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Abstract: The precise forecasting of daily solar radiation (DSR) is receiving prominent attention
among thriving solar energy studies. In this study, three standalone models, including gene
expression programing (GEP), multivariate adaptive regression splines (MARS), and self-adaptive
MARS (SaMARS), were evaluated to forecast DSR. A SaMARS model was classified as MARS
model when using the crow search algorithm (CSA). In addition, to overcome the limitations of
the standalone models, the complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) was employed to enhance the accuracy of DSR forecasting. Therefore, three hybrid
models including CEEMDAN-GEP, CEEMDAN-MARS, and CEEMDAN-SaMARS were proposed to
forecast DSR in Busan and Incheon stations in South Korea. The performance of proposed models
were evaluated and affirmed that the accuracy of the CEEMDAN-SaMARS model (NSE = 0.878–0.883)
outperformed CEEMDAN-MARS (NSE = 0.819–0.818), CEEMDAN-GEP (NSE = 0.873–0.789),
SaMARS (NSE = 0.846–0.769), MARS (NSE = 0.819–0.758), and GEP (NSE = 0.814–0.755) models
at both stations. Therefore, it can be concluded that the optimized CEEMDAN-SaMARS model
significantly enhanced the accuracy of DSR forecasting compared to that of standalone models.

Keywords: solar radiation forecasting; multivariate adaptive regression splines; crow search algorithm;
complete ensemble empirical mode decomposition with adaptive noise; gene expression programing

1. Introduction

Due to the negative impacts of fossil fuels on the environment, renewable energy resources have
attracted the attention of governments, researchers and industries. Solar energy is a prominent infinite
energy source because of its remarkably accessible properties such as radiant light and heat from
the Sun, and its applications including electricity generation and air heating/cooling [1]. Recently,
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solar energy exploitation has become cheaper and more efficient due to the development of various
techniques and market competition. Comprehensive understatement of solar radiation is essential
for different technological methods of solar energy production as well as the selection of feasible
installations in the future [2–4]. Solar radiation is spatially and temporarily variable, and therefore
site measurements are necessary. However, due to various problems (e.g., lack of instruments and
fiscal issues), the authentic DSR are scarce [5,6]. Thus, it is clear that applying efficient methods are
important for estimating DSR based on other input variables such as meteorological and geographical
variables [7].

In recent decades, data-driven methods, such as artificial neural networks (ANNs) [8], adaptive
neuro fuzzy inference system (ANFIS) [9], support vector machine (SVM) [10], M5-model tree [11],
multivariate adaptive regression splines (MARS) [12], and gene expression programing (GEP) [13], have
been widely applied for energy demand and solar radiation forecasting studies. For instance, Yadav
and Chandel [14] used ANNs to perform an exhaustive review of the prediction of solar radiation.
They showed the ability of ANNs for solar radiation forecasting based on different case studies.
Sozen et al. [15] validated the performance of ANNs for solar radiation prediction based on geographic
parameters of Turkey. Dorvlo et al. [16] evaluated two kinds of neural network namely multilayer
perceptron (MLP) and radial basis function (RBF). Alsina et al. [17] evaluated the performance of ANNs
for the prediction of monthly solar radiation using 45 meteorological stations over Italy. Lou et al. [18]
applied a black box model using a boosted regression tree for predicting the diffusion of SR in Hong
Kong and Denver. Moreover, Mohammadi et al. [19] employed wavelet transform (WT)-based SVM to
enhance the accuracy of standalone SVM. The method combined a firefly meta-heuristic algorithm
with support vector regression (SVR) and was designed by Olatomiwa et al. [9] to evaluate the
accuracy of developed methods for solar radiation estimation in Nigeria. Antonanzas et al. [20]
evaluated SVR performance for mapping solar irradiation using exogenous input variables, whereas
Monteiro et al. [21] compared the ability of two models (e.g., ANNs and SVR) to generate photovoltaic
power. Chen et al. [22] estimated a solar radiation problem using least-square SVR (LSSVR) based on the
atmospheric data at Chongqing meteorological station, China. Salcedo-Sanz et al. [23] also developed an
integrated neuro-evolutionary wrapper-based technique for estimating DSR in Queensland, Australia.
They used coral reef optimization (CRO) for the feature selection process to access an optimal set of
predictor variables using an extreme learning machine (ELM) method.

Nevertheless, various investigations have been accomplished for estimating solar radiation using
empirical and conventional methods, but there is an essential challenge to develop a method to
overcome non-stationary time series. To address non-stationary problems, several pre-processing
approaches (e.g., the principal component analysis (PCA) [24,25], continuous wavelet transform
(CWT) [26–28], moving average (MA) [29], wavelet multi-resolution analysis (WMRA) [30], maximum
entropy spectral analysis (MESA) [31], singular spectrum analysis (SSA) [32,33], and empirical mode
decomposition (EMD) [34]) have been used to decompose input/output variables. These techniques
are useful tools to resolve the frequency components of input/output time series data by decomposing
original datasets into several sub-series, before such datasets are applied in time series estimations.

More recently, complete enhanced EMD with adaptive noise (CEEMDAN) [35] was successfully
applied to reconstruct the original input/output variables precisely. It gives a better spectral separation
of the intrinsic mode functions at a lower computational cost. Few studies have been accomplished
to enhance the model’s performance using CEEMDAN for forecasting different types of data.
Zhang et al. [36] investigated and forecast short-term wind speed on the eastern coast of China
using CEEMDAN with the flower pollination algorithm (FPA). Prasad et al. [37] used CEEMDAN
and EEMD integrated with ELM to improve models’ performance for soil moisture forecasting.
They provided that the CEEMDAN-ELM model outperformed the other models for upper layer
soil moisture forecasting. Moreover, two-phase integration of ELM and CEEMDAN algorithm was
investigated by Wen et al. [38] to predict real-time runoff. They designed a two-phase hybrid model,
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which utilized CEEMDAN combined with the variational mode decomposition (VMD) method to
resolve the frequency of the original datasets in the Yingluoxia watershed, Northwestern China.

This paper presents an integrated model that is designed for coupling CEEMDAN decomposition
with data-driven models for improving forecasting accuracy of DSR. In the present research, the original
time series is first decomposed by CEEMDAN for better frequency resolution. The main contribution
of this study is that, for the first time, an integrated CEEMDAN algorithm with data-driven models
(e.g., GEP, MARS, and SaMARS) is proposed to supply prominent frequency-based input information
to forecast DSR. The proposed integrated models are applied at Busan and Incheon meteorological
stations in South Korea. Then, it is benchmarked and evaluated with standalone models (e.g., GEP,
MARS, and SaMARS) using several statistical criteria.

2. Data Collection

In this study, meteorological data were collected from two weather stations, namely Busan
(Longitude, 129◦03′ E; Latitude, 35◦10′ N; Altitude, 69.2 m) and Incheon (Longitude, 126◦70′ E;
Latitude, 37◦45′ N; Altitude, 21.12 m), in South Korea (Figure 1). These stations are operated and
maintained by the Korea Meteorological Administration (KMA). The weather data consist of 16 years
(from 2000 to 2016) covering daily records of air temperature (TA), sunshine duration (SD), relative
humidity (RH), vapor pressure (VP), sea-level pressure (SLP), pan evaporation (PE), and daily solar
radiation (DSR).
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Figure 1. Map of study area.

Generally, the accessibility of a long-term measured dataset is of particular importance for an
accurate estimation of DSR. Furthermore, the accuracy of models for DSR forecasting is affected by
the quality of DSR time series data. In measured DSR data, there have been some contradictions and
abnormalities in the values mainly because of malfunctioning instruments [6]. After the data sorting,
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every missing value was replaced with interpolated values by means of various approaches for time
series analysis. In addition, this method provides that if there are some missing days or a datum is
incorrect, it can be replaced with the means of two nearest non-missing values [39].

In the present study, the data were divided into two sub-sets: the first for calibration and the
second for validation. Hence, the first data cover the period from 1 January 2000 to 31 December 2012,
while the second data include the period from 1 January 2013 to 31 December 2016. The calibration
dataset was applied for creating and statistically analyzing a suitable model, while the second data
were used to validate the accuracy and efficiency of selected models. Table 1 presents the statistical
parameters related to climatic variables in the selected stations.

Table 1. Descriptive statistics of solar radiation data for the Busan and Incheon stations located in
South Korea.

Statistical Parameter
Meteorological Variable

TA (◦C) RH (%) VP (hPa) SLP (hPa) PE (cm) SD (hr) DSR (MJ/m2)

Busan station (calibration data, 2000–2012)
Minimum −7.2 11.3 0.8 992.2 0.2 0.0 0.0

Mean 14.8 62.2 12.9 1015.5 3.1 6.1 14.1
Maximum 30.1 99.0 37.2 1036.2 8.8 13.1 31.3

Standard deviation 8.2 18.8 8.4 7.1 1.5 3.9 7.0
Coefficient of variation 66.5 354.7 70.5 51.1 2.2 14.9 49.4

Skewness index −0.3 −0.2 0.5 −0.1 0.5 −0.3 0.1

Busan station (validation data, 2013–2016)
Minimum −7.6 17.6 1.1 992.7 0.0 0.0 0.2

Mean 15.4 64.1 13.4 1015.8 3.4 7.1 14.0
Maximum 31.7 99.9 33.1 1034.4 11.5 13.1 28.7

Standard deviation 8.1 17.8 8.3 7.4 1.7 4.1 7.0
Coefficient of variation 66.0 318.6 68.6 55.3 2.9 17.0 48.3

Skewness index −0.3 −0.2 0.4 −0.1 0.5 −0.6 0.1

Incheon station (calibration data, 2000–2012)
Minimum −14.6 25.0 0.9 990.8 0.0 0.0 0.0

Mean 12.6 67.3 12.2 1016.1 3.0 6.0 12.9
Maximum 31.1 100.0 34.1 1039.0 12.0 13.7 32.1

Standard deviation 9.8 15.0 8.3 8.1 1.8 3.9 6.9
Coefficient of variation 97.0 224.8 68.3 65.4 3.3 15.5 47.1

Skewness index −0.3 −0.1 0.6 0.0 0.7 −0.2 0.2

Incheon station (validation data, 2013–2016)
Minimum −13.1 31.0 1.3 991.2 0.0 0.0 0.5

Mean 12.8 77.3 14.2 1016.4 3.4 7.1 12.5
Maximum 30.8 99.0 38.3 1037.6 10.1 13.9 26.0

Standard deviation 10.1 14.8 9.6 8.3 2.0 3.9 6.2
Coefficient of variation 101.9 217.6 92.2 69.3 4.1 15.5 39.0

Skewness index −0.3 −0.4 0.6 0.0 0.5 −0.5 0.2

TA, RH, VP, SLP, PE, SD and DSR denote the air temperature, relative humidity, vapor pressure, sea-level pressure,
pan evaporation, sunshine duration, and daily solar radiation, respectively.

3. Methodology of CEEMDAN and Data-Driven Models

3.1. Complete Ensemble EMD with Adaptive Noise (CEEMDAN)

The EEMD introduced by Wu and Huang [40] is an adaptive technique for representing non-linear
and non-stationary signals as the sum of signal elements with modulated parameters of domain and
frequency; a noise-assisted analysis method is given by the popular EMD [41]. The EMD is as a
self-adaptive decomposition model, without initial knowledge of the number and nature of intrinsic
mode functions (IMFs) and is embedded in the data [40,41]. However, research has shown that EMD
has a limitation regarding mode mixing [40]. Mode mixing is either a single IMF including vast
disparate scale elements or a similar scale element, which exist in IMFs [42]. EEMD is introduced as an
enhanced procedure for overcoming the mode mixing problem in EMD.
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Even if EEMD solves this problem, a finite average, the Gaussian white noise added using the
EEMD may not be canceled after resulting in an error of reconstruction. The complete ensemble EMD
with adaptive noise (CEEMDAN) is defined as an enhanced EEMD approach. However, there is a
high level of computational cost (associated with the exhaustive search) and includes residual noise in
the EEMD method. An increase in the number of trials can potentially increase the number of sifting
process. A CEEMDAN was employed for declining the trials number while keeping the capacity for
resolving the problem of mode mixing [43].

In brief, the CEEMDAN steps are as follows:
(1) This method applies for computing the first mode function as following Equation (1).

IMF1(t) =
1
N

N∑
j=1

IMF j
1(t) (1)

The first residue is also given as following Equation (2).

r1(t) = x(t) − IMF1(t) (2)

(2) Determine emd(t) as the kth IMF element using the EMD method and decompose the sequence
r1(t) + p1emd1(nj(t)) to reach the second component of IMF.

IMF2(t) =
1
N

N∑
j=1

emd1(r1(t) + p1emd1(n j(t))) (3)

A residual signal is provided.
r2(t) = r1(t) − IMF2(t) (4)

(3) Likewise, in the previous step, the kth residual signal is estimated.

rk(t) = rk−1(t) − IMFk(t) (5)

The component of k + 1th IMF is then derived.

IMFk+1(t) =
1
N

N∑
j=1

emd1(rk(t) + pkemdk(n j(t))) (6)

(4) Iterate these steps while the residual signal is reached. Suppose, there are L components of
IMF. Hence, the original sequence can be computed as:

y(t) =
L∑

i=1

IMF1(t) + r(t) (7)

where r(t) is the final residual signal. In this study, the optimum standard deviation is equal to 0.5 and
L = 500. According to Figure 2, the original DSR data series was decomposed using CEEMDAN.
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3.2. Gene Expression Programing (GEP)

GEP model is a subset of GP introduced by Ferreira [44], and consists of five components namely
the terminal set, terminal condition, function set, control parameters and fitness function. The GEP
model applies character strings of fixed lengths for solving the problems, while parse structures of
trees with various lengths are used. Moreover, the GEP model can develop complicated non-linear
programs by several subprograms because of its multigenic system. A gene of GEP model is created
by two symbol types: the first symbol is fixed length variables and another is constants which is
known as terminal set (e.g., {a, b, c, 6}) and some operations as the function set (e.g., {+, −, log}) [45].
The generated chromosomes by the GEP model indicate parse trees which are used for reading the
encoded information at the strings using Karva language. After that, these chromosomes can be
described as expression trees (branched structures). The nodes recorded between the root and the
deepest layers can be utilized for inverse expression tree transformation to the Karva expression
(K-expression) for generating the primary string [46]. In this way, the K-expression length should be
either equal or less than the GEP gene [47].

A GEP model begins while the chromosomes related to fixed lengths are generated randomly
in each. When these chromosomes are revealed, all individuals are investigated in case of fitness.
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The individuals are subsequently determined to reproduce based on their fitness. In every generation,
this process is iterated until a solution is found. In this method, genetic operations (e.g., mutation and
crossover) are also used to convert population [44,45].

3.3. Multivariate Adaptive Regression Splines (MARS)

A MARS model is a sort of non-linear model, which was introduced by Friedman [48]. Regarding
this approach, there is no presumption about basic function relations among input/output variables.
The segment endpoints, which are defined as nodes, can determine the endpoint at each region [49,50].

The MARS model builds basis functions using the step searching means. In addition, the MARS
model is built using a two-step method. At first, functions are added until probabilistic nodes are
found (primary phase). The second step involves removing the minimum real terms (secondary phase).
Suppose y is a deterministic output and X = (X1, . . . , Xp) is the input variable. Thus, it can be said that
data are obtained from an unknown “real” model. Consequently, the response is as follows [51]:

y = f (x1, . . . , xp) + e = f (x) + e (8)

where, e is the error distribution. The MARS model is recruited to approximate function f by means
of the basis functions (BFs). In fact, BFs are referred to splines (smooth polynomials) including
piecewise-cubic and piecewise-linear functions. Equation (9) is extracted from the MARS model when
alinear combination of BFs and their mutual relations is created [52],

f (x) = β0 +
M∑

m=1

βmλm(x) (9)

where, each λm(x) is a BF which might be a spline function or product of two or more spline functions.
Coefficients β are constant values and can be evaluated by least squares (LS) method.

The MARS model is known as one of data-driven models. Firstly, the primary method is
accomplished for training data. By cutting off the β0 and basis pair, one model is built that has the
maximum reduction of training error. The next pair is added to the current model on the basis of the
M BFs as follows (10) [53],

β̂M+1λ1(X)max
(
0, X j − t

)
+ β̂M+2λ1(X)max

(
0, t−X j

)
(10)

where the LS technique is used for estimating β. In addition, mutual interactions among the BFs in the
model are carefully considered when new BF is added to the model space. Then, BFs are added into
the model to achieve the maximum specified number of terms that bring about a perfect fitness model.
After that, a backward removal discipline is applied to decrease the number of terms. The main aim
of this deletion approach is finding an optimal number of parameters (terms) by getting rid of the
unessential variables.

3.4. Crow Search Algorithm (CSA)

Crows are capable of memorizing faces, communicating in sophisticated ways, as well as hiding
and retrieving food during different seasons. These characteristics of crows allow them to discover
where other crows hide their food and steal it when the owner leaves. Considering this, Askarzadeh [54]
proposed a novel evolutionary algorithm, named crow search algorithm (CSA), to solve complex
optimization issues. This algorithm follows given principles:

(1) Crows live in the flock form; (2) They memorize the places that they hid their food; (3) They
follow each other to conduct thievery, and (4) They preserve their caches from being pilfered using
a probability.

Similar to other optimization-based algorithms, CSA starts the optimization process with a
dimensional environment compared to the population of crows. The crow number is N and the position
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i of crow at each iteration in the search space is computed using a vector xi,iter =
[
xi,iter

1 , xi,iter
2 , . . . , xi,iter

d

]
where i = (1, 2, . . . , N) and iter = (1, 2, . . . , itermax). itermax is the number of maximum iterations.

There is a parameter in CSA named awareness probability which its role is to balance the
intensification and diversification [55] to increase the intensification using small values for awareness
probability by searching on a local space and by increasing the awareness probability value; CSA can
tend to determine the searching space on the global scale. CSA implementation for optimization can
be briefly explained as [54]:

1. Defining the optimization problem with all of its constraints, determining the decision variables
and setting the CSA parameters, flock size (N), the flight length (fl), maximizing the iteration
number (itermax), and the awareness probability (AP).

2. Initializing the position and memory in a d-dimensional search space randomly for crows
according to Equations (11) and (12). Each crow can be suitable solution for the problem and d
indicates the quantity of the decision variables.

Position =


x1

1 x1
2 . . . x1

d
x2

1 x2
2 . . . x2

d
...

...
...

...
xN

1 xN
2 . . . xN

d

 (11)

Memory =


m1

1 m1
2 . . . m1

d
m2

1 m2
2 . . . m2

d
...

...
...

...
mN

1 mN
2 . . . mN

d

 (12)

3. Evaluating the fitness function for each crow by placing the decision variables into the
objective function.

4. Generating new positions as follows: crow i can generate a new situation and select ones among
other cows (crow j) randomly and follows it to discover crow j’s hidden food source.

5. The possibility of the new positions for all crows is checked as follows: If new position of crows
is possible, the position of that crow is updated. Else, the crow remains in the current situation
and new position is not generated for that crow.

6. The fitness function for the new position of each crow is evaluated.
7. The crows update their memory by Equation (13):

mi,iter+1 =

 xi,iter+1 f
(
xi,iter+1

)
is better than f

(
mi,iter

)
mi,iter otherwise

(13)

where f (.) is an objective function, xi,iter is the position of crow i in iteration, iter and mi,iter are the
memory of crow i in iteration iter. The termination criterion is checked (repeat steps 4–7 until
itermax). Eventually, the best memory position based on the objective function value is considered
as the optimum solution.

3.5. Self-Adaptive Multivariate Adaptive Regression Splines (SaMARS)

In computer science, a careful choice of parameters belonging to data-driven models, such as
ANN, ANFIS, and SVM, is a crucial step to attain outstanding performance in modeling processes.
For instance, the number of hidden nodes and layers (both discrete) or the weights and biases are the
necessary parameters, which need to be optimized in an ANN model. Even if the model provides
appropriate consequences to an addressed problem, its parameters due to incorrect choices may result
in a worse performance than expected. The common technique to find desirable parameters is to
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combine prior experiences with a limited heuristic search of optimal solutions which takes a lot of time
for the user and might not address the issue.

In addition, the MARS model depends on its parameters containing penalty parameter d, maximum BF
Mmax, and interaction mi. Using MARS model, however, makes it difficult to find optimal parameters
simultaneously due to its large range of choices, which appropriate parameters can significantly
improve MARS model’s forecasting accuracy, and also suitable values can still lie outside suggested
ranges. Thus, this study presents SaMARS model as a helpful method to assist users encounter
this challenging issue (Figure 3). Firstly, the MARS model is deployed for handling the underlying
function. A new MARS method is created based on each set of values of the CSA-provided parameter.
CSA’s greedy selector compares the quality of proposed model quality regarding evaluation of fitness
function. After the calibration processing, the MARS model is employed to verify the validation
dataset. The following objective function is applied to check the fitness function of the model:

f = Ecalibration + Evalidation (14)

where, Ecalibration and Evalidation indicate calibration and validation error, respectively. In Equation (14),
root mean square error (RMSE) is applied as the estimation error index. It is worth pointing out
that the fitness function in Equation (14) represents the trade-off between complexity complexity
and generalization of model. Due to the fact that the over-fitting occurs more in the training stage,
the combination of calibration and validation errors can build a model to balance optimally with
minimum calibration error and model generalizability. In the second step, CSA conducts the search for
selecting the best parameter values, containing: Mmax, mi, and d. Once the stop criterion is satisfied, the
optimization process is terminated. In this work, a generator number is used as the stop criterion. Prior
to reaching the certain generation number, the model is underway. Finally, the optimal forecasting
model with the best parameter settings is found when the stop criterion is performed. In other words,
the training process of SaMARS has been completed and is ready to forecast DSR using testing data).

Energies 2019, 12, x FOR PEER REVIEW 9 of 23 

 

outside suggested ranges. Thus, this study presents SaMARS model as a helpful method to assist 
users encounter this challenging issue (Figure 3). Firstly, the MARS model is deployed for handling 
the underlying function. A new MARS method is created based on each set of values of the CSA-
provided parameter. CSA’s greedy selector compares the quality of proposed model quality 
regarding evaluation of fitness function. After the calibration processing, the MARS model is 
employed to verify the validation dataset. The following objective function is applied to check the 
fitness function of the model: 

calibration validationf=E E+  (14) 

where, Ecalibration and Evalidation indicate calibration and validation error, respectively. In Equation (14), 
root mean square error (RMSE) is applied as the estimation error index. It is worth pointing out that 
the fitness function in Equation (14) represents the trade-off between complexity complexity and 
generalization of model. Due to the fact that the over-fitting occurs more in the training stage, the 
combination of calibration and validation errors can build a model to balance optimally with 
minimum calibration error and model generalizability. In the second step, CSA conducts the search 
for selecting the best parameter values, containing: Mmax, mi, and d. Once the stop criterion is satisfied, 
the optimization process is terminated. In this work, a generator number is used as the stop criterion. 
Prior to reaching the certain generation number, the model is underway. Finally, the optimal 
forecasting model with the best parameter settings is found when the stop criterion is performed. In 
other words, the training process of SaMARS has been completed and is ready to forecast DSR using 
testing data). 

 
Figure 3. The main procedures of proposed standalone and hybrid models. 

4. Model Performance  

Figure 3. The main procedures of proposed standalone and hybrid models.



Energies 2019, 12, 1416 10 of 23

4. Model Performance

The accuracy and reliability of the proposed models need to be evaluated and assessed. Therefore,
several statistical criteria were employed as follows:

1. Root mean square error (RMSE)

RMSE =

√√
1
n

n∑
i=1

[DSR obs −DSR f or
]2

(15)

2. Relative root mean square error (RRMSE)

RRMSE =
RMSE

1
N

N∑
i=1

DSRobs

(16)

3. Mean absolute error (MAE)

MAE =
1
N

N∑
i=1

∣∣∣DSRobs −DSR f or
∣∣∣ (17)

4. Nash-Sutcliffe efficiency (NSE)

NSE = 1−

n∑
i=1

[DSR obs −DSR f or
]2

n∑
i=1

[DSR obs −DSRobs
]2

(18)

5. Willmott’s index of agreement (WI)

WI = 1−


n∑

i=1
(DSR obs −DSR f or)

2

n∑
i=1

(∣∣∣DSR f or −DSRobs
∣∣∣+ ∣∣∣DSRobs −DSRobs

∣∣∣)2

 (19)

6. Legates-McCabe’s index (LMI)

LMI = 1−


n∑

i=1

∣∣∣DSR f or −DSR f or
∣∣∣

n∑
i=1

∣∣∣DSRobs −DSRobs
∣∣∣
 (20)

where DSRobs and DSR f or are the measured and forecasted DSR values; DSRobs and DSR f or
indicate the observed and forecasted mean values of DSR; and N is the number of DSR data points.
The first criterion, RMSE [Range = (0, +∞); Ideal value = 0] provides the standard deviation of
estimating errors; and MAE [Range = (0, +∞); Ideal value = 0] gives an information about the
average discrepancies between observed and forecasted values. Both RMSE and MAE criteria
are known as the absolute error measures [37]. In addition, RRMSE [Range = (0, +∞); Ideal
value = 0] is an adequate criterion when comparing models of different stations. NSE [Range =

(−∞, 1); Ideal value = 1] can be applied for evaluating the capability of hydrological approaches.
The highest value of NSE indicates a perfect fit between measured and forecasted DSR. A negative
value of NSE presents that the proposed model can perform worse than the mean value of time
series dataset [56]. Moreover, WI [Range = (0, 1); Ideal value = 1] is a standardized error value of
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model prediction. Both criteria (e.g., NSE and WI) are sensitive to outliers because of the squaring
of difference terms [37,57]. However, LMI [Range = (−∞, 1); Ideal value = 1] is not inflated using
the squared values and is not sensitive to outliers [58].

5. Results and Discussion

In this study, hybrid forecasting models (i.e., CEEMDAN-GEP, CEEMDAN-MARS, and
CEEMDAN-SaMARS) are designed using MARS model with CEEMDAN to eliminate non-stationary
time series. The efficiency and capability of the proposed hybrid models are compared with three
standalone models (e.g., GEP, MARS, and SaMARS) for DSR forecasting in Busan and Incheon stations,
South Korea. Figure 3 indicates the main steps of proposed models for enhancing the model’s
performance. Also, the design parameters of GEP and MARS models for calibration at Busan and
Incheon stations are presented in Table 2.

Table 2. Design parameters of GEP and MARS models for calibration stage at Busan and Incheon stations.

Model Design Parameter

GEP
Chromosomes Gene

Size Head Size Linking
Function

Mutation
Rate

Crossover
Rate

One and Two-Point
Recombination Rate

IS and RIS
Transposition Rate

30 3 8 Addition 0.01 0.8 0.3 0.1

MARS
Max function GCV Self-

interactions
Max

interactions Threshold Prune - -

25–40 0, 2–4 No 2–4 1.0 ×
10−4 Yes - -

5.1. Implementation of CEEMDAN Based Models

In this study, DSR was selected as the target variable based on the different input variables
including vapor pressure (VP), air temperature (TA), relative humidity (RH), sea-level pressure (SLP),
pan evaporation (PE), and sunshine duration (SD).

Firstly, the meteorological input variables were classified as calibration (from 2000 to 2012) and
validation (2013 to 2016) dataset. In the second step, the datasets of calibration and validation phases
were separately decomposed into various components (sub-series) and one remaining value (residual).
The decomposition of time series dataset into twelve IMFs (from IMF1 to IMF12) and one residual
component is provided in Figure 2. Then, the GEP, MARS, and SaMARS models were employed as
estimation approaches to estimate each decomposed IMF and residual component, and finally, the
estimated decomposed IMFs and residual values using the proposed models were aggregated to
generate DSR time series to calculate each component using the same sub-series (IMF1) of six input
variables, respectively.

To summarize, the hybrid forecasting models (i.e., CEEMDAN-GEP, CEEMDAN-MARS, and
CEEMDAN-SaMARS) apply the conceptual idea of “decomposition and ensemble”. The decomposition
and ensemble features can simplify the estimation task and formulate a consensus predicting the
original dataset, respectively.

5.2. Standalone and Hybrid GEP Models

Results of the GEP and CEEMDAN-GEP models for forecasting DSR in both stations are presented
in Table 3. It can be found from Table 3 that the accuracy of the CEEMDAN-GEP model is better
compared with the GEP model based on RMSE, RRMSE, MAE, NSE, WI, and LMI values.

At Busan station, the forecasted values of DSR using the GEP model have RMSE = 2.992
(MJ/m2), RRMSE = 0.189, MAE = 2.402 (MJ/m2), NSE=0.814, WI = 0.955, and LMI = 0.585, while the
CEEMDAN-GEP model produces the forecasted values with RMSE = 2.514 (MJ/m2), RRMSE = 0.171,
MAE = 1.995 (MJ/m2), NSE = 0.873, WI = 0.974, and LMI = 0.654 in the validation phase.

At Incheon station, the CEEMDAN-GEP gave more accurate results compared with the GEP model.
That is, the CEEMDAN-GEP model could forecast DSR values with higher accuracy (RMSE = 2.862
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(MJ/m2), RRMSE = 0.192, MAE = 2.324 (MJ/m2), NSE = 0.789, WI = 0.952, and LMI = 0.564) compared
with the GEP model (RMSE = 3.086 (MJ/m2), RRMSE = 0.211, MAE = 2.501 (MJ/m2), NSE = 0.755,
WI = 0.944, and LMI = 0.528) in the validation phase. In brief, the CEEMDAN-GEP model was superior
to GEP for DSR forecasting in both stations.

Table 3. Statistical performance of standalone and hybrid GEP models at Busan and Incheon stations.

Model (Station) RMSE (MJ/m2) RRMSE MAE (MJ/m2) NSE WI LMI

Calibration phase

GEP (Busan) 2.395 0.169 1.904 0.883 0.968 0.674
CEEMDAN-GEP (Busan) 2.173 0.141 1.727 0.905 0.978 0.712

GEP (Incheon) 2.408 0.193 1.872 0.877 0.968 0.675
CEEMDAN-GEP (Incheon) 2.199 0.171 1.693 0.897 0.972 0.706

Validation phase

GEP (Busan) 2.992 0.189 2.402 0.814 0.955 0.585
CEEMDAN-GEP (Busan) 2.514 0.171 1.995 0.873 0.974 0.654

GEP (Incheon) 3.086 0.211 2.501 0.755 0.944 0.528
CEEMDAN-GEP (Incheon) 2.862 0.192 2.324 0.789 0.952 0.564

Scatterplots between observed and forecasted DSR values for both stations in the validation phase
are presented in Figure 4.
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It can be seen from the scatterplots that the CEEMDAN-GEP model’s best-fit lines in the validation
phase between the estimated (y) and the observed (x) values are closer to the ideal line (y = x). Figure 5
shows that time-series plots between observed and forecasted DSR for calibration and validation phases
in both stations, the CEEMDAN-GEP outperforms GEP model for DSR forecasting in both stations.
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5.3. Standalone and Hybrid MARS Models

Based on Table 4, the CEEMDAN-MARS model could forecast DSR with better precision compared
with MARS model for calibration and validation phase at Busan station.

For the validation phase, the CEEMDAN-MARS model showed optimal values with
RMSE = 2.412 MJ/m2, RRMSE = 0.166, MAE = 1.983 MJ/m2, NSE = 0.879, WI = 0.969, and LMI = 0.667
compared with the MARS model (RMSE = 2.951 MJ/m2, RRMSE = 0.207, MAE = 2.437 MJ/m2,
NSE = 0.819, WI = 0.951, and LMI = 0.581) at the Busan station. This illustrates the ability of the
CEEMDAN-MARS model for DSR forecasting at the Busan station. Results of statistical criterion
at the Incheon station were completely similar to those of Busan. Comparison between MARS and
CEEMDAN-MARS models indicated that the CEEMDAN-MARS model produces outstanding results
(RMSE = 2.659 MJ/m2, RRMSE = 0.185, MAE = 2.221 MJ/m2, NSE = 0.818, WI = 0.957, and LMI = 0.582)
compared with MARS model (RMSE = 3.066 MJ/m2, RRMSE = 0.214, MAE = 2.421 MJ/m2, NSE = 0.758,
WI = 0.948, and LMI = 0.544) for the validation phase at the Incheon station. Therefore, the MARS model
has not permissible result than the CEEMDAN-MARS model for DSR forecasting at the Incheon station.
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Table 4. Statistical performance of standalone and hybrid MARS models at Busan and Incheon stations.

Model (Station) RMSE (MJ/m2) RRMSE MAE (MJ/m2) NSE WI LMI

Calibration phase

MARS (Busan) 2.742 0.194 2.183 0.847 0.957 0.626
CEEMDAN-MARS (Busan) 2.205 0.156 1.762 0.901 0.973 0.698

MARS (Incheon) 2.346 0.1824 1.832 0.883 0.968 0.681
CEEMDAN-MARS

(Incheon) 1.901 0.146 1.506 0.923 0.979 0.738

Validation phase

MARS (Busan) 2.951 0.207 2.437 0.819 0.951 0.581
CEEMDAN-MARS (Busan) 2.412 0.166 1.983 0.879 0.969 0.667

MARS (Incheon) 3.066 0.214 2.421 0.758 0.948 0.544
CEEMDAN-MARS

(Incheon) 2.659 0.185 2.221 0.818 0.957 0.582

To confirm the accuracy of MARS and CEEMDAN-MARS models, scatterplots between observed
and forecasted DSR at both stations are provided in Figure 6. Figure 6 illustrates that the forecasted
DSR values using the CEEMDAN-MARS model were much closer to the corresponding observed DSR
values than those of MARS model.
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In addition, time series plots between forecasted and observed DSR values in the calibration and
validation phases are shown in Figure 7. This figure explained that the observed and forecasted DSR
values using CEEMDAN-MARS model showed better agreement than MARS model.Energies 2019, 12, x FOR PEER REVIEW 15 of 23 
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5.4. Standalone and Hybrid SaMARS Models

Table 5 explains that the CEEMDAN-SaMARS model outperforms the SaMARS model to forecast
DSR in the calibration and validation phases at Busan. A combination of MARS model, CEEMDAN data
pre-processing approach and CSA algorithm (RMSE = 2.427 MJ/m2, RRMSE = 0.181, MAE = 1.894 MJ/m2,
NSE = 0.878, WI = 0.971, and LMI = 0.672) produces better results compared with the standalone
SaMARS model (RMSE = 2.562 MJ/m2, RRMSE = 0.174, MAE = 2.092 MJ/m2, NSE = 0.864, WI = 0.964,
and LMI = 0.638) for the validation phase at Busan.

At Incheon, comparison between SaMARS and CEEMDAN-SaMARS models suggested that the
CEEMDAN-SaMARS model produces outstanding results (RMSE = 2.311 MJ/m2, RRMSE = 0.164,
MAE = 1.931 MJ/m2, NSE = 0.883, WI = 0.967, and LMI = 0.659) compared with the SaMARS model
(RMSE = 2.999 MJ/m2, RRMSE = 0.206, MAE = 2.455 MJ/m2, NSE = 0.769, WI = 0.948, and LMI = 0.537)
for the validation phase at Incheon. Therefore, SaMARS model could not perform more efficiently
than the CEEMDAN-SaMARS model for DSR forecasting at Incheon.

Scatterplots and time-series between observed and estimated DSR values at Busan are presented
in Figures 8 and 9, respectively. It can be found from Figures 8 and 9 that the slopes of the forecasted
DSR values using CEEMDAN-SaMARS are much close to the ideal value (y = x); this model performs
better in comparison with SaMARS.
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Table 5. Statistical performance of standalone and hybrid SaMARS models at Busan and Incheon stations.

Model (Station) RMSE (MJ/m2) RRMSE MAE (MJ/m2) NSE WI LMI

Calibration phase

SaMARS (Busan) 2.386 0.169 1.887 0.884 0.968 0.677
CEEMDAN-SaMARS (Busan) 1.828 0.129 1.431 0.932 0.982 0.776

SaMARS (Incheon) 2.198 0.171 0.1714 0.897 0.972 0.702
CEEMDAN-SaMARS (Incheon) 1.001 0.077 0.615 0.978 0.994 0.893

Validation phase

SaMARS (Busan) 2.562 0.174 2.092 0.864 0.964 0.638
CEEMDAN-SaMARS (Busan) 2.427 0.181 1.894 0.878 0.971 0.672

SaMARS (Incheon) 2.999 0.206 2.455 0.769 0.948 0.537
CEEMDAN-SaMARS (Incheon) 2.311 0.164 1.931 0.883 0.967 0.659
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Likewise, at Incheon, Figures 8 and 9 provide that the CEEMDAN-SaMARS model give fewer
scattered estimates compared with SaMARS. In addition, the accuracy of the forecasted peak values from
CEEMDAN-SaMARS is improved compared with SaMARS model. Therefore, the CEEMDAN-SaMARS
model is found to be relatively more suitable for forecasting DSR peak values than SaMARS model in
the validation phase in Incheon.
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5.5. Comparison of Proposed Hybrid and Standalone Models

After the investigation of the standalone and hybrid models for DSR forecasting, the performance
of the proposed models was generally compared to select the best for DSR forecasting of both stations.
It can be seen from Tables 3–5 at Busan, that the values of forecasted DSR using CEEMDAN-MARS and
CEEMDAN-SaMARS provided a reliable and efficient performances compared with CEEMDAN-GEP,
GEP, MARS, and SaMARS. In a similar comparison at Incheon, the CEEMDAN-SaMARS produced the
best results to forecast DSR compared with CEEMDAN-GEP, CEEMDAN-MARS, GEP, MARS, and
SaMARS models. From the results at both stations, the conjunction of MARS model, CEEMDAN data
pre-processing approach, and CSA algorithm produced the best results to forecast DSR. Therefore,
it can be judged from this investigation that the application of CEEMDAN and CSA to standalone
data-driven model can clearly enhance the model accuracy and efficiency.

In addition, the forecasting accuracy of the proposed models is shown using box-plots diagrams
(Figure 10). Box-plots can be expressed as the spread of observed and forecasted DSR data according
to their quartiles. The whiskers indicate the outside variation of 25th (lower) and 75th (upper)
percentiles [37]. Using the box-plots, the CEEMDAN-SaMARS model gave higher accuracy and ability
to forecast DSR compared with the other models.

Furthermore, the percentage of absolute forecasted error value is represented using the empirical
cumulative distribution function (ECDF) for the validation phase at both stations (Figure 11). Using the
error percentage that indicates the minimum error (i.e., from 0 to ±4 MJ/m2), the CEEMDAN-SaMARS
model gave the best performance compared with the other models for forecasting DSR values.
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Overall, the results of this research indicate that the CEEMDAN-based GEP, MARS, and SaMARS
models capture the non-linear and non-stationary dynamics of DSR time series datasets effectively
and can provide optimal DSR forecasting. Although the GEP, MARS, SaMARS models could
forecast DSR values, they were not efficient and accurate as CEEMDAN-GEP, CEEMDAN-MARS,
and CEEMDAN-SaMARS models. Though, this study proposed and assessed the hybrid models
(i.e., CEEMDAN-GEP, CEEMDAN-MARS, and CEEMDAN-SaMARS) for DSR forecasting, the identified
limitations on DSR research must be taken into account for future studies.

This study explains that the GEP, MARS, and SaMARS models can improve the precision of
DSR forecasting when the CEEMDAN method is integrated for decomposing data time-series into
components. However, one of the main disadvantages of using the CEEMDAN data pre-processing
approach would be classified as time-consumption. In addition, even if CSA algorithm shows
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excellent performance for determining three parameters of MARS, it has to develop and verify other
meta-heuristic algorithms that help to identify the adequate parameters of MARS. The reason can be
expressed that CSA algorithm requires a long time to find the parameter of MARS model. Although the
outcomes are suitable for this research, other alternative methods have to be found, and investigated
to solve this issue.Energies 2019, 12, x FOR PEER REVIEW 19 of 23 
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6. Conclusions and Future Research

Solar radiation is one of the most renewable and accessible energy sources, and plays a crucial role
in global energy demand. Hence, accurate forecasting of DSR is one of the major problems for scientists,
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engineers, and decision makers. This study attempts to investigate the efficiency of GEP, MARS, and
SaMARS models for DSR forecasting at Busan and Incheon stations, South Korea. To overcome the
non-stationary and non-linear characteristics of time-series values, the CEEMDAN is utilized as the
data pre-processing approach to decompose all input/output variables, which improves the accuracy
of DSR forecasting.

Comparing the results of standalone models (e.g., GEP, MARS, and SaMARS) and hybrid models
(e.g., CEEMDAN-GEP, CEEMDAN-MARS, and CEEMDAN-SaMARS) confirms the accuracy and
efficiency of the proposed models. It is shown that the CEEMDAN data pre-processing approach
has a significant influence on models’ accuracy and provides better results. At the Busan station,
the forecasted DSR using CEEMDAN-GEP, CEEMDAN-MARS, and CEEMDAN-SaMARS models
have a higher accuracy in term of NSE, 0.873, 0.879, and 0.878, compared to the standalone GEp,
MARS, and SaMARS models. Furthermore, the results indicate that the CEEMDAN-SaMARS model
is an effective tool and a promising method for DSR forecasting. The performance of the hybridized
CEEMDAN-SaMARS model at both stations was the best, with RRMSE ≤ 18.1% at Busan and 19.3%
at Incheon. In addition, this research reveals that the usage of a data pre-processing model (e.g.,
CEEMDAN) plays a main role in achieving an accurate forecast. Furthermore, future study is necessary
to improve the model’s accuracy using feature selection methods to attain optimal input variables.

In spite of some limitations, this study can provide the basic information for future work,
particularly the use of a hybrid model which can be integrated with a physically-based approach to
create a DSR simulation model. Moreover, it is suggested that a two-phase decomposition is utilized to
increase IMF1 estimating values which have a high frequency.

Author Contributions: M.R.-B. and F.B.-M. conceived and designed the study; S.K. and A.A. collected and
pre-processed the data; M.R.-B. and N.M. implemented the models and performed the analyses; M.R.-B. and
N.M. wrote the original draft of manuscript; N.W.K. and I.-M.C. analyzed the results; S.A. reviewed and edited
the manuscript.

Funding: This research was funded by the Korea Institute of Civil Engineering and Building Technology, grant
number 20190153-001.

Acknowledgments: This research was supported by a grant from a Strategic Research Project (Development
of Hydrological Safety Assessment System for Hydraulic Structures) funded by the Korea Institute of Civil
Engineering and Building Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wu, Y.; Wang, J. A novel hybrid model based on artificial neural networks for solar radiation prediction.
Renew. Energy 2016, 89, 268–284. [CrossRef]

2. Demirhan, H.; Atilgan, Y.K. New horizontal global solar radiation estimation models for Turkey based on
robust coplot supported genetic programming technique. Energy Convers. Manage. 2015, 106, 1013–1023.
[CrossRef]

3. Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting
monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [CrossRef]

4. Mohammadi, K.; Shamshirband, S.; Kamsin, A.; Lai, P.C.; Mansor, Z. Identifying the most significant input
parameters for predicting global solar radiation using an ANFIS selection procedure. Renew. Sustain.
Energy Rev. 2016, 63, 423–434. [CrossRef]

5. Gairaa, K.; Khellaf, A.; Messlem, Y.; Chellali, F. Estimation of the daily global solar radiation based on
Box–Jenkins and ANN models: A combined approach. Renew. Sustain. Energy Rev. 2016, 57, 238–249.
[CrossRef]

6. Shamshirband, S.; Mohammadi, K.; Chen, H.L.; Samy, G.N.; Petković, D.; Ma, C. Daily global solar radiation
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