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Abstract: This paper proposes a distributed economic power dispatch (EPD) and bus voltage control
solution for droop-controlled DC microgrids. For the proposed solution, a local power controller and
a local voltage controller are added for each distributed generator (DG) to overcome the limitations
of the conventional droop control. The power controller generates the first voltage correction term by
comparing the local output power of DG with the reference instruction generated by the proposed
distributed EPD algorithm, and thus, it can reduce the operation cost of the microgrid by optimally
sharing the load demand among all the participating DGs. The voltage controller generates the
second voltage correction term by comparing the nominal DC bus voltage value with the average bus
voltage generated by the proposed distributed average bus voltage observation (ABVO) algorithm,
and thus, it can realize the global bus voltage regulation of the DC microgrid. In contrast with
conventional solutions, the control solution can distribute the computational and communication
burdens among all the DGs working in parallel, which is more flexible, scalable, and robust against
single-point failure. The effectiveness of the proposed control solution is demonstrated through
simulation studies.

Keywords: bus voltage control; DC microgrid; droop control; distributed consensus; economic
power dispatch

1. Introduction

The microgrid concept is receiving considerable interest, as it can integrate a large amount of DGs
into the power grid in a more environmentally-friendly and reliable way [1]. Based on the voltage and
current types, microgrids can be categorized into three categories, i.e., AC microgrids, DC microgrids,
and hybrid AC/DC microgrids.

DC microgrids are gaining more and more attention due to the competitive advantages they
provide over AC microgrids [2,3]. Firstly, DC microgrids can integrate the renewable energy sources
(i.e., wind-power, photovoltaic), storage units (i.e., batteries, ultra-capacitors), and DC loads more
efficiently, because the AC/DC and DC/AC conversion stages are avoided [4,5]. Secondly, there are
no issues with frequency regulation and reactive power flow for the DC microgrids [6,7].

In DC microgrids, the droop control method is typically applied to regulate the output voltage of
converter-interfaced DGs [3,8–11]. However, there are some drawbacks of conventional droop control
methods [12,13]. Firstly, similar to the reactive power sharing in AC microgrids, the current sharing
accuracy is degraded due to the voltage droop across the line resistance. Secondly, DC bus voltage
deviation exists and varies with the load demand.
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Several centralized control strategies have been proposed to deal with the aforementioned
issues [14–16], which require central controllers to collect and process the global information. However,
the centralized solutions are sensitive to single-point failure [17] as they require a central controller
to communicate with all the DGs in the microgrid to collect information and to process a large
amount of data.

Distributed control strategies are also proposed to deal with the aforementioned issues, which
only require the local information or limited communication [17–22]. A coordinated adaptive droop
control was proposed for a DC microgrid to optimize its power distribution [18]. However, the global
bus voltage regulation of the DC microgrid was not considered, and a current regulator was needed to
estimate the system power imbalance. The estimated value may deviate from the real value, which will
degrade the performance of the proposed solution. A consensus-based control scheme was proposed
to solve the distributed economic dispatch problem for distributed power systems [19]. However,
a leader agent was needed to calculate the goal attraction terms, making it have a certain centralized
control nature instead of a fully-distributed solution. Consensus algorithms have been proposed to
be embedded in generation units to allocate power among connected buses [22]. However, a leader
agent was also required for this solution. A distributed economic dispatch algorithm was proposed
for a microgrid [20]. However, the load demand and exchange power of the tie-line needed to be
discovered first in a centralized or distributed way. A distributed strategy based on a distributed
dynamic programming algorithm was proposed for the economic power dispatch (EPD) problem [17].
However, the load demand needed also to be discovered first. A distributed approach was proposed
for frequency control and optimal economic dispatch of power generators [21]. However, the solution
may cause unexpected oscillation because the power mismatch is unavoidable during the optimization
process. Moreover, in most of the distributed EPD algorithms [17,19,20,22], the load nodes and the
uncontrollable generator nodes need to be designed with the capability of communication, since their
information is required for the power imbalance estimation, which increases the complexity and costs
of the system.

In this paper, a distributed optimal bus voltage control for droop-controlled DC microgrids
is proposed. The proposed method is augmented with two additional correction terms to provide
economic load sharing and global bus voltage regulation, respectively. These two correction terms
are generated based on the distributed consensus-based EPD algorithm and average bus voltage
observation algorithm proposed in this paper. Compared to the centralized solutions, the distributed
solutions are more flexible, scalable, and robust against single-point failure [23], as they can distribute
the computational and communication burdens among all the DGs working in parallel.

The main contributions of this paper include the following: (1) The gap between the secondary
voltage control level and tertiary EPD control level is bridged by simultaneously realizing the economic
load sharing and the global bus voltage regulation. (2) The operating cost of a DG microgrid is reduced
as it can optimally sharing the loads among all the participating DGs according to the power generation
cost of each DG in almost real time. (3) The proposed method can work in a fully-distributed way
without a central controller or a lead agent and only requires communication among neighboring
agents. (4) With the help of droop control in the primary level, information about load nodes and
uncontrollable generator nodes is not required. (5) Compared to a centralized control method, the
reliability of the proposed strategy is improved (6) An integrated simulation-based study that contains
multiple DGs, multiple control levels, and agent-based control and communication is implemented to
understand the behavior of the proposed method.

This paper is organized as follows. In Section 2, the problem formulation is presented. In Section 3,
the distributed consensus-based EPD algorithm and average bus voltage observation (ABVO)
algorithm are presented. In Section 4, the simulation results are provided. Finally, this paper is
concluded in Section 5.
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2. Problem Formulation

2.1. Conventional Droop Control Method in DC Microgrids

The droop control method is typically applied to regulate the output voltage of converter-interfaced
DGs [3,8–11]. Generally, the voltage-current droop control shown in (1) is commonly used.

v∗i = voi − iimi (1)

where i is the index of droop-controlled DGs, v∗i is the reference value of DC output voltage that is
sent to the inner voltage control loop of the ith DG, voi is the preset value of the DC voltage, and ii and
mi are the output current and the droop-coefficients of the ith DG, respectively.

As shown in Figure 1, the conventional control diagram of converter-interfaced DGs in DC
microgrid includes the droop controller and inner voltage and current controllers. The droop
coefficients affect the system stability and current sharing accuracy. In general, with a higher droop
coefficient, the accuracy of current sharing will be better, while the voltage deviation will be higher [24].
Thus, there exists a trade-off between the accuracy of current sharing and voltage deviation when
choosing the values of droop coefficients.

2.2. Proposed Optimal Bus Voltage Control

In order to overcome the drawbacks of the conventional droop control method, an optimal bus
voltage control method is proposed as shown in Figure 1. The voltage reference instruction for the
local controller of the ith DG is expressed as:

v∗i = voi − iimi + δvi,1 + δvi,2

δvi,1 = (kp1 +
ki1
S )(Pre f i − Pi)

δvi,2 = (kp2 +
ki2
S )(vnom − v̄)

(2)

where i represents the DG index, δvi,1 and δvi,2 represent the first and the second voltage correction
terms, respectively, kp1, ki1, kp2, ki2 are the parameters of PI controllers, Pre f i is the reference value
of power control demands generated by the proposed EPD algorithm (Section 3), Pi is the
locally-measured active power, vnom represents the preset value of nominal DC bus voltage, and
v̄ represents the average bus voltage generated by the proposed ABVO algorithm (Section 3).

As shown in Figure 1, the conventional droop control is augmented with two terms to formulate
the proposed control method. The purpose of terms δvi,1 and δvi,2 is to provide economic load sharing
and global bus voltage control, respectively. With the proposed control solution, the global bus voltage
regulation and EPD can be realized simultaneously as explained in Section 3. In this paper, the
term δvi,1 can be generated through a PI controller, while Pre f i is acquired distributedly through the
proposed EPD algorithm. Thus, all DGs can operate at the EPD state according to the power generation
cost of each DG through distributed cooperation with each DG’s neighbors. Similarly, the term δvi,2
can be generated through a PI controller, while v̄ is acquired distributedly through the proposed ABVO
algorithm. Thus, the bus voltage deviation can be eliminated through distributed cooperation with
each DG’s neighbor. The detail of the proposed EPD and ABVO algorithms is discussed in Section 3.
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Figure 1. Proposed control diagram of converter-interfaced DGs in a DC microgrid.

3. Distributed Consensus-Based EPD and ABVO Algorithms

The proposed agent-based and distributed control architecture for a DC microgrid is illustrated
in Figure 2. Each DG in the DC microgrid is equipped with an agent that has the functionalities of
acquiring the information of its local DG, implementing the EPD and ABVO algorithms by exchanging
data with its neighbors, and generating the voltage correction terms.

Figure 2. Agent-based distributed control architecture for a DC microgrid.
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3.1. Graph Theory Review

In Figure 2, each agent is represented by a vertex, and the communication links between the
agents are represented by edges in this paper. Thus, the microgrid system is generally a cyber-physical
system [4,25]. In order to model the communication topology of a DC microgrid efficiently, denote
G = (V, E) as a graph with pair sets of (V, E), where V = {1, 2, ..., n} is a set of vertices connected
through a set of edges E ⊆ V ×V. The communication link does not need to have the same topology
as its physical DC microgrid. In an undirected graph, vertices i and j are called to be connected if it
contains a path between i and j. Graph G is called to be connected if and only if there exists at least a
path between any two vertices.

3.2. Distributed Consensus Algorithm

Define elements di,j of the matrix D ∈ RN×N that is associated with a connected graph G as [26]:

di,j =


2

(ni+nj+ε)
j ∈ Ni

1− ∑
j∈Ni

2
(ni+nj+ε)

i = j

0 otherwise

(3)

where ni and nj represent the number of neighbors for agents i and j, respectively, ε represents a small
number (it affects the convergence speed of the proposed algorithm, as described in Section 4), and Ni
represents the set containing the indices of agents that communicate with agent i.

Consider the following discrete-time system:

ui(k + 1) = ∑
j∈{i,Ni}

di,jui(k) (4)

where ui(k) represents the state variables associated with agent i at time step k.
Based on the distributed consensus algorithm [26,27], the compact form of (4) has the

following property:
lim
k→∞

Dkµ = µ01 (5)

According to (5), all the state variables of each agent will converge to the same value, which
depends on the initial values.

Considering the definition of di,j, the compact form of (4) also has the following property:

∑ (D)kµ = ∑ µ, ∀k = 1, 2, ..., ∞ (6)

Equation (6) means that the summation of all state variables in the discrete-time system (4) is
preserved during each iteration.

According to the definition of di,j, D is related to the communication topology of the agents and
ε. Thus, the convergence speed of (4) depends on the communication topology of the agents and the
value of ε.

3.3. Distributed Consensus-Based EPD Algorithm

Generally, there are multiple DGs with different generation cost functions in a DC microgrid. The
power generation cost is usually approximated by the following quadratic function [17,28]:

Ci(Pi) = aiP2
i + biPi + ci (7)

where ai > 0, bi, ci are the power generation cost coefficients of the ith DG and Pi is the output power
of the ith DG.
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According to (7), the incremental cost of the ith DG is 2aiPi + bi. Both the generation cost and
the increment cost are increased with the increase of generated power. Furthermore, as the increment
cost is proportional to the generated power, the generation cost will increase with the increase of the
generated power until the DG reaches its maximum power output capacity.

Considering the power generation constraint and the power balance constraint of each DG, the
reference values for EPD can be acquired by solving the following problem:

MinC =
n
∑

i=1
Ci(Pre f i)

s.t. Pi−
≤ Pre f i ≤ P̄i

n
∑

i=1
Pre f i = PLoad

(8)

where Pre f i represents the reference value for the EPD of the ith DG, Pi−
and P̄i represent the lower and

upper bounds of the ith DG, respectively, and PLoad represents the load demand in the DC microgrid.
The problem shown in (8) can be easily solved by the traditional gradient descent algorithm or a

population-based optimization algorithm [29] in a centralized framework. However, in order to solve
this problem in a distributed way, some distributed algorithms need to be applied and developed.
According to the equal incremental cost criterion, the solution of the convex optimization problem
of (8) satisfies the following conditions [17].

2aiPre f i + bi = λ∗ ifPi−
< Pre f i < P̄i

2aiPre f i + b < λ∗ ifPre f i = P̄i
2aiPre f i + b > λ∗ ifPre f i = Pi−

(9)

where λ∗ represents the optimal incremental cost.
Assume that all DGs have no power generation constraints. According to the distributed

consensus algorithm (4) and the equal incremental cost criterion (9), the reference values for EPD can
be acquired by solving (8) through the following distributed EPD algorithm.

Pre f i(0) = Pi(0)
λi(0) = 2aiPre f i(0) + bi
λi(k + 1) = ∑

j∈{i,Ni}
di,jλj(k)

Pre f i(k + 1) = 1
2ai

λi(k + 1)− 1
2ai

bi

(10)

where Pi(0) represents the locally-measured output power of the ith DG at the beginning of the EPD
algorithm. In the islanded DC microgrid, the generated power of all the DGs and the load are always

balanced. Thus,
n
∑

i=1
Pi(0) = PLoad.

According to the equal increment cost criterion [17], if the algorithm shown in (10) can converge
to the optimal solution of the EPD problem shown in (8), it should satisfy the following two conditions:
(a) the increment cost for each DG λi should converge to the same value; (b) the constraint of power
balance should always be satisfied.

Thus, based on the above two conditions, the convergence and the optimality of algorithm (10) is
demonstrated below.

(a) The increment cost of each DG λi converges to the same value.

In order to analyze the convergence and optimality of the above algorithm, (10) is rewritten in the
following compact form:
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
Pre f (0) = P(0) (11a)

λ(0) = APre f (0) + B (11b)

λ(k + 1) = Dλ(k) (11c)

Pre f (k + 1) = A−1λ(k + 1)− A−1B (11d)

where Pre f = [Pre f 1, Pre f 2, ..., Pre f n]
T , P(0) = [P1(0), P2(0), ..., Pn(0)]T , λ = [λ1, λ2, ..., λn],

A = diag([2a1, 2a2, ..., 2an]), B = [b1, b2, ..., bn]T , A−1 = diag([ 1
2a1

, 1
2a2

, ..., 1
2an

]).
Comparing (11c) with (5), we can conclude that all the elements of λ will converge to the

same value according to the distributed consensus algorithm. Thus, Condition (a) is satisfied for
Algorithm (10).

(b) The constraint of power balance should always be satisfied.

Define ∆Pre f (k + 1) = Pre f (k + 1)− Pre f (k), and according to (6), (11c), and (11d), the following
condition must be satisfied.

∑ ∆Pre f (k + 1) = ∑ A−1Dλ(k)−∑ A−1λ(k) = 0, ∀k = 1, 2, ..., ∞ (12)

It should be noted that, in the islanded DC microgrid, the generated power of all the DGs and the

load are always balanced. Thus,
n
∑

i=1
Pi(0) = PLoad. In addition, according to (11a), we can conclude

that ∑ Pre f (0) = ∑ P(0) = PLoad; the power balance constraint must be satisfied in each iteration. Thus,
Condition (b) is satisfied for Algorithm (10).

In conclusion, the algorithm shown in (10) can converge to the optimal solution of the EPD
problem shown in (8).

Based on the above analysis, the reference values for EPD can be acquired distributedly by using
the distributed algorithm shown in (10). However, the power generation constraints of all the DGs are
not considered in (10).

In order to deal with the power generation constraints of the DGs, the distributed EPD algorithm
shown in (10) is redesigned as the following form [30]:

Pre f i(0) = Pi(0)
λi(0) = 2aiPre f i(0) + bi
ei(0) = 0
λi(k + 1) = ∑

j∈{i,Ni}
di,jλj(k) + ξei(k)

Pre f i(k + 1) = ψ(λi(k + 1))
ei(k + 1) = ∑

j∈{i,Ni}
di,jej(k)− (Pre f i(k + 1)− Pre f i(k))

(13)

where ξ is the learning speed that influences the convergence speed of (13), ei is the feedback term, ψ()

is a piecewise function, as the following:

ψi(λi) =


P̄i ifλi > λ̄i

1
2ai

λi(k + 1)− 1
2ai

bi ifλi−
≤ λi ≤ λ̄i

Pi−
ifλi < λi−

(14)

where λ̄i = 2ai P̄i + bi and λi−
= 2aiPi−

+ bi.

Define E = [e1, e2, ..., en]T and ρ = diag([ρ1, ρ2, ..., ρn]) where ρi =
1

2ai
if λi−

≤ λi ≤ λ̄i, otherwise

ρi = 0 corresponding to the three conditions shown in (14). Thus, the following composite format can
be derived according to (13).
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[
λ(k + 1)
E(k + 1)

]
=

[
D ξ I

ρ(I − D) D− ξρ

] [
λ(k)
E(k)

]

= H

[
λ(k)
E(k)

] (15)

According to (15), the EPD algorithm will be divergent if some of the eigenvalues of H lie outside
of a unit circle. Thus, the stability condition of matrix H is to make the eigenvalues of H lie within a
unit circle.

It should be noted that ρi is a variable that is associated with the leading coefficient of the cost
function (7), i.e., ai and the power generation constraint of the according DG. If ρi is determined
according to the above condition, it will not be redesigned again. Only ξ in (15) and ε in (3) need to be
properly designed. Although, ρi may affect the convergence speed of (15), the stability of (15) can be
guaranteed if the parameters ξ and ε are properly designed with a certain robustness. For example,
without loss of generality, we assume that at least one ρi is nonzero. Then, ξ in (15) and ε in (3) can be
properly designed to make the eigenvalues of H lie in an open unit circle, and Pre f i(k) in Algorithm
(13) will converge to the optimal solution of (8). The convergence speed of distributed EPD shown in
(13) depends on the second largest eigenvalue of H. According to this rule, the values for parameter ξ

and ε can be properly designed.
The algorithm, proposed in [30], is based on a strongly-connected communication graph; the

learning gain was designed by solving a complex LMIproblem; and the robustness of agent loss and
the scalability were not considered. In this paper, the communication graph was bidirectional; the
relation between the convergence speed of the proposed algorithm and the parameters ξ and ε were
theoretical analyzed; and a simple rule was given for the selection of these parameters by calculating
the eigenvalue of H.

In this paper, the line resistances were not considered for the proposed EPD algorithm since the
problem will be too time consuming when the line resistance is considered, especially by a distributed
algorithm. Generally, line resistances of a microgrid are not considered for such distributed algorithms,
as reported in many previously-published articles [17,31,32]. Furthermore, a microgrid usually has
relatively large line capacities compared to the distributed and small-scale generation units and loads
within a microgrid. Therefore, congestion in a microgrid does not easily occur. In order to improve the
speed of the proposed algorithm and also due to the above practical DG network nature, the line flow
constraints were not considered.

3.4. Distributed Consensus-Based ABVO Algorithm

In order to provide global bus voltage regulation, we designed the proposed ABVO algorithm
to acquire the average bus voltage of a DC microgrid. Based on the distributed consensus (4), the
distributed ABVO algorithm is designed as: v̄i(0) = vi(0)

v̄i(k + 1) = ∑
j∈{i,Ni}

di,jv̄j(k) (16)

where vi(0) represents the locally-measured bus voltage of the ith DG at the beginning of the ABVO
algorithm during each sampling time interval, v̄i(k) represents the observed average bus voltage
at the kth iteration by the ith agent, and k represents the number of iterations. The above ABVO
algorithm will be carried out for one iteration when the according information is updated through
communication with its according neighboring agents. It will take a few milliseconds for each iteration,
as explained in the last paragraph of Section 4.1.
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In order to analyze the above algorithm, (16) is rewritten as the following compact form:{
V̄(0) = V(0)
V̄(k + 1) = DV̄(k)

(17)

where V̄ = [v̄1, v̄2, ..., v̄n]T and V = [v1, v2, ..., vn]T .
According to the properties of the distributed consensus algorithm shown in (5) and (6), all the

elements of V̄ will converge to a same value, and the summation of all the elements of V̄ is preserved
during each iteration. Thus, all the agents will acquire the average bus voltage of the DC microgrid in
a distributed way through the proposed ABVO algorithm.

Similar to the distributed EPD algorithm, the convergence speed of the distributed ABVO
algorithm shown in (16) depends on the second largest eigenvalue of D. According to this rule,
the values for parameter ε can be properly designed.

3.5. Algorithm Implementation

Figure 3 presents the detailed configuration and implementation of the proposed, agent-based
EPD and ABVO algorithms in a fully-distributed way for a DC microgrid. Each agent has the
functionalities of acquiring the information from its local DG (output active power, local bus voltage,
generation cost coefficients, and local power generation constraints), implementing the EPD and ABVO
algorithms by exchanging data with its neighboring agents, and generating the voltage correction
terms. As shown in Figure 3, the topology of the communication network of the agents can be designed
independent of the topology of the physical DC microgrid system, as long as the communication
network is designed to be connected. The proposed EPD and ABVO algorithms were implemented
based on the communication network of the agents. Thus, the proposed method can be applied to
the DC microgrids with different physical typologies, as long as the topology of the communication
network is properly designed.

Figure 3. Proposed distributed optimal bus voltage control for droop-controlled DC microgrids. EPD,
economic power dispatch; ABVO, average bus voltage observation.

The proposed distributed EPD and ABVO algorithms were implemented according to Figure 4.
As shown in Figure 4, the control interval and the sampling interval were set as 0.1 s, which will
be detailed in Section 4.1 During each control interval (0.1s), the EPD and ABVO algorithms were
firstly initialized with locally-measured information (i.e., output power Pi and local bus voltage vi).
Next, the EPD and ABVO algorithm were executed with the above initial value until these algorithms
converged (the time it takes for these algorithms to converge was generally less than 0.1 s, which will
be detailed in Section 4.1). Finally, the control was updated with the converged information (i.e., Pre f i
and v̄i). During the following time intervals, it repeated the above process. It should be noted that
the proposed distributed EPD and bus voltage control are the secondary-level control. The response
speeds of the secondary-level controllers are much slower than the primary-level controllers (i.e.,
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droop controller, voltage controller, and current controller). Furthermore, the update frequency of
power reference value, i.e., Pre f i, and the average bus voltage, i.e., v̄i, are also slower than that of the
primary level. According to the proposed EPD algorithm shown in (13), Pre f i was initialized with
the locally-measured output power of its corresponding DG, i.e., Pi(0), and the power balance was
always satisfied when the EPD algorithm converged. Vnom was selected as the nominal DC bus voltage,
i.e., 400 V. The average bus voltage as the voltage feedback was acquired with the proposed ABVO
algorithm and updated at a low frequency. When the loads fluctuate, the output voltage and power of
each DG will be instantly regulated by the primary-level controllers. The secondary-level controllers
will update its power reference value and the average bus voltage at a much larger sampling time step
based on the proposed EPD and ABVO algorithms. Because Pre f i was initialized with Pi(0) and v̄i(0)
was initialized with vi(0) in each sampling interval, the influence of the load and voltage fluctuation
will be transported to the secondary-level control. Based on the feedback control of the controllers
in the primary- and secondary-levels, the DC microgrid can dispatch the load demand economically
among all the participating DGs, and it can realize the global bus voltage regulation simultaneously.

Figure 4. Implementation of the proposed control algorithms.

The following strategies were applied to improve the robustness of EPD and ABVO algorithms in
the case of agent loss or communication link fault: (1) The communication topology was designed to
satisfy the N − 1 rule [33], i.e., any two agents in a microgrid would still be connected if any one of the
communication links has faulted. (2) Every agent periodically sends probing messages (including the
times tamp and necessary state information) to each of its neighbors and update di,j according to (3).
These probing messages are known as heartbeat packets, which allow an agent to know which of its
neighbors are available and reachable, and are especially important for agents to handle the situation
of a potential communication topology change. Thus, the proposed EPD and ABVO algorithms
can be implemented distributedly, as each agent only needs to communicate with its neighbors and
acquire the local information. Without a central controller, the proposed algorithms can share the
computational and communication burden among the agents and be more flexible and scalable than
conventional centralized algorithms.

4. Simulation Studies

In this paper, the performance of a DC microgrid was evaluated via a virtual experiment system
built in MATLAB/Simulink. This is due to the extreme complexity of the DC microgrid under
the control and optimization at multiple levels, multiple time scales, and the multi-agent-based
communication framework as proposed in this paper, making a hardware experiment expensive or
impossible to build. For such a complex microgrid system, simulation-based evaluation and research
is commonly adopted [32,34–36]. To further make the performance evaluation in close to actual
experiment conditions, the following strategies were utilized: (1) high frequency transient simulation
instead of steady-state simulation strategy; (2) detailed DC converter switching models instead of
average models; and (3) integration of the control system and agent-based communications in the
detailed transient simulation environment. As reported in many previously-published works [37,38],
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such detailed simulation results are very close to the actual experiment results. Thus, the detailed
simulation strategy can appropriately replace the hardware experiment when the hardware experiment
system is very expensive or impossible to build.

The proposed distributed EPD and optimal bus voltage control strategies were integrated with
droop-controlled mechanism for a DC microgrid as illustrated in Figure 3, which was tested with a
DC microgrid that contained five DGs, as shown in Figure 5. The parameters of the DGs are shown
in Table 1. The resistance of the transmission line was assumed to be 0.325 Ω/km [39]. The length
of the transmission lines and the load demands are shown in Figure 5 as well. The tuning of the PI
controllers as shown in Figure 4 considered the following two aspects: (1) the response speed of the
controllers at the primary level; (2) the update speed or frequency of the reference command assigned
by the proposed EPD and ABVO algorithms at the secondary level. First, the response speed of the PI
controllers should be tuned fast enough for tracking the reference command. Second, the response
speed of the PI controllers should be tuned slower than the primary-level controllers. It should be
noted that these PI controllers can also be tuned using some swarm intelligence algorithms [40,41].
Although those algorithms may improve the performance of the PI controllers, they are complex and
time consuming. In this paper, the parameters of the PI controllers can be easily tuned to achieve good
performance according to the above rules. The PI controllers shown in Figure 3 can also be replaced
by some other controllers, such as fractional order PID controller [42], the H2/H∞ controller [43],
and the neural-network-based control [44]. However, the main work of this paper is the design and
development of distributed EPD and ABVO algorithms, and the optimization and substitution of PI
controllers will be considered in our future work.

Table 1. Parameters of the DGs.

DG and Agent
Index

Neighboring
Agents

ai
$/kW2h

bi
$/kWh

ci
$/h

mi
V/A

Range
kW

1 2,3 0.0001 0.042 0.25 0.1533 [0, 60]
2 1,4 0.0001 0.05 0.42 0.7667 [0, 12]
3 1,4,5 0.0001 0.044 0.35 0.2410 [0, 40]
4 2,3,5 0.0001 0.048 0.45 0.3213 [0, 30]
5 3,4 0.0001 0.047 0.33 0.0640 [0, 20]

Figure 5. The system configuration of the DC microgrid test system.
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4.1. Algorithm Convergence Test

As shown in Section 3, the convergence speed of the distributed EPD and ABVO algorithms was
decided by the magnitude of the second largest eigenvalue of H shown in (13) and the magnitude of
the second largest eigenvalue of D shown in (17), respectively. According to this rule, the values for
parameter ξ and ε were designed as ξ = 3.73e− 5 and ε = 2.41.

The index number of adjacency matrix for the agents are shown in Table 1. Assume that the
initialized states of the DC microgrid shown in Figure 5 are as follows: Pre f (0) = [120, 0, 0, 0, 0]T and
v̄(0) = [420, 400, 380, 396, 410]T . Thus, the total load demand was 120 kW, and the average bus voltage
was (420 + 400 + 380 + 396 + 410)÷ 5 = 401.2 V. The results for the convergence test of the proposed
EPD and ABVO algorithms are shown in Figure 6. According to the simulation results shown in Figure
6, the incremental costs of the DGs converged to the optimal value λ∗ = 0.051, and the reference
values for EPD also converged to the optimal values as follows: Pre f 1 = 45 kW, Pre f 2 = 15 kW, Pre f 3
= 35 kW, Pre f 4 = 15 kW, Pre f 5 = 20 kW. The power balance was maintained when the EPD algorithm
converged, and the reference values for EPD were within the power generation constraints. As shown
in Figure 6c, the values of observed average bus voltage also converged to the desired average bus
voltage of 401.2 V.

The proposed EPD and ABVO algorithms were also applied to a larger DC microgrid test system
with 20 DGs to investigate the scalability of the proposed algorithms with a larger system. It should
be noted that the communication topology of the agents can be designed to be independent of the
physical topology of the DC microgrid. Assume that the communications topology was designed
such that each agent can communicate with its eight adjacent neighbors in the index numbers of
i− 4, i− 3, i− 2, i− 1, i + 1, i + 2, i + 3, i + 4. The results for the convergence test of the proposed EPD
and ABVO algorithms are shown in Figure 7. As shown in Figure 7, the incremental costs and the
reference values for the EPD of the DGs converged to the optimal value, and the values of observed
average bus voltage also converged to the desired average bus voltage of the microgrid. Furthermore,
the proposed algorithms for the larger microgrid system converged within 20 iterations, which was
comparable to the results shown in Figure 6. Thus, the proposed algorithms were scalable to a larger
microgrid system. As shown in Figure 7, all the DGs were within their generation ranges. In order to
evaluate the performance of the proposed EPD algorithm in the case that one or more DGs reached
their rated power, DG 10 and DG 13 were replaced with lower rated DGs. The rated power of the
renewed DG 10 and DG 13 was 10 kW and 20 kW, respectively, and the updated simulation results are
shown in Figure 8. As shown in Figure 8, when DG 10 and DG 13 reached their rated power, the EPD
results of DG 10 and DG 13 were 10 kW and 20 kW, respectively, and the incremental costs of DG 10
and DG 13 were lower than the other DGs, which is in accordance with the theoretical analysis shown
in (9). According to the results shown in Figures 7 and 8, the proposed EPD and ABVO algorithms
can converge within 20 iterations even when some DGs reach their rated power for a larger microgrid
system. Therefore, the convergence speed of the proposed algorithms was similar for microgrids with
different sizes even when some DGs reached their rated power, demonstrating the scalability of the
proposed algorithms.

In order to study the effect of the communication network topology among the agents using
the proposed distributed algorithms, a convergence test of the proposed EPD algorithm for a DC
microgrid with 20 DGs was conducted for three different communication topologies, i.e., each agent
can communicate with its six, eight, and ten adjacent neighbors, respectively. The results of the
convergence test are shown in Figure 9. As shown in Figure 9, the communication network topology
had two impacts on the proposed algorithms: convergence speed and communication burden. In
general, for the communication topology of an agent with more agents, the proposed algorithm would
converge faster while the communication burden would increase. Therefore, the communication
network among the agents should be designed by compromising between the convergence speed and
the communication burden. Take the microgrid system with 20 DGs for example. For the conventional
centralized method, the central controller needed to communicate with all 20 DGs in the microgrid
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and did all the related computation on data collected from the 20 DGs; while for the distributed control
strategy, all the agents were peered, and each agent only needed to communicate with its neighbors
(six, eight, or ten neighbors according to the designed communication topology) and did its local
computation on data from a limited number of neighbors. Thus, each of the agent’s communication
and computation burdens for a distributed method was less than that of a central controller for the
centralized method.

Figure 6. Convergence test of the EPD and ABVO algorithms for a DC microgrid with 5 DGs.
(a) Incremental cost of the DGs in each iteration; (b) EPD of the DGs in each iteration; (c) observed
average bus voltage of the DGs in each iteration.
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Figure 7. Convergence test of the EPD and ABVO algorithms for a larger DC microgrid with 20 DGs.
(a) Incremental cost of the DGs in each iteration; (b) EPD of the DGs in each iteration; (c) observed
average bus voltage of the DGs in each iteration.

According to the proposed EPD and ABVO algorithms shown in (13) and (16), respectively,
the data to communicate with the neighboring agents included λi, ei, and v̄i. In a DC microgrid
system, each agent was assumed to have 10 neighbors at maximum, and the proposed EPD and
ABVO algorithms can converge within 30 iterations, so the data to communicate was represented by
a 32-bit number and the communication speeds between the agents assumed to be 1 Mbps. Thus,
the time it takes for the proposed EPD and ABVO algorithms to converge was: 2 (bidirectional
communication) × 3 (data to communicate) × 10 (neighbors) × 30 (iterations) × 32 (bit per data) ÷
1,000,000 (1 Mbps) = 57.6 ms. Considering the impact of communication delay, the control interval
for the proposed secondary-level EPD and bus voltage control should be larger than 57.6 ms. Except
for the communication delay, the dynamic performance of the primary-level controllers (i.e., voltage
controller and current controller) should also be considered when choosing the control interval. For
tracking the reference command assigned by the proposed secondary-level controllers, the control
interval should be larger than the response time of the primary-level controllers, which is generally
in microseconds. Hence, considering both the factors and a proper margin requirement, the control
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interval was set as 0.1 s. Even if the proposed EPD and ABVO algorithm cannot converge within
0.1 s due to some extreme communication delay, the proposed secondary control only degraded to
the traditional droop control. Thus, the stability of a DC microgrid system will not be affected by
communication delay between the neighboring agents.

Figure 8. Convergence test of the EPD and ABVO algorithms for a larger DC microgrid with 20 DGs
when two DGs reached their rated power. (a) Incremental cost of the DGs in each iteration; (b) EPD of
the DGs in each iteration.

4.2. Performance Comparison with and without the Proposed Algorithm

The performance of the proposed control strategy was evaluated through a comparative study
with the conventional droop control method as shown in Figure 10. The DC microgrid was initially
controlled using the conventional droop control strategy. At the beginning, the average bus voltage
(390 V) was less than the nominal value (400 V); the loads were shared according to the droop
coefficients and line resistances, which was not an EPD. The proposed control strategy was initiated at
t = 2.0 s, and consequently restored the average bus voltage of the DC microgrid to the nominal value,
i.e., 400 V. As a PI controller was applied to generate the voltage correction term δvi,2 (as shown in
Figure 3), the voltage deviation converged to zero in the steady state. Thus, the proposed algorithm
had a high accuracy to eliminate voltage deviation. Meanwhile, the generation cost was decreased
from 0.0659 $/kWh to 0.0645 $/kWh (with the reduction of 2.12%). A PI controller was also applied
to generate the voltage correction term δvi,1 (as shown in Figure 3), and the incremental costs of all
the DGs converged to the same value (as shown in Figure 10b), meaning that the load was optimally
shared according to the generation cost of each DG. Thus, the proposed algorithm had a high accuracy
in current sharing. Overall, the proposed control strategy can better achieve EPD and the bus voltage
restoration at the same time.
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Figure 9. Convergence test of the EPD algorithm for a DC microgrid with 20 DGs when the
communication network among agents is designed with different topologies. (a) Each agent
communicates with its six adjacent neighbors; (b) each agent communicates with its eight adjacent
neighbors; (c) each agent communicates with its ten adjacent neighbors.

4.3. Time-Varying Load Demand Test

The performance of the proposed control strategy in the case of time-varying load demand is
studied in Figure 11. At t= 4 s, the five DGs already reached the optimal states. As shown in Figure 11c,
the total load demand was reduced from 105 kW to 68 kW at t = 4 s, restored to 105 kW at t = 6 s,
increased to 129 kW at t = 8 s, and restored to 105 kW again at t = 10 s. Figure 11a shows that DG 2
reached its lower generation range during 4–6 s, and DG 5 reached its upper range during 8–10 s.
Thus, as shown in Figure 11b, the increment cost of DG 2 was higher than the optimal value during
4–6 s, and the increment cost of DG 5 was lower than the optimal value during 8–10 s. During the
other time intervals, all the DGs were within their generation ranges, and all the incremental costs
converged to the optimal values. As shown in Figure 11d, the average bus voltage of the DC microgrid
can also be restored to its nominal value for all the time-varying load demand conditions. Thus, the
proposed control strategy was efficient even when some DGs reached their generation limits with the
time-varying load demand.
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Figure 10. Comparative studies of a DC microgrid before and after the proposed control strategy was
applied. (a) Generated power of each DG. (b) Incremental cost of each DG. (c) Total generation cost of
all the DGs. (d) Average bus voltage of the microgrid.

Figure 11. Performance of the proposed control strategy with time-varying load demand. (a) Generated
power of each DG. (b) Incremental cost of each DG. (c) Total generated power of all the DGs. (d) Average
bus voltage of the microgrid.

4.4. Performance Comparison with a Distributed Cooperative Control Strategy

The performance of the proposed control strategy was also compared with the distributed
cooperative control strategy proposed in [4], which presented a strategy of a global voltage regulation
and proportional load sharing. However, this strategy only assigned the load among participating
DGs in proportion to their rated power while not considering the power generation cost of each DG.
The results of the comparison studies are shown in Figure 12. From Figure 12a,b, it can be seen that
the power sharing results were different between the proposed control strategy (i.e., economic load
sharing) and the distributed control strategy (i.e., proportional load sharing). As shown in Figure 12c,
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the generation cost of the proposed control strategy was lower than that of the distributed cooperative
control strategy under all load conditions as described in Section 4.3. The average bus voltage of
the DC microgrid can be restored to its nominal values for both the proposed and the distributed
cooperative control strategy, as shown in Figure 12d. Overall, it can be concluded that the proposed
control strategy was superior to the distributed cooperative control strategy, as it can reduce the
operation cost by dispatching the load in an economic way.

Figure 12. Comparative studies between the proposed control strategy and distributed cooperative
control. (a) Generated power of each DG with the proposed control strategy. (b) Generated power of
each DG with the conventional distributed cooperative control. (c) Total generation cost of all the DGs.
(d) Average bus voltage of the microgrid.

4.5. Algorithm Robustness Test

Figure 13 studies the robustness of the proposed control strategy in case a DG is turned on/turned
off. At t = 11 s, the five DGs already reached the optimal states. However, DG 4 was turned off at
t = 12 s and turned back on at t = 14 s. It should be noted that when a DG is turned off, its corresponding
agent is still working. As shown in Figure 13, the proposed control strategy can properly update the
EPD and restore the bus voltage with an admissible transient process when the working state of the
DG is changed.

Figure 14 studies the robustness of the proposed control strategy in the case of agent loss. At
t = 15 s, the five DGs already reached the optimal states. Agent 4 was lost at t = 16 s and recovered
again at t = 18 s. It should be noted that the neighbors’ information can be updated after t = 16 s using
the heartbeat packet, and the communication topology of the rest agents was still connected as it was
designed to satisfy the N − 1 rule, as given in Section 3.5. Assume the default reference values for
EPD and voltage restoration were 0 kW and 400 V, respectively, in the case of agent loss. As shown in
Figure 14, the proposed control strategy can properly update the EPD and bus voltage regulation with
an admissible transient process even with an agent loss. Hence, the robustness of the proposed control
strategy is verified.
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Figure 13. Performance of the proposed control strategy with a DG turned off. (a) Generated power
of each DG. (b) Incremental cost of each DG. (c) Total generation cost of all the DGs. (d) Average bus
voltage of the microgrid.

Figure 14. Performance of the proposed control strategy with an agent loss. (a) Generated power of
each DG. (b) Incremental cost of each DG. (c) Total generation cost of all the DGs. (d) Average bus
voltage of the microgrid.

5. Conclusions

In this paper, a distributed optimal bus voltage control solution for droop-controlled DC
microgrids is proposed. For the proposed solution, the droop-controller on each DG was augmented
with a local power controller and a local voltage controller. The local power controller compares the
local output power of DG with the reference instruction generated by the proposed distributed EPD
algorithm and generates a voltage correction term to share the load demand among all the participating
DGs optimally. The local voltage controller uses the proposed ABVO algorithm to estimate the average
bus voltage and generates a voltage correction term to provide global bus voltage regulation. Studies
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showed that the proposed solution can optimally share the load demand among all the participating
DGs according to the power generation cost of each DG, and it can realize the global bus voltage
regulation of the microgrid simultaneously. The scalability, efficiency, and robustness of the proposed
control solution were verified through simulation. For future work, more improvements will be
appropriate to expand the application of the proposed control strategy to more complicated EPD
problems, such as consideration of the transmission line losses and the non-convex generation cost
functions. The optimization of PI controllers could be another topic in our future work. Furthermore,
in order to reduce the communication burden and make the proposed distributed control strategy
more suitable for a real microgrid system, the event-triggered communication strategy between the
distributed agents is planned for future work.
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