRNSYS), comprising three components—(i) an interface
where the setup of each simulation is performed in detail by the user; (ii) a calculation engine that
implements discretization procedures in each simulation, and (iii) a programming interface. The power
plant model calculates hourly performance values corresponding to a wide range of output parameters,
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providing an annual performance and financial metrics summary at the end of each run. DNI and other
atmospheric variables (air temperature, relative humidity, wind speed, and surface pressure) were
the necessary input parameters for the power plant model to generate local hourly performance data.
The resulting hourly outputs represent a full year of annual electricity production of the considered CR
power plant.

To simulate a CR power plant, it is important to know all the design and control parameters that
are characteristic of such a system. A CR system, also known as a solar power tower, uses sun-tracking
mirrors (heliostats) to focus the Sun’s direct beam onto a receiver installed at the top of the tower. Within
the receiver, a HTF was then heated, reaching temperatures up to 565 ◦C, allowing the generation of water
steam, through a heat exchanger. The latter was then used by conventional turbine-generators, to produce
electricity (Rankine cycle). Due to the higher temperatures of use and superior heat transfer and energy
storage capabilities than other CSP systems, such as PT systems, current CR plants used molten salt,
such as HTF. One example of this kind of power system is the 19.9 MWe Gemasolar thermosolar
plant located in the Sevilla province (Spain), which has been operational since April 2011. This type
of CR power plant possesses a 15-h storage capacity and is surrounded by 2650 heliostats (Figure 1),
within an area less than 200 hectares. The Gemasolar was intended to produce 110,000 MWeh/year [15],
however, probably due to technical issues created by the new challenges that were addressed during
the operation of the power plant, an annual generation of 80,000 MWeh/year was reached [36]. In this
work, in order to study the behavior of a CR solar power plant, a simulation with a similar configuration,
such as the Gemasolar, was carried out. The criterion for selecting this power plant resulted from the
fact that Gemasolar is considered to be a typical CR system, with the advantage of having considerable
information available regarding the power plant operation input parameters, thus allowing to establish
a case study for the CR power plants. Under Évora’s conditions, this study used the same weather
dataset as the SAM input parameters from the EVO station that were previously used for the simulation
of a 50 MWe PT system [11], with configurations similar to the Andasol 3 located in Granada (Spain).
Due to privacy reasons, full access to the complete configuration of the Gemasolar was not possible.
Consequently, several design and control input parameters needed for the simulation were not provided
by NREL, creating a limitation to the present analysis. However, in order to obtain the best performance
results that corresponded close to the actual performance outputs of the Gemasolar power plant, some
input parameters were needed for the simulation result from research-based assumptions made by the
authors, regarding the operation of the CR systems. For more detailed information concerning the
configuration input parameters used in the SAM simulation, see Appendix A.

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Gemasolar thermosolar power plant located in the province of Sevilla, Spain (37.560613◦N,
5.331508◦W). All rights reserved (© Google Earth 2019).
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3. Results and Discussion

In this analysis, electrical and thermal output parameters generated by the SAM simulations
using forecasted and measured hourly values of DNI and meteorological variables. The outputs were
selected according to their importance for the power generation and management of a CR power plant
since the plant operator should analyze these parameters on a daily basis. In that sense, the total electric
energy to the grid, EP (MWeh), and the stored thermal energy, TES (MWth), charge and discharge
energies were analyzed for a 365 day-period (from 1st July 2017 to 30th June 2018) with the study
location centered at the EVO station.

In Table 1, a statistical summary for the EP and the respective TES charge and discharge energies,
based on forecasts and measurements of DNI and meteorological variables, is shown. As expected, due to
the IFS underestimation of cloud cover [29], the obtained results using the simulated hourly values showed
a general overestimation of the IFS forecasts towards measurements. A total of ≈115,992 MWeh/year and
≈121,668 MWeh/year was obtained, respectively, for the EP based in DNI measurements and forecasts,
with a correlation coefficient (r) of ≈0.78, between both outputs. The representation of clouds performed
by the IFS, significantly influenced the forecasted DNI values at the Earth’s surface and, consequently,
the respective EP output from the CR power plant. Taking into account the parasitic power consumption
during non-production hours and a constant derating (i.e., a decrease of the power plant output due to
unusual environmental conditions, for instance, higher ambient temperature than design set point, or excess
power within the electrical grid) value of 4%, for the simulated plant, the SAM results showed an annual
energy generation of ≈111,353 MWeh/year and ≈116,801 MWeh/year, regarding measurements and
predictions, respectively, i.e., a relative difference of ≈4.9%. Despite the fact that the objective of the present
work was not a direct comparison with the Gemasolar’s actual production values, the obtained annual
values through the SAM simulations could differ from the values that would be obtained if an actual
Gemasolar was operating in Évora, due to several reasons: (i) DNI and meteorological data from Évora was
being used for a different period, comprising different inter-annual variations; (ii) lack of data regarding
design and control parameters for the simulation of Gemasolar; (iii) start-up time (0.5 h) and stop operations
of the simulated plant together with the internal temporal discretization, considered by the SAM; and (iv)
daily operational strategies adopted for the plant power management.

Table 1. Statistical and descriptive analyses for the hourly values of electric energies into the grid,
EP (MWeh), and stored thermal energy, TES (MWth), charge and discharge energies based on measurements
(obs) and forecasts (ecmwf). The sum of the hourly values (Total) of EP and TES corresponded to one year
of data (from 1st July 2017 to 30th June 2018), produced by a central receiver power plant with configuration
similar to the Gemasolar thermal power plant (Sevilla province, Spain), simulated through the System
Advisor Model (SAM). Hourly statistical error metrics for the correlation coefficient (r), root mean square
error (RMSE), and mean absolute error (MAE) are presented.

Energy Total obs (MWe,th) Total ecmwf (MWe,th) r RMSE (MWe,th) MAE (MWe,th)

EP 115,992 121,668 0.78 6.30 2.31
TES charge 151,104 153,187 0.88 16.46 5.97

TES discharge 148,399 150,465 0.83 12.32 4.09

The charge and discharge powers also showed an overestimation when using the forecasted inputs, in
comparison with those obtained when using measurements, although with higher correlations. Simulation
results showed annual charge and discharge energies of ≈151,104 MWth/year and ≈148,399 MWth/year,
based on measurements, while ≈153,187 MWth/year and ≈150,465 MWth/year were obtained for the
forecast-based outputs. Although the discharge energy had a lower r than the charge-hourly values
(≈0.83), it was shown to possess less deviations between the measured and forecasted outputs.

A closer look at the hourly outputs generated by the SAM, based on the forecasted and measured
DNI values, was presented in the scatter plots of Figure 2a, and Figure 3a,b, respectively, for the EP

and TES charge and discharge energies. In these plots, the red dashed line represents the identity line
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(y = x), in which the dots that are closer to the line depict higher correlations than the ones that deviate
from it. Two green dashed–dotted lines (Figure 2a) bound an interval in which the predicted and
measured EP values had an absolute error (AE) less than the obtained mean absolute error (MAE) of
≈2.31 MWeh. The total number of hourly values of EP, within the established high and low thresholds
corresponded to ≈85.94%.
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to the non-production hours in which electricity for parasitic power consumption needed to be 

Figure 2. Estimated hourly (a, b) and daily (c, d) values of electric energies into the grid, EP (MWeh), and
respective probability density functions (PDF), computed from forecasted (ecmwf) and measured (obs)
data at Évora. Hourly values of direct normal irradiance (DNI) were used in the SAM to simulate the
EP from a central receiver (CR) power plant with configuration similar to the Gemasolar plant (Sevilla,
Spain). In the scatter plots, identity lines (red dashed lines), corresponding correlation coefficients, r,
and an interval defined by the calculated MAE (≈2.31 MWeh), given by two green dashed–dotted lines,
are shown. The period of study corresponds to one year, from 1 July, 2017 to 30 June, 2018.
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Figure 3. Estimated hourly values of stored thermal energy into the grid, TES (MWth)—(a) charge
and (b) discharge energies, computed from forecasted (ecmwf) and measured (obs) data at Évora,
while corresponding daily values are presented in (c) and (d). Hourly values of DNI were used in
the SAM to simulate the TES from a CR power plant, with a configuration similar to the Gemasolar
plant (Sevilla, Spain). Identity lines (red dashed lines), the corresponding correlation coefficients, r, and
relative differences, ∆E, are shown. The period of study corresponded to one year, from 1 July, 2017 to
30 June, 2018.

A few features that were characteristic of CSP systems were observed. Most of the values were
centered on the high values of EP, between 18 and 21 MWeh, which took place during periods of clear
sky conditions. Outside these limits were the EP values (including negative ones) that corresponded to
the non-production hours in which electricity for parasitic power consumption needed to be purchased
from the grid. During these periods, deviations between the forecasted and measured EP values
occurred, in particular for—EP (obs) > 0 and EP (ecmwf) = 0; EP (obs) = 0 and EP (ecmwf) > 0. During
cloudy days with short periods of unobstructed solar beam radiation, predicted and measured EP

values also had deviations. If only non-negative hourly values of EP were considered, the correlation
between the forecasted and measured values would drop significantly to 0.37, showing the importance
that non-production hours have in the correlations, since these periods correspond to shut-down
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and start-up operations carried out by the power plant. This meant that the predictions have a good
correspondence with the measurements, during such periods. The respective probability density
function (PDF) in Figure 2b clearly depicted the two observed features, as highlighted by the two
peaks—the higher frequency of occurrence around the non-production hours (zero values), particularly
by the EP based in measurements; and the high frequency of occurrence for the higher values of EP.
Moreover, the hourly TES charge and discharge energies (Figure 3a,b) showed a slight improvement
in correlation, for the charge periods (≈0.88), in comparison to the discharge ones (≈0.83), as these
correlations were closely linked to the non-production (close to zero) and the high production periods
(≈100 MWth). Relative differences of ≈1.38% and ≈1.39% were found for the charge and discharge
outputs, respectively. The hourly TES charge values depicted a tendency line (below the identity line),
demonstrating that, less storage was gained with the forecasted based output, in comparison to the
measured one. This was a consequence of the IFS underestimation towards measurements during
days with very clean atmospheric conditions, in which the aerosol concentration was less than that in
the prescribed climatology.

Daily values (i.e., calculated through the 24-h sum of each day) yielded higher correlations,
as shown by the results in Table 2, despite overestimations from the forecasts, as depicted by the
negative mean bias error (MBE) values. An r ≈0.89 was obtained for the daily EP values (Figure 2c),
with ≈70.14% of the total number of daily values having an AE below an MAE of ≈46.88 MWeh.
The respective daily PDF (Figure 2d) showed the same pattern as that for the hourly results, but with
less frequency of occurrence, with two peaks, one for the non-production hours and another for the
high values of EP. Correlations of ≈0.89 and ≈0.88 were found between the daily TES charge and
discharge energies, based on the measurements and forecasts (Figure 3c,d), respectively.

Table 2. Statistical analysis of the daily values (i.e., the sum of each 24-h values) of the estimated electric
energy to the grid, EP (MWeh), and stored thermal energy, TES (MWth) charge and discharge energies
computed from measurements (obs) and forecasts (ecmwf). Hourly values of EP and TES correspond to
one year of data (from 1 July, 2017 to 30 June, 2018) produced by a CR power plant with a configuration
similar to the Gemasolar plant (Sevilla, Spain) simulated through the SAM. Daily statistical error
metrics such as the correlation coefficient (r), root mean square error (RMSE), mean absolute error
(MAE), and mean bias error (MBE) are presented.

Energy r RMSE (MWe,th) MAE (MWe,th) MBE (MWe,th)

EP 0.89 79.43 46.88 −15.55
TES charge 0.89 119.96 74.25 −5.70

TES discharge 0.88 111.66 71.37 −5.66

Since the same dataset (DNI and meteorological variables) from EVO station were used in both,
the CR and the PT simulations, the performance of the 24-h predictions from the IFS in the operation of
different CSP systems has been depicted in Table 3. The coefficient of variation regarding the RMSE
and MAE, i.e., the normalized RMSE and MAE (nRMSE and nMAE, respectively), were obtained
for the electric energy to grid outputs, from both Gemasolar and Andasol 3 simulations (EP and EG,
respectively). The calculation of both nRMSE and nMAE are given in Equations (A1) and (A2) in
Appendix A. The obtained hourly values of EP and EG show that forecasted data in the simulation of
the Gemasolar power plant generates higher deviations than the ones obtained from the Andasol 3,
with an increase of ≈7.3% for the nRMSE and ≈2.8% for the nMAE. Deviations were lower from
the hourly to daily values, showing an increase of ≈2.9% for the nRMSE and ≈0.7% for the nMAE.
These results indicated that the PT power plant considered (based on Andasol 3) was less sensitive to
the DNI prediction than the CR one (based on Gemasolar). However, it must be taken into account
that the considered PT system had less storage than the CR system, resulting in a larger number of
non-production hours (i.e., zero values) for both forecasted and measured simulations, contributing to
an apparent reduction of differences between them.
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Table 3. Hourly and daily values of normalized root mean square error (nRMSE) and mean absolute
error (nMAE) for the estimated total electric energy to the grid outputs, obtained from the 19.9 MWe

Gemasolar and the 50 MWe Andasol 3 SAM simulations (EP and EG, respectively). The EP and EG

simulated values are based on the same hourly dataset (DNI and meteorological data) of forecasted
and measured input parameters acquired for Évora, for the same period of study (from 1 July 2017 to
30 June 2018).

Power Plant nRMSE (%) nMAE (%)

Hourly Daily Hourly Daily

Gemasolar 28.48 15.88 10.43 9.37
Andasol 3 21.18 13.02 7.65 8.68

4. Operational Strategies for Typical Days

In order to maximize the energy efficiency of CSP plants, it is essential to adopt appropriated
operational strategies, in accordance to the different weather scenarios (i.e., clear sky, partly cloudy, and
overcast days), which could differently affect the CR power plant performance. For instance, for the
CR systems, the advantage of knowing the energy availability for the day-ahead, allowed the operator
to estimate the electricity generation in advance and sell it at the premium tariff [37], as an alternative
to the fixed tariff option, thus, allowing the operator to have a direct role on the electricity market
instead of being subjected to flat-rate prices.

As demonstrated in the previous study regarding solar assessment influence on a linear focus
PT power plant operational strategies and production [11], the forecast model was able to generate
satisfactory results for the days with clear sky conditions. However, results showed that such forecasts
were hindered due to aerosol representation, particularly under very clean atmosphere conditions,
in which the forecasts underestimated the DNI, or during overcast conditions, in which the IFS
overestimated the DNI. The latter behavior can also be a result of extreme dust events, as shown
by [38] and [39]. For cloudy days, the IFS was also reliable in predicting clouds, although temporal and
spatial phase errors exist in the current cloud forecasting. For the case of the conventional 50 MWe PT
power plant, results have led to three different operational strategies related to specific meteorological
scenarios: a clear sky, a partly-cloudy, and an overcast period. An example of the implemented global
strategy is to avoid power block start-up and shutdown, allowing to maintain the plant at a nominal
power and a maximum efficiency. Another aspect is the possible full state of charge of the storage tank,
during the day. In this scenario, the operator is advised to perform a partial charge in the early morning
to handle a possible cloud passing over, except for predicted clear sky days, in which production is to
be started as soon as possible. For the present case study, the high storage capacity of the CR power
plant allows the easing of the operator decision algorithm.

4.1. Clear Sky Days

Full charge for a 15-h storage system can only be encountered during days that have very high
solar irradiation levels. For such days, the best strategy is to maximize electricity production by starting
the power block at the earliest moment. An example of this scenario is shown in Figure 4, where
a constant power production is observed, due to the huge storage capacity and higher availability.
Here, defocusing of the solar field is also shown, leading to a lower receiver output power after 14 h
(production with predicted DNI) or 15 h (production with measured DNI).
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4.2. Cloudy Days

On cloudy days, different types of strategies can be applied—full shifting of the solar production
to the evening, constant power generation during the entire day, among others. Since a solar power
generation is easily higher than what the power block requires, this leads to a high amount of energy
surplus in the system, even during the early morning periods. Under such conditions, in order to
increase the safety of the power block continuous production, a small partial charge can be performed
in the early morning. This partial charge does not lead to potential defocusing because the available
energy is not sufficient to reach a 100% state of charge, during the day. Figure 5 shows an example of
such an operation scenario, for a day, with low irradiation levels, because of passing clouds. Since the
power block production can be started with a DNI higher than 300 W/m2, a high amount of energy is
charged during the morning hours. For the case of observed DNI, it drops to 300 W/m2 after 12 h,
due to the presence of clouds, leading to a stop of the charging process. After 16 h, DNI drops below
300 W/m2 because of a second cloud and discharge is performed to maintain electricity production to
a constant value.

In this example, the forecast model predicted only one long period of cloud obstruction, during the
afternoon, with both forecasted and measured systems responding well, in terms of power production.
It should be noted that this type of scenario tends to degrade the correlation between the forecasted and
measured EP, particularly under the hourly time scale, although for larger time scales, the differences
between both outputs estimates are not so significant.

Other particular strategies can be given for the receiver protection of a CR system regarding
thermal stress. For instance, avoiding periodic or sudden strong increases and decreases of the receiver
temperature, due to a passing cloud. In such cases, the forecast model is by itself sufficient to warn the
power plant operator that variations will take place but with a lower accuracy in the time of occurrence.
Nonetheless, the available predicted information is already useful to apply thermal protection strategies
on the receiver, or to strategize the energy management of the power plant for one day.
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4.3. Overcast Days

For operational purposes, the analysis of a specific day without any, or near null, DNI income
is also relevant, simply because when there is no DNI to be collected, then there is no production,
consequently the power plant should be running at the lowest power generation possible (or in
stand-by mode to keep the equipment warm and the salt in liquid state), depending on the available
storage. In that sense, it is important to anticipate such long periods of no production, and the impact
that these have on the energy management, and to accordingly implement the necessary strategies.
During such periods, and in the case of no available storage, the power plant has negative production
values, since the system needs to consume energy, in order to maintain the continuous function of
basic equipment. For that reason, in this last section, the success that the IFS has in predicting periods
of negative production, using the simulated values, is analyzed. In such a scenario, a dichotomous
analysis is performed with the use of a contingency table (Table 4) created to evaluate the forecasts
of EP values. Moreover, as described in [40], an equitable threat score (ETS) skill score is calculated
through Equations (A3) and (A4) (Appendix A) to measure the fraction of the forecasted and observed
EP events that were accurately predicted. The ETS is usually used in the NWP models to evaluate other
meteorological variables, such as rainfall [41], since it allows us to equitably compare the obtained
scores across different regimes.

Table 4. Dichotomous analysis for the total number of forecasted (ecmwf) and measured (obs)
occurrences and non-occurrences of daily negative electrical production values (EP) for the Gemasolar
power plant simulation through the SAM. The obtained EP simulated values were based on hourly
DNI and meteorological data (forecasted and measured) input parameters acquired for Évora for
the same period of study (from 1 July, 2017 to 30 June, 2018). Four different events of negative EP

values occurrences and non-occurrences have been depicted—‘Hits’ (EP (ecmwf) < 0 and EP (obs) < 0),
‘False alarms’ (EP (ecmwf) < 0 and EP (obs) > 0), ‘Misses’ (EP (ecmwf) > 0 and EP (obs) < 0) and the
‘correct rejections’ (EP (ecmwf) > 0 and EP (obs) > 0).

Electrical Production EP (obs) < 0 EP (obs) > 0

EP (ecmwf) < 0 16 6
EP (ecmwf) > 0 19 324
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Considering together, the daily values of the forecasted or measured production values, it was
found that there were 41 days (in a total of 365 days) with partial or complete cloudy (overcast)
conditions, i.e., depicting negative production values (consumption). Results showed that the forecast
model predicts a total of 16 days of negative production, which coincided with the measurements,
following the condition EP (ecmwf) < 0 and EP (obs) < 0, which denominated the ‘Hits’. For cloudy
days with short periods of no production, where the model predicted overcast, but that was not
observed, i.e., when EP (ecmwf) < 0 and EP (obs) > 0 (which denominated ‘False alarms’), a number of
6 days were found. The opposite occurred when the IFS did not predict overcast which was observed,
i.e., when EP (ecmwf) > 0 and EP (obs) < 0 (which denominated ‘Misses’), with a number of 19
days being found in such conditions. The latter was a clear result of the IFS general overestimation,
due to cloud representation, as previously discussed in detail [29]. Moreover, the number of days in
which the IFS and measurements did not show the occurrence of negative production values was 324,
denominated here as the ‘correct rejections’. Thus, the obtained ETS (Equation (A3)) for the occurrence
of negative production forecasted by the IFS was ≈36%. Considering such a rate, the power plant
operator was advised to not proceed with the electrical energy generation, when the forecast model
predicted negative production (EP (ecmwf) <0). In the case of a wrong prediction, if solar energy was
available for collection during the day, then production was to be started but without spending any
storage. If a success rate of ≈90% was to be found, then the operator would simply be advised not to
produce during that day.

5. Conclusions

In this work, it was confirmed that the use of DNI forecasts and the implementation of control
strategies could contribute to a more efficient energy management of a CSP plant, improving the local
energy distribution from a solar tower system. Hourly and daily correlations of ≈0.78 and ≈0.89,
respectively, were found for the SAM predictions of the total electric energy injected into the grid,
based on forecasted and measured DNI and meteorological conditions, an important variable for
the power plant operator to handle on a daily basis. In the case of the power plant stored thermal
energy, charge correlations of ≈0.88 and ≈0.89 were found for the hourly and daily values, respectively,
while ≈0.83 and ≈0.88 were found for the hourly and daily discharge values, respectively. Regarding
the performance of the forecast model in the simulations of the two different types of CSP plants
enforced with the same datasets, results showed higher deviations in the case of a CR system than
in the previous simulated PT. Increases of ≈7.3% and ≈2.8% were found, respectively, for the hourly
and daily normalized RMSE values of the generated electric energy. To improve the energy efficiency
of CR plants, operational strategies have been proposed for the three different scenarios. Although
there were still deviations due to the cloud and aerosol representation, the present analysis has shown
that the IFS predictions are a valuable tool to be used in the daily energy dispatch operations of
a CR power plant, potentially the main type of CSP systems to be used in the future, due to its
advantages. With the continuous improvements that the NWP models have demonstrated in recent
years, for the prediction of DNI, future versions of the IFS should also demonstrate an enhancement
of the predicted production values from a power plant and, consequently, the energy management
during solar intermittency periods.
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Appendix A

To calculate the normalized error metrics (i.e., the nRMSE and nMAE) of EP (%), the following
equations were used:

nRMSE = RMSE/(EPmax − EPmin), (A1)

nMAE = MAE/(EPmax − EPmin), (A2)

where the RMSE and MAE between measured and forecasted EP was divided by the difference between
the maximum and minimum values of the measured EP.

To evaluate the performance of the forecast model in predicting negative production values,
the equitable threat score (ETS) could be calculate through:

ETS = (Hits − Hitsrandom)/(Hits + Misses + False alarms − Hitsrandom), (A3)

with
Hitsrandom = [(Hits + False alarms) × (Hits + Misses)]/Total, (A4)

where ‘Hits’ represents the number of occurrences (i.e., number of days) with forecasted and observed
negative EP values, ‘Misses’ represents the number of days in which the forecast model did not
predict the EP values when these were actually observed, ‘False alarms’ corresponds to the predicted
occurrences of EP values that were not observed. ‘Total’ is the total number of occurrences, which
also took into account the number of days of ‘correct rejections’ (i.e., when the forecast model did not
predict the EP values that were not actually observed). A perfect forecast (i.e., a perfect score of 1)
would be characterized only by ‘Hits’ and ‘correct rejections’, without ‘Misses’ and ‘False alarms’.

A detailed description regarding the input parameters for the SAM software for the simulation of a CSP
power plant designed to run a CR system has been given in this section. For the Gemasolar thermosolar
plant (Figure A1) case study, the available online information from NREL [36], was complemented with the
default SAM inputs characteristic from this type of tower power plant, together with the research carried
out by the authors, towards a few parameters that were taken into account, as presented in Table A1.

Figure A1 

 

 

 

Figure A1. Schematic of the simulated Gemasolar thermosolar power plant in the SAM. The different
components of a central receiver system are depicted. (© System Advisor Model Version 2017.9.5, SAM
2017.9.5).



Energies 2019, 12, 1368 15 of 18

Table A1. Input parameters for the SAM simulation of the Gemasolar thermosolar power plant during
one year (from 1 July, 2017 to 30 June, 2018).

General

Name Value Reference

Single heliostat net area 115.7 m2 [42]
Ratio of reflective area 0.9642 [42]

Field gross collecting area 315,000 m2 2625 heliostats generated by SAM,
2650 according to [42]

Irradiation at design 700 W/m2 Chosen by authors
HTF Solar Salt [36]

Design loop inlet temperature 290 ◦C [36]
Design loop outlet temperature 565 ◦C [36]

Full load hours of TES 15 h [36]
Storage HTF fluid Solar Salt (direct storage) [36]

Receiver

Name Value Reference

Tower height 140 m [36]
Receiver height 10 m [42]

Receiver diameter 9 m [42]
Number of panels 14 Chosen by authors

Tube outer diameter 4 × 10−2 m SAM standard value
Minimum receiver turndown

fraction 0.25 SAM standard value

Maximum receiver operation
fraction 1.2 SAM standard value

Receiver startup delay time 0.25 h Chosen by authors

Estimated receiver heat loss 30 kW/m2 Calculated by authors (Equation
(A5))

Piping length 360 m Estimated by authors

Piping heat loss coefficient 1000 Wt/m
Calculated by authors (Equation

(A7))

Power block

Name Value Reference

Design gross output 19.9 MWe [36]
Gross to net conversion factor 1 [36]

Rated cycle conversion efficiency 0.445 Calculated from storage and
receiver capacities

Fraction of thermal power needed
for standby 0.2 SAM Standard value

Power block start-up time 0.5 h SAM Standard value
Fraction of thermal power for

start-up 0.5 SAM Standard value

Maximum turbine over design
operation (ratio) 1.05 SAM Standard value

Minimum turbine operation (ratio) 0.2 SAM Standard value
Boiler operating pressure 105 bars [43]

Turbine inlet pressure control Fixed-pressure SAM Standard value

Heat losses from the receiver are due to radiation to the environment and convection. The equation
of heat losses per square meter of a receiver is, therefore, given by the following equation:

Prec = εrec · σ ·
(
T4

rec − T4
ext

)
+ hconv,ext · (Trec − Text) (A5)
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Using a receiver temperature (Trec) of 565 ◦C (or 838.15 K), an external temperature (Text) of
20 ◦C (or 293.15 K), a receiver emittance (єrec) of 0.88 (input for the SAM), and a convection coefficient
(hconv,ext) of 10 W.m−2.K−1, Equation A5 can be solved as:

Prec = 0.88× 5.67× 10−8
·

(
838.154

− 293.154
)
+ 10× (838.15− 293.15), (A6)

where the Stefan–Boltzman constant (σ = 5.67 × 10−8) is used. The obtained result can be approximated
to 30 kW/m2.

To calculate the heat loss from the pipes, the pipe loss coefficient is written as follows:

Ploss,pipe

(
W.m−1

)
=

Tf − Text

ln
( rext,p+eins

rext,p

)
2×π·kins

+ 1
hext×2×π·rext,p

(A7)

Assuming a pipe with an internal diameter of 800 mm and an external diameter of 812.8 mm,
an external convection coefficient of 15 W/m2

·K and 15 cm of insulation (kins = 0.08 W·m−1
·K−1),

Equation (A7) can be solved as:

Ploss,pipe
(
W.m−1

)
=

565− 20
ln( 0.4064+0.15

0.4064 )
2×π×0.08 + 1

15×2×π×0.4064

= 837 W.m−1 (A8)

Since pipe losses should take into account all heat bridges due to sensors, valves, etc., it has been
decided to approximate the value to 1000 W·m−1.
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