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Abstract: The water content in oil is closely related to the deterioration performance of an insulation
system, and accurate prediction of water content in oil is important for the stability and security
level of power systems. A novel method of measuring water content in transformer oil using
multi frequency ultrasonic with a back propagation neural network that was optimized by principal
component analysis and genetic algorithm (PCA-GA-BPNN), is reported in this paper. 160 oil samples
of different water content were investigated using the multi frequency ultrasonic detection technology.
Then the multi frequency ultrasonic data were preprocessed using principal component analysis
(PCA), which was implemented to obtain main principal components containing 95% of original
information. After that, a genetic algorithm (GA) was incorporated to optimize the parameters for a
back propagation neural network (BPNN), including the weight and threshold. Finally, the BPNN
model with the optimized parameters was trained with a random 150 sets of pretreatment data,
and the generalization ability of the model was tested with the remaining 10 sets. The mean squared
error of the test sets was 8.65 × 10−5, with a correlation coefficient of 0.98. Results show that the
developed PCA-GA-BPNN model is robust and enables accurate prediction of a water content in
transformer oil using multi frequency ultrasonic technology.

Keywords: transformer oil; multi frequency ultrasonic; water content; back propagation neural
network; genetic algorithm

1. Introduction

In different insulation systems, transformer oil is an important insulating medium in power
transformers, and the water content in oil is an important factor in determining the insulation life of
transformers [1–3]. Many problems in the insulating system, such as breakdown voltage reduction,
dielectric loss increase and the acceleration of the chemical reaction of organic matter, are caused by a
higher water content in oil [4–7]. Therefore, the detection of water content in transformer oil is of great
significance to ensure the safe and stable operation of the transformer.

The technology and methods of water content detection in transformer oil have been studied by
many scholars domestically and abroad [8–12]. Detection methods of water content in transformer oil,
including off-line and on-line, have been widely reported. The measurement of water content based
on humidity sensors and the reduction of temperature error have been studied by some scholars [8].
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Martin et al. predicted water content by means of establishing a mathematical model of the water
dynamic [9]. But this measurement should be corrected for by any difference in oil temperature
between the water activity probe location and the insulation hot-spot location. The measurement of
water content using direct optical techniques has been proposed in [10]. But the polar molecules in oil
can affect optical measurement accuracy. The authors in [11] proposed to predict the water content
in oil from the curve of water equilibrium. In order for this method to yield accurate data, the water
content and temperature must have reached equilibrium. In conclusion, more or less errors were caused
when water content was tested using the above method, because the inner part of the transformer
in operation is an extremely complex movement process and the transformer oil is a very complex
mixture [13–15]. Since the multi frequency ultrasonic detection technology is a non-destructive testing
technology, and has many advantages, such as increasing cavitation events, reducing the dead angle
caused by standing wave, and improving the sonochemical yield [16–18]. It has been implemented
for various applications, e.g., distance measurement [19], medical examination [20], partial discharge
localization in power transformers [21] and quality inspection [22]. The multi-frequency ultrasonic
detection technology reflects the internal information of the measured object at the molecular level,
and can avoid the interference of external environmental factors such as temperature to a great extent,
thereby realizing high-precision detection.

In this article, an alternative method of measuring the water content in transformer
oil, using multi-frequency ultrasonic detection technology and PCA-GA-BPNN was proposed.
The multi-frequency ultrasound data was obtained by the experiment was reduced into dimensions by
PCA and input into the BPNN, then the Carle Fischer method was used to measure the water content
as BPNN output. The number of neurons in the hidden layer was determined by the test method,
the weight and the threshold of the BPNN was optimized by GA which improved the prediction
accuracy. Finally, a case study of test set was carried out to verify the validity of the proposed
empirical model.

The remainder of this paper is organized as follows. The Multi Frequency Ultrasonic (MFU)
testing system is described in Section 2. Experiments are discussed in Section 3. The PCA, GA and
BPNN algorithms are represented in Section 4. The prediction model of water content in transformer
oil and the prediction results are presented in Section 5. Finally, a conclusion is provided in Section 6.

2. MFU Testing System

As shown in Figure 1, the multi frequency ultrasonic detection system consists of three parts,
namely, an Ultrasonic Measurement Device (Yucoya Energy Safety GmbH, GER), an Ultrasonic
Sensor and Measurement Software (Yucoya Ultrasound Manager, Yucoya Energy Safety GmbH, GER).
The internal state information of transformer oil was reflected by these ultrasonic parameters that were
obtained by continuous scanning at the molecular level.
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The structure of the ultrasonic sensor is shown in Figure 2. At the time of detection, the ultrasonic
sensor was dipped into the transformer oil, except for the mounting bracket and the external connectors,
to fill the measurement chamber with the oil. Meanwhile, the ultrasonic transmitter Tx emits an
ultrasound signal, including 20 frequencies within the range of 600 kHz–1000 kHz and the central
resonance frequency was about 750 kHz. A part of this signal is first reflected at the interface between
the reference medium and the measurement chamber. This reflected signal travels back to ultrasonic
receiver Rx1 where it is measured. This signal is called L1. The other part of the signal emitted
by ultrasonic transmitter Tx is transmitted through the interface of the reference medium and the
measurement chamber. It travels to ultrasonic receiver Rx2, where it is measured. This part of the
signal is called L3. Finally, at ultrasonic receiver Rx2, a part of the signal is reflected again and travels
back to ultrasonic receiver Rx1. This signal is called L2.
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The received signals which are called L1, L2 and L3 can be written as:

x(t) = A sin(ωt + ϕ) (1)

where A is signal amplitude, ϕ is signal phase, ω = 2π f and f is signal frequency.
This signal can be written as:

x(t) = A cos(ϕ) sin(ωt) + A sin(ϕ) cos(ωt) (2)

x(t) = C0 sin(ωt) + C1 cos(ωt) (3)

where:
C0 = A cos(ϕ) (4)

C1 = A sin(ϕ) (5)

The requested amplitude and phase can be determined as follows:

A =
√

C2
0 + C2

1 (6)

ϕ = arctan
[

C1

C0

]
+ 1− sgn(C0)

π

2
(7)

3. Experimental Results

A series of measurements were conducted on 160 transformer mineral oil samples, which were
made up of 10 new oils, 10 drying oils from new oils and 140 service-aged oils. The Carle Fischer
method was used to identify the water content of each sample. The same oil samples were tested using
multi-frequency ultrasonic transformer detection device for the acoustic wave frequency spectrum.
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The six samples oil response spectrum are shown in Figure 3, where the legend is the moisture
content of the sample in mg/L. It can be seen that, as the moisture content fell, the amplitude response
of each frequency fell, and the increase in amplitude response was maintained in L1 phase and L2
phase. In L3 phase, there was a “basin” inside the amplitude response within the scope of the frequency
range 700 kHz to 850 kHz. An oil sample with a moisture content of 1.51 mg/L exhibited the lowest
amplitude response in L1 phase, L2 phase and In L3 phase.
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4. Artificial Neural Network

4.1. Principal Component Analysis

According to [23,24], as a kind of multivariate statistical analysis, PCA is successfully used in
various applications such as picture processing, face recognition and so on. As a model of dimension
reduction, it operates mainly though creating a few new variables, which are uncorrelated, from the
original variables, and these new variables retain the maximum information of original variables as
much as possible.

The dimension reduction matrix was obtained by PCA, as described below.
Step 1: Standardize the original matrix:

x∗ij =

(
xij − xj

)
Sj

(8)

where x∗ij is a variable of standard matrix, xij is a variable of original matrix, i (=1, 2, . . . , N) is the
number of variable, j (=1, 2, . . . , m) is the dimensions of each sample, and xj, Sj are the mean and
variance of the indicator variable xj, respectively.

Step 2: Calculate the correlation matrix, the eigenvectors and the eigenvalues of the
correlation matrix:

R =
X∗T × X∗

(N − 1)
(9)

R× λj = λj × uj (10)

where R is the correlation matrix, X∗ is the standard matrix, and λj, uj are the eigenvalues and the
eigenvectors of the correlation matrix, respectively.

Step 3: Calculate the contributing rate of cumulative variance and the contributing rate of variance:

ηj =
λj

∑m
j λj
× 100% (11)

η∑(p) =
p

∑
j

ηj (12)

where ηj is the contributing rate of variance of the jth principal component, and η∑(p) is the
accumulative variance contribution of the first p principal components.

Step 4: Calculate the projection of original matrix:

ZN×p = X∗N×mUm×p (13)

where ZN×p is the dimension reduction matrix, and Um×p =
[
u1, u2, . . . , up

]
.

In this study, the original data matrix is the multi frequency ultrasonic detection data which is a
242-dimensional space including the amplitude and phase of 20 frequencies, time of flight (TOF) and
velocity, which could be reduced by PCA. The information retention ratio of the original data matrix
after the dimension reduction is shown in Figure 4. It was observed as conspicuous from Figure 4 that
the first principal component encompassed only about 35% of the total variation, and the information
retention rate increased with the increase in the dimensions, and the information retention rate of the
first seven principal components reached 90%. The number of neurons in the input layer of BPNN
model were determined by the number of principal components that had a high information retention
rate. In order to ensure performance of BPNN model, the first eight principal components, which the
information retention rate hit 95%, were used as the inputs of the model.
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4.2. BP Neural Network

An artificial neural network model has been developed to investigate the correlation between
the water content in oil samples and their multi frequency ultrasonic spectrum data. According to the
authors in [25], when there are enough neurons in the hidden layer, a three-layer BPNN can realize
the mapping of an arbitrary I-dimension (input layer) to any k-dimension (output layer). Therefore,
in this paper, a three-layer BPNN was chosen, and the input variables of the BPNN with PCA were the
first eight principal components from the analysis of Section 4.1, and the output layer consisted of 1
neuron, corresponding to the water content.

The flow chart of model training and learning is shown in Figure 5.
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4.3. Genetic Algorithm

It is difficult for traditional BPNNs to find out the global optimum solution of the prediction
application [26,27]. A genetic algorithm (GA) is a method to obtain global optimum solution of
the proposed problems based on a natural selection process which mimics the biological evolution
process [28–31]. In this article, GA was used to optimize the weight and the threshold of the BPNN.
The BPNN flow chart of the GA-BPNN is shown in Figure 6.
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4.4. PCA-GA-BPNN Prediction Model

The working process of the prediction model was divided into three stages.
The first stage: create a database module. The database module not only matched the

multi-frequency ultrasonic parameters of oil with water content in oil, but also divided it into the
training sample collection and test sample set in certain proportions.

The second stage: create the prediction model. The prediction model first read out training
samples from the database module, and combined them with the PCA to get the input matrix,
which was composed of the first eight principal components. Then, by means of the initial GA-BPNN
parameters, the initial forecast model, and the initial forecast results were produced. The fitness
function of the model was described as:

F(x) =
n

∑
i=1
|yi − ŷi| (14)

where yi is predicted value, ŷi is observed value, i and is sample size.
Using the fitness function of the genetic algorithm to calculate the fitness value each individual

in each generation, if it meets fitness convergence conditions, the initial forecast model is the final
prediction module, or it will perform the operation of selection, crossover and mutation, and pass
the new parameters to the GA-BPNN, then the second generation prediction model combines with
the database module to get the second generation forecast results and so on, until it finally meets the
prediction model of the fitness convergence conditions. The roulette method was used as the selection
of GA, the probability of selection, Px, for each individual, x, was described as:

Px =
fx

∑N
j=1 f j

(15)

fx =
k
Fx

(16)
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where Fx is the fitness values of individual x, N is the individual number and k is the coefficient.
The crossover operation method of the kth chromosome ak and the lth chromosome al in the j

position was described as: {
akj = akj(1− b) + al jb
al j = al j(1− b) + akjb

(17)

where b is a random number in the range of 0 to 1.
The mutation operation was determined by Formulas (18) and (19):

aij =

{
aij +

(
aij − amax

)
× f (g) r > 0.5

aij +
(
amin − aij

)
× f (g) r ≤ 0.5

(18)

f (g) = r2

(
1− g

Gmax

)2
(19)

where amax is the upper bound of aij, amin is the lower bound of aij, r2 is a random number, g is the
current iterations, Gmax is the maximum number of evolution generations, and r is a random number
in the range of 0-1.

The third stage: the water content in oil is forecast. According to the final prediction model, it will
accurately predict the water content in oil.

5. Results and Discussion

In the simulation and compiled environment of Matlab (2014a), the prediction model of water
content in transformer oil was established. The model was trained with the training data which
included 150 random sets, and the prediction accuracy of the model was tested with the remaining
10 sets. Since the number of optimal hidden layer neurons gives uncertainty in the initial modeling,
the range of the number of hidden layer neurons was determined by empirical formula [32–34]:

n <
√

m + l + a (20)

n < log2 l (21)

where l is the number of input layer neurons, n is the number of hidden layer neurons, and m is the
number of output layer neurons. a is in the range of 1-10. Therefore, in this paper, the number of hidden
layer neurons was between 1 and 16. The back-check diagnosis was performed using the network of
1-16 hidden neurons, and the mean square error (MSE) of recheck was calculated. The variation of
MSE with the number of neurons in the hidden layer as shown in Figure 7.
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content in transformer oil was established. The model was trained with the training data which 
included 150 random sets, and the prediction accuracy of the model was tested with the remaining 
10 sets. Since the number of optimal hidden layer neurons gives uncertainty in the initial modeling, 
the range of the number of hidden layer neurons was determined by empirical formula [32–34]: < √ + +  (10) < log   (11) 

where l is the number of input layer neurons, n is the number of hidden layer neurons, and m is the 
number of output layer neurons. a is in the range of 1‒10. Therefore, in this paper, the number of 
hidden layer neurons was between 1 and 16. The back-check diagnosis was performed using the 
network of 1‒16 hidden neurons, and the mean square error (MSE) of recheck was calculated. The 
variation of MSE with the number of neurons in the hidden layer as shown in Figure 7. 
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As shown in Figure 6, when the number of hidden layer neurons is 5, the MSE of the model was
at the minimum. Therefore, according to Section 4.2, the topological structure of the BPNN model
was determined as “8-5-1” by many experiments. In order to improve the convergence speed and
prediction accuracy of the BPNN, the weight and the threshold of the BPNN was optimized by GA.

The quality of the solution evaluated by the genetic algorithm depends on the fitness value of the
solution. In this model, the sum of the absolute value of the error between the predicted output and
the expected output was the individual fitness value, so for the individual fitness, a lower value is
better. Figure 8 shows the model of optimal fitness is declining in the process of evolution, finally the
optimal individual fitness value was 9.6.
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The optimal weights and the optimal thresholds obtained from the optimization of GA were
assigned to the BPNN. Then, the model was trained with the training set. The regression curve of
the model is shown in Figure 9. Figure 9 shows that the correlation coefficient of the PCA-GA-BPNN
model was about 0.98, indicating that the model has a good regression fit.
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The MSE of the training process of the PCA-GA-BPNN is shown in Figure 10. The MSE of this
model gradually decreased with the increase of training times. The minimum MSE (8.65 × 10−5) was
obtained by the PCA-GA-BPNN at the 18th iteration.
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In this paper, in order to demonstrate the superiority of the prediction model of water content in
transformer oil based on the PCA-GA-BPNN, the experiment compared the prediction accuracy with
the BPNN and GA-BPNN. The three models were used to identify the test set, the prediction results
are shown in Table 1 and Figure 11.

Table 1. Prediction results of water content.

Sample
Number Test Value

BPNN GA-BPNN PCA-GA-BPNN

Predicted
Value Error Predicted

Value Error Predicted
Value Error

1 14.3 16.1 12.59% 13.1 8.39% 13.56 5.17%
2 11.32 13.22 16.78% 12.26 8.30% 10.52 7.07%
3 16.48 18.49 12.20% 14.95 9.28% 15.63 5.16%
4 6.44 5.11 20.65% 5.98 7.14% 5.98 7.14%
5 11 9.93 9.73% 12.14 10.36% 10.25 6.82%
6 2.29 3.11 35.81% 2.67 16.59% 2.55 11.35%
7 4.22 3.56 15.64% 3.79 10.19% 3.99 5.45%
8 7.49 9.01 20.29% 6.44 14.02% 6.77 9.61%
9 22.16 18.98 14.35% 20.01 9.70% 21 5.23%
10 18.43 20.69 12.26% 20.11 9.12% 17.02 7.65%
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In order to quantitatively analyze the predictive effect of the three models, the mean absolute
percent error (MAPE) was used to compare the prediction errors of the BPNN model, the GA-BPNN
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model and the PCA-GA-BPNN model. According to Table 1, it was concluded that the MAPE of the
BPNN was 17.03%, the MAPE of the GA-BPNN was 10.31%, and the MAPE of the PCA-GA-BPNN
was 7.07%.

6. Conclusions

A prediction model of water content in transformer oil using multi frequency ultrasonic with
a PCA-GA-BPNN was established. The topological structure of the model was 8-5-1, and the
generalization ability of the model was tested with test sets. The experimental results show that
the accuracy rate of this model is higher than 90%.

Different structured networks have a different prediction performance. Compared with the BPNN
and GA-BPNN models, the PCA-GA-BPNN model can more accurately predict water content in
transformer oil according to multi frequency ultrasonic data.

The predictive model of water content in transformer oil using multi frequency ultrasonic with
PCA-GA-BPNN, which was proposed in this paper, provides a new online detection method for
transformer oil for the power industry. In addition, the application of multi frequency ultrasonic
testing technology to detect other parameters of transformer oil is the key point of future research.
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