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Abstract: A deep neural network-based approach of energy demand modeling of electric vehicles
(EV) is proposed in this paper. The model-based prediction of energy demand is based on driving
cycle time series used as a model input, which is properly preprocessed and transformed into 1D
or 2D static maps to serve as a static input to the neural network. Several deep feedforward neural
network architectures are considered for this application along with different model input formats.
Two energy demand models are derived, where the first one predicts the battery state-of-charge
and fuel consumption at destination for an extended range electric vehicle, and the second one
predicts the vehicle all-electric range. The models are validated based on a separate test dataset when
compared to the one used in neural network training, and they are compared with the traditional
response surface approach to illustrate effectiveness of the method proposed.

Keywords: electric vehicles; deep neural networks; energy demand modeling; SoC at destination;
fuel consumption; all-electric range; big data

1. Introduction

In the last decade, there has been a trend of connecting the electric energy and transport systems
through the appearance of electric vehicles (EV) and the need for their charging. Increased proliferation
of EVs will require implementation of suitable load management procedures for electric grids in terms
of applying optimal charging strategies to EV fleets, which would be facilitated by use of various
Vehicle-to-Infrastructure (V2I) and Vehicle-to-Grid (V2G) communication methods [1]. In order to
provide optimal EV fleet charging management within smart grids, there is a necessity for accurate
models aimed at predicting the energy demand of each individual EV in the fleet, including prediction
of battery state of charge (SoC) at destination (e.g., at the charging station). Such energy demand
models can be used to optimize routes and charging schedules in order to ultimately minimize fuel-
and electricity consumption-related costs [2,3].

The energy demand can be predicted based on a precise EV powertrain model, where each
sub-component is modeled separately [4]. However, building of such models can be time consuming
and thus impractical to use in the case of fleets where new vehicles are frequently added. Also,
performing EV simulations within an optimization-based charging/routing management framework
can be impractical from the standpoint of computational efficiency. Another possibility for modeling
the EV energy demand relates to use of computationally efficient response surface-based method [5],
where the model parameterization can be conducted off-line based on precise EV model simulations
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over recorded or synthetic driving cycles, or GPS- and energy consumption-related data that
are typically collected in delivery fleets [6]. However, the drawbacks of this approach include:
(i) complexity of the selection of significant driving cycle features to serve as inputs to the model [7],
(ii) selection of an appropriate regression model, and (iii) the inflexibility of transferring the knowledge
gained for one vehicle to another one. Furthermore, some recent studies related to transport energy
demand modeling involve artificial neural networks (NN) for long-term energy demand forecasting,
and are performed on national level by considering various socio-economic and transport related
indicators [8–11]. Other studies are either related to short-term predictions of EV energy consumption
in real time [12,13], EV energy consumption on the individual segments of the road network [2], or are
based on a single parameter which accounts for the dependence of vehicle energy consumption on
vehicle mass and driving cycle [14].

The above drawbacks and limitations can be overcome by applying data-driven deep learning
methods, which are usually implemented through using a NN architecture. The main advantage of
these deep computational models is in their ability to learn features from given inputs automatically
(i.e., no manual feature extraction is needed), and to transfer knowledge from the base task to other
related tasks by means of transfer learning. Deep learning models are especially well-suited for image
classification tasks (e.g., convolutional neural networks—CNNs), which use convolutions instead of
general matrix multiplication, and possess the translation invariance property) [15]. One of the most
popular classification challenges is ImageNet Large Scale Visual Recognition Competition (ILVRSC),
which involves the task of classifying images into one of 1000 categories, while offering a training
dataset containing 1.2 million images. The most accurate models which have participated on the
recent ILVRSC challenges are AlexNet, Oxford VGG model, GoogLeNet (Inception module) [16],
and Microsoft ResNet with a leading score of top-5 error rate (i.e., the target label is one of top five
predictions) equal to 3.57% [17].

Significant deep learning achievements have been reached in autonomous vehicle-related
applications, whose key components are perception modules controlled by an underlying deep NN.
These deep NN models take inputs from different sensors including cameras, light detection and
ranging sensors, and infrared sensors and output the information necessary to maneuver a vehicle
safely under given conditions [18,19]. Apart from perception applications in autonomous vehicles,
NNs are also widely used in other different transport-related applications. For instance, in [20], a
deep NN is used for prediction of specific driver speed profiles, while in [21,22] NN-based models
are used for prediction of traffic speed on specific road segments. A similar approach is proposed
in [23], where a NN-based model is used for on-line identification of road type and traffic congestion
levels, with the purpose of improving the vehicle power management system. Furthermore, NNs
can also be used for forecasting the number of electric vehicles (EVs) in the city or state [24], or the
number of passengers inside the vehicle [25]. Deep NN model-based methods are used for EV charging
management in [26,27]. In [28–30] various NN architectures were developed and applied to estimate
the actual EV battery SoC with high precision.

According to the best of the authors’ knowledge, EV energy demand modeling based on deep
NNs and known driving cycle features as inputs has not been considered in the literature so far. To fill
the gap, this paper proposes a novel data-driven approach of EV energy demand modeling based
on deep neural networks. The approach is particularly suitable for cases when large driving cycle
datasets are available, as in the case of vehicle fleets equipped with GPS/GPRS tracking equipment.
A preprocessing method for transforming time- and distance-varying driving cycles into 1D or 2D
static maps is proposed, in order to make them appropriate for use as inputs to neural networks.
Several deep feedforward artificial neural network architectures including multilayer perceptrons
(MLPs) and CNNs have been considered and analyzed along with three different model input formats
(see an illustration in Figure 1). Necessary driving energy demand data is generated through numerous
simulations of an extended range electric vehicle (EREV) model over a wide set of driving cycles
recorded for a delivery vehicle fleet. Two energy demand-related models are derived based on the
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generated data, in order to predict: (i) the battery SoC and fuel consumption at the end of driving cycle
(i.e., at destination), and (ii) all-electric range (i.e., the distance that can be travelled in pure electric
driving prior to a hybrid driving mode being engaged; AER). The derived models can be applied
in different off-line energy demand studies (e.g., in energy planning), as well as in on-line energy
consumption prediction and energy management strategies.

The main contributions of the paper include: (i) proposing the driving cycle preprocessing method
that provides proper inputs to NNs and accounts for the initial battery SoC value, (ii) recommending the
most appropriate combination of NN architecture and driving cycle input format, and (iii) conducting
a comparative performance analysis of the proposed NN-based method and the traditional response
surface modeling approach.
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2. Driving Cycle Data Preprocessing

This section first briefly describes the process of driving cycle data collection based on GPS/GPRS
tracking technology applied on a set of ten mid-size delivery trucks [6]. A method for preprocessing
of driving cycles is then elaborated, along with definition of several resulting formats of processed
driving cycles aimed to be used as inputs to a feedforward NN.

2.1. Delivery Vehicle Fleet Description and Driving Data Collection

The delivery vehicle fleet considered in this paper consists of a set of ten mid-size MAN-TGM
15.240 trucks. The driving missions of these trucks relate to delivery of goods from a main distribution
center to sales centers. The truck loading capacity is 7460 kg and the empty vehicle mass is 7860 kg.
The vehicle is propelled by a diesel engine with the maximum power of 176 kW. The vehicle maximum
velocity equals 90 km/h.

Driving data have been collected by using the vehicle tracking equipment based on GPS and
GPRS technology. The driving data were recorded continuously, i.e., 24 h a day, over a time period of
three months (91 days). The data sampling time was set to 1 s. Apart from the GPS-related data, an
additional set of data from the vehicle controller area network (CAN) bus were acquired (e.g., engine
rotational speed and cumulative fuel consumption). The recorded GPS data include the following
information: vehicle ID number, timestamps, vehicle velocity, vehicle position (longitude and latitude),
and altitude. A total of 2286 driving cycles were extracted from the overall recorded dataset, where
each driving cycle corresponds to a single driving mission determined by the time interval between
vehicle departure from and its arrival back to the distribution center.

2.2. Preprocessing of Driving Cycles to Serve as Neural Network Inputs

The longitudinal dynamics of vehicle is described by the following equations:

τL = r
[

mv
dvv

dt
+ mvg sin α + mvgRo cos α + 0.5ρairCd A f v2

v

]
, (1)

ωL =
vv

r
, (2)

where τL and ωL are the total wheel torque and angular velocity, respectively, vv is the vehicle velocity,
mv is the vehicle mass, r is the effective tire radius, g is the gravitational acceleration, α is the road slope,
Ro is the tire rolling coefficient, ρair is the air density with the standard value of 1.225 kg/m3, Cd is the
vehicle aerodynamic drag coefficient, and Af is a vehicle frontal cross-section area. The demanded
energy on wheels can be calculated as:

Ewheel =
∫ Tf

t=0
ωLτLdt, (3)

where Tf represents the driving cycle duration. By inspecting Equations (1)–(3), it can be concluded that
the significant variables from the perspective of energy demand are: (i) vehicle velocity vv, (ii) vehicle
acceleration a = dvv/dt, (iii) road slope α, and (iv) vehicle mass mv. In this paper only vehicle velocity
vv and acceleration dvv/dt are taken into account when generating inputs to considered NNs.

Since driving cycles can be variable both in time and travelled distance, and the feedforward NNs
are supposed to be fed by static inputs of constant dimensions, driving cycle preprocessing is needed.
Because different NN architectures require different input formats (see Figure 1 and Section 4), three
input types (IT) of NNs labeled as IT1, IT2, and IT3 are proposed (Table 1). The input IT1 refers to
1D vector of counted velocity states in range of 0 to 90 km/h, with resolution of 0.5 km/h. The input
IT2 refers to 2D matrix of counted transitions between the different velocity states, where velocity
range is equal as in the case of IT1 input, but with the resolution of 1 km/h. Here, the information of
vehicle acceleration is included indirectly through counting of transitions between discrete values of
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vehicle velocities. The input IT3 refers to 2D matrix of counted accelerations for each velocity state
defined in IT1, where the acceleration range and resolution are equal to ±1.5 m/s2 and 0.1 m/s2,
respectively. In this case, the information on vehicle acceleration is directly included. It should be
mentioned that regardless of input type, by counting the discrete values of vehicle velocities for the
given fixed sampling time, the information on travelled distance is accounted for implicitly (note that
this information highly impacts the energy demand [4]).

Apart from the driving cycle-related velocity and acceleration information, the initial battery
SoC value (SoCinit) needs to be included in the NN input to be able to predict the energy demand
(e.g., SoC at destination). Various methods have been considered within this study, such as appending
the input vector/matrix by SoCinit, multiplying each element of input matrix by SoCinit, etc. A simple
addition of initial SoC to the overall input matrix has been found to be the best approach in terms of
NN prediction accuracy. Exceptionally, in the IT1 case the initial SoC value is appended to the input
vector. The addition of vehicle initial SoC value for the cases of matrix input formats (IT2 and IT3)
can be visualized as a magnification of grey intensity in the graphical representation of the matrix, as
illustrated in Figure 2 for the case of IT2 and initial SoC values ranging from 0.3 to 0.6. This figure
shows that IT2 has very sparse structure (i.e., useful information just around diagonal positions),
which affects the quality of recognition of sample features, while requiring long learning time of NN
due to high dimension of input matrix. This difficulty is effectively overcome in the case of IT3, which
is characterized by the reduced input dimensions (see Table 1), far less sparse structure (see Figure 3),
and directly included acceleration information. The reduced input dimension makes the NN training
process less time consuming due to a lower number of trainable parameters. For the sake of better
visualization of addition of initial SoC to 2D inputs in the case of IT2 and IT3, the inputs are shown as
contour plots in Figure 4.

Table 1. Description of IT1, IT2 and IT3 input formats.

Label Type Dimension
Velocity [km/h] Acceleration [m/s2] Incorporating of

Initial SoC ValueRange Resolution Range Resolution

IT1 Vector 1 × 182 [0, 90] 0.5 / / append
IT2 Matrix 91 × 91 [0, 90] 1.0 / / addition
IT3 Matrix 31 × 182 [0, 90] 0.5 [−1.5, 1.5] 0.1 addition

The procedure for generating inputs for NN-based energy demand models for the purpose of
their training (i.e., parameterization) and testing is as follows: (i) splitting of overall driving cycle
dataset into two distinctive groups, where 85% of data is used for training of NNs, while remaining
15% of data is employed for model testing, (ii) extracting of vehicle velocity and acceleration values
from the driving cycle data; (iii) counting of the states including discrete values of vehicle velocity (and
acceleration) and transitions between states and storing them into 1D or 2D static maps depending on
the required NN input format (i.e., IT1, IT2 or IT3), and (iv) adding the initial SoC value SoCinit into
the given input format.
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3. Generating Energy Demand Data

This section describes simulation data generated for the purpose of parameterization and
validation of NN-based energy demand models. The first subsection deals with building up a
simulation model of delivery EREV, which is executed over the recorded driving cycles (described in
Section 2.1) for different initial SoC values. The obtained simulation results including fuel consumption,
SoC at destination and AER are analyzed in the second subsection.

3.1. Modeling of Delivery EREV

A delivery EREV is modeled on the basis of particular conventional mid-size truck for which the
driving cycle data have been recorded. First, a model of a fully electric vehicle with similar torque and
power characteristics as the current conventional vehicle was built [31]. The electric vehicle powertrain
model has then been extended with a range extender model consisting of an internal combustion
engine (ICE) and a generator connected in a series hybrid powertrain configuration.

The backward-looking (i.e., quasi-static) modeling approach has been applied, where the only
state variable corresponds to the battery SoC, while other powertrain components are modeled
through 1D maps (e.g., ICE and electric machines’ maximum torque curves, battery open circuit
voltage dependence on SoC, etc.) and 2D maps (e.g., ICE fuel mass flow, electric machines’ efficiency,
etc.; see Figure 5a). The torque τm and angular velocity ωm of the electric motor, which depend
on the total wheel demanded torque τL and the angular velocity ωL given by Equations (1) and
(2), are calculated by using the following kinematic equations (represented by the block Mechanical
transmission in Figure 5a):

τm =
τL

ηtioh
, (4)

ωm = iohωL = ioh
vv

r
, (5)

where io is the fixed final drive gear ratio, h is the transmission gear ratio, and ηt is the drivetrain
efficiency. The ICE is coupled with the generator (τg, ωg) through a single ratio transmission, which is
characterized by the gear ratio hG. The battery dynamics, represented by the open-circuit voltage source
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Uoc(SoC) and the internal resistance R(SoC, i) (Figure 5b), is described by the following nonlinear
state Equation (4):

SoC =

√
U2

oc(SoC)− 4R(SoC, i)Pbatt −Uoc(SoC)
2QmaxR(SoC, i)

, (6)

where Pbatt is the battery power and Qmax is the total battery charge capacity (with the SoC defined as
SoC = Q/Qmax). The battery power Pbatt is calculated by subtracting the generator electrical power Pg

from the motor electrical power Pm (see Figure 5a). The battery pack consists of 1300 individual Li-Ion
battery cells, where a capacity Qmax and mass of each battery cell is assumed to be equal to 15.9 Ah
and 0.63 kg, respectively [31]. Therefore, the final total battery pack capacity is approximately 73 kWh,
while the battery pack mass equals to 819 kg.
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battery circuit (b) [4].

The EREV powertrain can operate in two characteristic regimes: (i) charge depleting (CD) where
only electric driving is active, and (ii) charge sustaining (CS) where hybrid driving is performed by
activating the ICE and generator in combination with the motor, in order to sustain battery SoC at
some predefined level (here set to 0.3). The distance travelled in the CD regime prior to switching to
CS regime is referred to as all-electric range (AER). The operating points of powertrain components
are calculated by a control strategy, which combines a rule-based (RB) control, including a battery
SoC controller and an engine switching logic, with an instantaneous optimization of equivalent fuel
consumption known as equivalent consumption minimization strategy (ECMS). A detailed explanation
of the RB + ECMS control strategy is given in [32].

3.2. Simulation Results of Delivery EREV

The delivery EREV model from Figure 5a has been simulated over the full set of 2286 recorded
driving cycles for nine discrete levels of initial SoC (SoCinit ∈ [0.2, 0.3, . . . , 1.0]), in order to obtain the
fuel consumption, SoC at destination and AER data aimed to be used for NN training and validation.
This resulted in total of 20,574 simulations.

The vehicle mass mv, which includes both the empty vehicle mass and the cargo mass, is set to
10,066 kg (i.e., empty vehicle mass + average mass for the recorded driving cycles) and is kept constant
for all driving cycles. The impact of the road slope α in Equation (1) is neglected (α is set to 0) due to a
relatively flat area over which the considered delivery vehicle fleet were operating.

Figure 6 shows the relation of both the simulated fuel consumption Vf and the SoC at destination
(i.e., at the end of a driving cycle, SoCend) with respect to travelled distance d for the case of SoCinit
equal to 1.0 (Figure 6a), and for the case of SoCinit equal to 0.6 (Figure 6b). It can be observed from
these results that the initial SoC and travelled distance d highly influence the fuel consumption Vf and
SoC at destination (i.e., at the given d).
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This is the reason why these variables were used as inputs for predicting energy demand when
using the response surface modeling approach (see [4] and Section 4 for more details). However, it
should be noted that there is notable scattering of both fuel consumption (Vf) and SoC at destination
data (SoCend) for the given distance travelled d, which is caused by variability in driving cycles features
(reflecting different driving routes, driving styles and traffic congestion aspects). This means that the
fuel consumption, the SoC at destination and also the AER (see Figure 7) cannot be accurately captured
solely by using travelled distance and initial SoC inputs.
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Figure 7. EREV all-electric range (AER) in dependence of trip length (d) for various initial SoC
values (SoCinit).

4. Modeling of Energy Demand

This section first describes the traditional map-based approach (i.e., response surface method) of
energy demand modeling, which is based on simulation of the delivery EREV model over synthetic
driving cycles (more details are given in [4]). The emphasis is then on NN modeling approach, where
the MLP and CNN network architectures are considered.

4.1. Response Surface Modeling Approach

Because both vehicle fuel consumption Vf and SoC-at-destination SoCend predominantly depend
on the initial SoC (SoCinit) and the travelled distance d (see Section 3 and Figure 6), the energy demand
model is based on the following functional dependences [4,5]:

Vf = f1(SoCinit, d), (7)

SoCend = f2(SoCinit, d). (8)

The response surface approach is appropriate for this modeling application, because the resulting
model is typically computationally very efficient and easy to be parameterized. The modeling
procedure includes the following steps [4]: (i) clustering of recorded driving cycles by travelled
distance into several groups, (ii) generating and validating single representative synthetic driving
cycle for each cluster, (iii) defining levels of initial SoC, (iv) performing simulations of EREV model
over each generated synthetic driving cycle for each defined level of initial SoC, (v) forming response
surfaces based on the simulation results. Figure 8 shows the obtained response surface model in the
form of two-dimensional approximation polynomials (labeled as Model) defined by Equations (7) and
(8), along with the simulation results based on recorded driving cycles [4].
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Figure 8. Illustration of response surface-based energy demand model for delivery EREV: fuel
consumption Vf = f1(SoCinit, d) (a), and SoC at destination SoCend = f2(SoCinit, d) (b) [4].

4.2. Neural Network Modeling Approach

4.2.1. Energy Demand Modeling

Using of NNs for energy demand modeling is motivated by the universal approximation theorem
for NNs, which states that a feedforward NN with a linear output layer and at least one hidden layer
containing a finite number of neurons, can approximate any continuous function of finite dimensional
space to any certain target amount of error [33]. Two NN architectures have been considered for the
purpose of EV energy demand modeling. The first architecture corresponds to MLP, and consists of
a single input layer, four fully connected (i.e., hidden) layers with 2056, 1024, 512, and 256 neurons,
respectively, and the single output layer (see Figure 9a). The second NN architecture corresponds to
CNN, and consists of a single input layer, two convolutional layers with six convolutional filters of
size 2 × 2, one max-pooling layer of size 2 × 2, one flattened layer, two fully connected layers with
512 and 256 neurons, and the single output layer (see Figure 9b). The former one is chosen because it
represents standard NN architecture, while the latter one is selected because it has been proven to be
very successful in image classification tasks (due to its effectiveness in automatic feature extraction)
and the processed driving cycles can be considered as images (i.e., 2D matrices in the case of IT2 and
IT3; see Figures 2–4).
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Figure 9. Block diagram of considered neural network architectures: multilayer perceptron—MLP (a),
and convolutional neural network—CNN (b); The expression 6 @ 2 × 2 considers the depth of 6 (i.e.,
the number of convolutional filters in the given Feature Map), where the size of each filter corresponds
to 2 × 2 pixels.

Both MLP and CNN models take the driving cycle data with incorporated initial SoC value
(SoCinit) as inputs (see description of IT1, IT2, and IT3 in Section 2), and they output the predicted fuel
consumption (Vf) and SoC at destination (SoCend) values. The corresponding NN architectures are
implemented in Python programming language (version 3.5.0), by using the Keras module [34] with
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Tensorflow [35] as backend. The stride property (i.e., the number of pixels by which the filter matrix
slides over the input matrix) of the considered two-dimensional convolutional and max-pooling layers,
represented as Conv2D and MaxPooling2D in Figure 9, is set to 1. The abbreviation ReLU stands
for rectifier linear unit, i.e., the non-linear activation function used in developed NN models, which
avoids negative values by mapping them to zero, thus allowing the more effective training of the
networks. For the purpose of training the developed NNs, Adam (i.e., adaptive moment estimation)
optimization algorithm for stochastic gradient descent is used, with its parameters set to default
values [36]. The batch size and the number of epochs are set to 32 and 300, respectively. The loss
function E to be minimized by training is defined as mean squared error (MSE) between the given NN
output ynet and the desired output ytrain:

E(X, W) =
1

2n

n

∑
i=1

(
ytrain,i − ynet,i

)2
, (9)

where X represents the input vector or matrix, ynet = [Vf SoCend]T is the vector of energy demand data
obtained by EREV simulation over recorded driving cycles, W are the network weights, and n is the
length of the overall training dataset (in this case it equals to 17,488, i.e., 85% of the obtained simulation
dataset; see Section 3 for detailed information).

4.2.2. All-Electric Range Modeling

The EREV fleet AER is described by the same CNN model as for predictions of vehicle fuel
consumption and SoC at destination (see Figure 9b), but with its output dimension changed to 1
(i.e., model outputs a single value of AER). The AER model uses input of type IT3 to whom the
following minor modification were made: (i) each of the matrix rows are normalized with respect to
the sum of belonging elements, and (ii) all of the matrix fields are incremented by the corresponding
initial SoC values (SoCinit = (0.2, 0.3, . . . , 1.0)). This modification of IT3 were introduced because
AER is more dependent on driving style than on the total distance travelled (see Figure 7). More
specifically, the normalization of matrix rows effectively converts the information about counted
velocity and acceleration states into the transition probabilities between the related states, thus giving
more focus on a driving style, while suppressing the information about total distance travelled and
resulting in better AER predictions. The opposite applies to the case of Vf and SoCend modeling, where
the distance travelled is the dominant influencing parameter, so that the matrix rows remain in the
absolute (non-normalized) form, thus reflecting the distance travelled.

5. Analysis of Modeling Results

This section presents a detailed comparative analysis of the energy demand and AER prediction
results obtained by the response surface- and NN-based models. The computations are performed
on a HP Z440 Workstation, equipped with 16 GB RAM and an Intel® Xeon® Processor E5-1620 v3 @
3.50 GHz.

5.1. Energy Demand Prediction

First, the recorded driving cycles have been processed and the inputs of predefined formats
obtained (IT1, IT2, and IT3; see Section 2). Next, the response surface- and NN-based models have
been derived based on generated EREV simulation-based energy demand data (see Section 4), finally,
the derived models have been evaluated over those inputs giving several key performance indicators.
The performance indicators related to the response surface-based model reflect basic statistics of
the obtained prediction results and related residuals (i.e., difference between model-predicted and
reference values), while the NN-based models include some additional indicators such as: (i) training
time in hours, (ii) evaluation time in milliseconds, (iii) training score which corresponds to the
value of loss function E for the case of training dataset, (iv) testing score which corresponds to
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the value of loss function E for the case of testing dataset, and (v) the total number of trainable
parameters. The basic statistics information considers the minimum (min), maximum (max), mean,
median, standard deviation (std), and 95% confidence interval (CFI 95%) of the prediction errors
(i.e., residuals; see Equations (10) and (12) given below). The confidence intervals are calculated as
CFI 95% = mean± 2·std (under the assumption of normal distribution of residuals).

The results related to NN-based models are given for five different cases, concerning two NN
architectures and three input formats (MLP for IT1, MLP for IT3, MLP for IT2, CNN for IT2, and
CNN for IT3; see Table 2), and they are compared with the results obtained by using the response
surface-based models. Tables 3 and 4 present detailed statistical information of the prediction results
(i.e., residual errors) considering the vehicle fuel consumption (Vf) and SoC at destination (SoCend) for
both response surface- and NN-based models. These results point out that CNN2 (CNN in combination
with IT3 input, i.e., 2D matrix including velocity and acceleration information) yields best results both
in training score and testing score, as well as in evaluation time (the best scores are marked in green
color). On the other hand, MLP1 has a significantly shorter training time, which is due to the lower
number of trainable parameters resulting from the smaller input dimension. The CNN2 yields overall
best results regarding the predictions of fuel consumption Vf and SoCend, as well, while the MLP1
results follow them very closely. Therefore, graphical plots presented below are given only for these
two cases.

Table 2. Performance measures of NN-based models concerning different NN architectures and input
data types.

Model
Label

Input
Label

Input
Dim.

Training
Time [h]

Evaluation
Time [ms]

Training
Score

Testing
Score

Trainable
Params

MLP1 IT1 * 182 2.596 9.345 0.01329 0.19356 3,139,258
MLP2 IT3 * 5612 17.846 11.128 0.01006 0.49081 14,303,338
MLP3 IT2 * 8282 21.751 10.514 0.00922 0.30432 19,792,858
CNN1 IT2 91 × 91 9.967 4.500 0.05745 0.25890 6,079,926
CNN2 IT3 91 × 31 7.594 3.413 0.00531 0.17379 3,960,246
* Refers to flattened version of the given input type, i.e., vector. Note: Fields marked in green represent the
best results.

Table 3. Basic statistical indicators of SoC-at-destination (SoCend) predictions for both response surface-
and NN-based energy demand models.

Performance of SoC-at-Destination Predictions [%]: ∆SoCend, abs=SoCend,predict−SoCend,real

Model Label Min Median Mean Max Std CFI 95%
MLP1 −4.3172 −0.0032 0.0031 3.8625 0.5878 [−1.173, 1.179]
MLP2 −4.2536 −0.0223 0.0412 13.3202 0.9547 [−1.868, 1.950]
MLP3 −4.4600 0.0389 0.0551 10.2145 0.7504 [−1.446, 1.556]
CNN1 −6.0190 −0.0038 −0.0156 5.0332 0.6698 [−1.356, 1.324]
CNN2 −6.4613 0.0498 0.0351 4.3829 0.5602 [−1.085, 1.155]

Resp. surface * −18.9968 −1.0147 −0.6972 16.5657 2.3197 [−5.337, 3.942]

* Refers to response surface-based energy demand model. Note: Fields marked in green represent the best results.

Furthermore, in order to gain better insight into precision of the developed NN-based energy
demand models when compared to the traditional response surface-based models, the distributions of
both fuel consumption and SoC-at-destination prediction errors ∆Vf and ∆SoCend are analyzed, where
two types of prediction errors (i.e., relative: rel, and absolute: abs) are considered:

∆Vf , abs = Vf ,predict −Vf ,real [L], (10)

∆Vf ,rel =
Vf ,predict −Vf ,real

Vf ,real
[%], (11)

∆SoCend,abs = SoCend,predict − SoCend,real [−], (12)
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∆SoCend, rel =
SoCend,predict − SoCend,real

SoCend,real
[%], (13)

Table 4. Basic statistical indicators of fuel consumption (Vf) predictions for both response surface- and
NN-based energy demand models.

Performance of Fuel Consumption Predictions [L]: ∆Vf, abs=Vf,predict−Vf,real

Model Label Min Median Mean Max Std CFI 95%

MLP1 −1.3655 −0.0138 −0.0147 1.8408 0.2034 [−0.422, 0.392]
MLP2 −1.0489 0.0043 0.0161 3.5083 0.2612 [−0.506, 0.538]
MLP3 −1.2630 0.0307 0.0341 2.7904 0.2035 [−0.373, 0.441]
CNN1 −2.7871 0.0301 0.0259 2.9722 0.2613 [−0.497, 0.549]
CNN2 −1.4150 −0.0099 −0.0076 1.1924 0.1801 [−0.368, 0.352]

Resp. surface * −8.5247 0.0000 0.0569 17.2393 2.6067 [−5.157, 5.270]

* Refers to response surface-based energy demand model. Note: Fields marked in green represent the best results.

The fuel- and SoC-related absolute prediction errors ∆Vf,abs and ∆SoCend,abs are shown in Figure 10,
while the distributions of absolute and relative errors calculated according to Equations (10)–(13),
along with the corresponding mean values (Mean) and standard deviations (Std), are shown in
Figures 11 and 12, respectively. The results shown in Figure 12 indicate that most of the relative
prediction errors for both ∆Vf,rel and ∆SoCend,rel and both MLP1 and CNN2 models are located within
the ±2% interval, which are significantly better results when compared to the response surfaces model
whose distributions of errors are far wider (i.e., ±20%).
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5.2. All-Electric Range (AER) Prediction

The corresponding CNN-based prediction results including the basic statistics of the absolute
AER errors calculated as ∆AERabs = AERpredict − AERreal are given in Table 5. Figure 13a shows
the plot of predicted AER (AERpredict) vs. real AER (AERreal), while the absolute AER errors ∆AERabs
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for a given testing dataset are shown in Figure 13b. The distributions of the AER-related residuals
(i.e., ∆AERabs and ∆AERrel =

(
AERpredict − AERreal

)
/AERreal) are shown in Figure 13c,d. These

results show that the developed CNN-based model predicts the vehicle AER with an absolute error
∆AERabs that is approximately 1 km (i.e., most of the points are located within the ±1 km interval;
see Figure 13c). Regarding the relative AER error ∆AERrel , the majority of points lays within the ±5%
interval (see Figure 13d), which can be considered quite accurate for this kind of prediction tasks. It is
worth noting that the same methodology can be used to predict the driving distance of fully electric
vehicle, as well.

Table 5. Basic statistical indicators of AER predictions for CNN-based model.

Performance of AER Predictions [km]: ∆AERabs=AERpredict−AERreal

Min Median Mean Max Std CFI 95%

−7.40366 0.00096 0.04049 7.25466 0.91674 [−1.793, 1.874]
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Figure 13. Predicted AERpredict vs. real AERreal values (a), absolute AER residuals ∆AERabs for given
testing input dataset (b), and distributions of absolute (c) and relative (d) predicted AER residuals.

6. Discussion

Energy demand modeling of an extended range electric vehicle (EREV) has been presented
based on applying deep neural networks (NN). The models are aimed at predicting the EREV fuel
consumption Vf, SoC-at-destination SoCend, and all electric range (AER). Special emphasis was placed
on proposing proper methods for preprocessing of driving cycles, in order to prepare them to serve
as static 1D or 2D inputs to NNs, while conserving driving cycle features relevant to energy demand
modeling. Three driving cycle input type formats have been proposed and analyzed: (i) IT1—1D
vector which contains counted discrete vehicle velocity values, (ii) IT2—2D matrix which contains
counted transitions between discrete vehicle velocity values/states (acceleration included indirectly),
and (iii) IT3—2D matrix which contains counted states where each state represents one combination of
discrete vehicle velocity and acceleration (acceleration included directly). Reliable options for including
the initial SoC (i.e., the one at the beginning of driving cycle) into the NN input have been suggested
(e.g., through adding the initial SoC to each element of 2D matrix in the case of IT2 and IT3). Also, two
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NN architectures have been considered and analyzed in different combinations with input types: (i)
standard multi-layer perceptron (MLP); and (ii) convolutional neural network (CNN). The use of CNN
architecture has been motivated by its effectiveness in image classification tasks (i.e., automatic feature
extraction characteristics), where images are typically represented with 2D matrices, similarly as it
is the case with driving cycles-related NN input herein (i.e., IT2 and IT3). The proposed NNs have
been trained and examined based on different portions of large energy demand dataset obtained by
simulating a delivery EREV model over a wide set of recorded driving cycles. The traditional response
surface energy demand modeling approach has also been considered to quantify improvements which
can be achieved by applying newly proposed NN methods.

The comparative analysis of the energy-related prediction results has shown that the CNN in
combination with IT3 input (i.e., 2D matrix including velocity and acceleration information; CNN2),
provides the best results in terms of the training and testing score (mean squared errors), as well as
evaluation time (≈3.4 ms), while the MLP1 resulted in a significantly shorter training time (≈2.6 h
vs. ≈7.6 h) due to the significantly lower input dimensions of IT1 when compared to IT3 (vector of
dimension 182 vs. matrix of dimension 91 × 31). Furthermore, it is shown that most of the prediction
errors (residuals) for both the fuel consumption ∆Vf,rel and the SoC-at-destination ∆SoCend,rel in cases
of MLP1 and CNN2 are located within the ±2% interval, which is significantly better when compared
to the response surface model whose distributions of errors are far wider (i.e., most errors lays within
the ±20% interval). The CNN-based model has been retrained for the purpose of prediction of vehicle
AER. It is shown that the AER predictions are slightly less precise while compared to the energy-related
prediction models (i.e., the majority of relative prediction errors ∆AER,rel lays within the ±5%; or
±1 km in terms of absolute errors ∆AER,abs), but this can still be considered quite accurate for this
kind of prediction task.

7. Conclusions

It can be concluded that NN-based energy demand models are significantly more accurate than
response surface models, because response surfaces only include the driving distance d as input, along
with the initial SoC; while NNs, apart from the driving distance (contained implicitly within inputs),
also include other significant driving cycle features contained within NN inputs through automatic
feature extraction. When considering model prediction accuracy, it has been found that the CNN-based
energy demand model in combination with IT3 input form is the most successful in this automatic
feature extraction. Apart from the high prediction accuracy, NN-based models are shown to be very
computationally efficient (e.g., 3.4 ms of evaluation time in the case of CNN and IT3), and can therefore
be used in various applications which require real-time performance such as vehicle routing and
charging management. In the latter case, the accurate prediction of SoC at destination represents a
key input to advanced, predictive charging management strategies, which need to satisfy the required
driving missions and minimize the charging energy cost. Future work can consider other vehicle
and environment parameters (e.g., vehicle mass and road slope) as inputs to NN for more accurate
predictions in general case.
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