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Abstract: PV generating sources are one of the most promising power generation systems in today’s
power scenario. The inherent potential barrier that PV possesses with respect to irradiation and
temperature is its nonlinear power output characteristics. An intelligent power tracking scheme, e.g.,
maximum power point tracking (MPPT), is mandatorily employed to increase the power delivery of
a PV system. The MPPT schemes experiences severe setbacks when the PV is even shaded partially
as PV exhibits multiple power peaks. Therefore, the search mechanism gets deceived and gets
stuck with the local maxima. Hence, a rational search mechanism should be developed, which will
find the global maxima for a partially shaded PV. The conventional techniques like fractional open
circuit voltage (FOCV), hill climbing (HC) method, perturb and observe (P&O), etc., even in their
modified versions, are not competent enough to track the global MPP (GMPP). Nature-inspired and
bio-inspired MPPT techniques have been proposed by the researchers to optimize the power output of
a PV system during partially shaded conditions (PSCs). This paper reviews, compares, and analyzes
them. This article renders firsthand information to those in the field of research, who seek interest in
the performance enhancement of PV system during inhomogeneous irradiation. Each algorithm has
its own advantages and disadvantages in terms of convergence speed, coding complexity, hardware
compatibility, stability, etc. Overall, the authors have presented the logic of each global search MPPT
algorithms and its comparisons, and also have reviewed the performance enhancement of these
techniques when these algorithms are hybridized.

Keywords: photovoltaic systems; MPPT technique; partial shading; global MPP (GMPP);
nature-inspired algorithms

1. Introduction

The increasing load demand on one side and the depletion of fossil fuels on the other side forces
the world to look for alternative energy resources. Also, the concern regarding pollution through the
greenhouse effect and other environmental issues associated with the conventional energy sources
make renewable energy resources (RES) more attractive [1]. Among various non-conventional sources,
solar energy is more widely used because of the abundant availability of solar irradiation on the earth’s
surface [2]. The photovoltaic (PV) cells convert direct sunlight into electricity, but as the solar irradiance
and temperature are fluctuating in nature, as a result, it reduces the PV panel efficiency. The main
drawbacks of the PV system are its highly intermittent nature, lower conversion efficiency, lower rating,
high implementation cost, and maintenance issues. PV panels also get affected due to partial shading
because of clouds, tree branches, birds, etc. These factors make it essential to deploy a dc–dc converter
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with an MPPT technique for tracking the maximum power point from the PV panel under all operating
conditions. The MPPT control algorithm is employed along with the dc–dc converter, where the control
algorithm adjusts the duty cycle according to the variation in solar irradiation and temperature, which
will boost the lower voltage output of the PV system. A PV cell has very low power rating [3–6], and
these cells can be connected in series or parallel according to the required current and voltage rating.
The series and parallel combination constitute a PV module and the modules are connected together
to form a PV array [7]. This makes power electronic interfaces indispensable in any PV system for
ensuring the system voltage compatible with a load or grid [8]. PV panels can be implemented as a
rooftop setup and it can also operate in standalone mode and grid-connected mode [9].

For a PV system, the output voltage depends on the temperature of the panel and the current value
of the irradiance level. The PV system gives the optimum output under the standard test condition
(STC-irradiance = 1000 W/m2, temperature = 25 ◦C, 1.5 air mass) [3,10]. MPPT trackers embody a
control algorithm and converter to ensure that PV panels operate at MPP to render maximum possible
power. This tracking scheme becomes futile when PV panels are partially shaded. In the research arena,
there was a paradigm shift in MPPT algorithms as a host of research articles are being published every
year on global search algorithms [8,9]. Many studies have been done toward developing an efficient
and reliable MPPT algorithm to extract the maximum operating power point from the PV panel [11–13].
Both conventional and computational intelligence algorithms are used for MPPT [14,15]. Most of the
conventional algorithms perform effectively under uniform solar irradiation and temperature but fail to
track the true maximum operating point during varying weather or partial shading conditions [16,17].

The efficient nature-inspired algorithms based on MPPT techniques are the particle swarm
optimization (P&O) algorithm, ant colony optimization (ACO) algorithm, artificial bee colony (ABC)
algorithm, differential evolution (DE), etc. These algorithms are used for global search problems and
can operate effectively under uniform solar irradiation and temperature, as well as partial shading and
rapidly changing environmental conditions. Hybridization of these algorithms also has been done for
enhancing the performance and reliability of these algorithms. In Reference [18], the authors have
proposed a swarm chasing MPPT algorithm for module integrated converters and the performance is
also compared with conventional P&O method. Here, the swarm-chasing technique is found to be
more superior. Comparative study on well-entrenched global peak tracking algorithms is archived in a
research forum [15,19]. Some researchers paid due credit to the conventional algorithms and examined
whether the algorithms could be sustained during partial shading. In Reference [19], conventional
and computational intelligence MPPT techniques were presented, which describes the working of
each algorithm with their merits and demerits. The quest toward proposing new algorithms has not
dwindled as one can witness recent research articles on global search MPPT [8,9,13,15].

In this paper, a review has been done for five evolutionary algorithms that are reliable and more
pragmatic for practical deployment. This paper has been framed in such a manner that it gives a
clear understanding of PV characteristics, partial shading, and MPP search mechanisms. The paper is
organized in such a way that Section 2 presents PV modeling and PV characteristics analysis during
both uniform irradiation condition and PSCs. Section 3 discusses the soft computing algorithms
reviewed in this paper, whereas Section 4 follows a brief discussion about the reviewed algorithms.
The concluding part is given in Section 5.

2. PV Modeling and Its Characteristic Curves

Figure 1 depicts a general block diagram of a PV generating system. In the given diagram,
a PV panel connected with a dc–dc converter and the duty cycle of the converter is controlled by the
MPPT algorithm. The MPPT algorithm will sense the required parameters from the solar system, and
accordingly, it modifies the converter duty cycle. Hence, under all conditions, maximum output power
is obtained from the panel. Then the converter output can be directly connected to the dc load or it can
also be given to ac loads by connecting them through an inverter.
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Figure 1. Diagram of PV connected to a load.

A PV module consists of many solar cells that are generally made up of silicon material. When
the light energy falls on the solar cell, then the electrons start to move and current flows. Solar cells are
considered current sources. There are many types of solar cell models, among which, the single diode
model is well established and a simple structure [10,20]. In this paper, a single diode model solar cell is
shown in Figure 2. It is basically a diode connected in parallel with a current source along with one
shunt and one series resistor. In the figure, Ipv is the current generated by light, ID is the current across
diode, whereas Ish represents the current flowing through a shunt resistance Rsh, and I is the output
current. For the mathematical modeling of the PV system, the basic equations are given below.

Figure 2. Circuit for the modelling of a single diode PV cell.

I = IPV − Io

[
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V + IRs

aVT

]
− 1

]
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Rsh
(1)

where VT is the PV array thermal voltage = kT/q. IP represents the photocurrent, Io represents reverse
saturation current, and Rs and Rsh represent the series and shunt resistance respectively, a is the diode
ideality factor, q is the charge of the electron i.e., 1.6 × 10−19 C, k represents Boltzmann’s constant
(1.3806503 × 10−23 J/K), and T is the temperature.

Io = Io_STC
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T

]3
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In the above equation Eg represents band gap energy of the semi-conductor material and Io_STC

denotes the nominal saturation current at STC, TSTC is the temperature under STC (25 ◦C).
In simplified form, Io can be written as

Io =
(Isc,STC + KI∆T)

exp[[Voc,STC + Kv∆T]/aVT] − 1
(3)

here Ki is the coefficient of the short circuit current, Kv is the open circuit voltage coefficient, Isc_STC is
the short circuit current under STC, Voc_STC is the open circuit voltage under STC, and ∆T = T − TSTC.

In Figure 3a,b the I–V graph and P–V graph for different irradiation levels are shown. The I–V
graph shown in Figure 3a shows that according to the temperature and irradiance, the voltage and
current value also varies. Here, the current value depends on the irradiance, i.e., directly proportional,
and the voltage depends on the temperature [20]. Hence, the PV operating point does not stay at the
maximum operating value and it varies with the environmental conditions, which in turn, reduces the
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power. Therefore, it is preferable to install more PGS than the required demand, but simultaneously,
it increases the cost [21]. Therefore, the dc–dc converter with an effective MPPT technique is deployed
for the PV systems to modify the converter duty cycle according to the environmental conditions and
thereby tracks the maximum power point for all operating conditions. During uniform irradiance,
the P–V graph shows only one peak power point, which gives the corresponding maximum voltage
and current. Hence, the conventional MPPT techniques would suffice to track the true MPP and is
found to be reliable.

Figure 3. P–V characteristics graph for different irradiation levels. (a) shows the current versus
voltage graph for different irradiation levels; (b) shows the power versus voltage graph for different
irradiation levels.

However, when some of the PV panels in an array receive non-uniform irradiation and temperature,
i.e., they are shaded, then the power production of the shaded panel decreases relative to an unshaded
one. The shaded panels absorb a large amount of current from the unshaded panels in order to
operate. This condition is called hot spot formation and this damages the PV panel [22,23]. To avoid
this condition, a bypass diode is connected in parallel across each panel, as shown in Figure 4a,b,
which provides another way for conduction during the occurrence of partial shading [24]. As shown
in Figure 4c,d, during the partial shading condition, there exist multiple peak points in the P–V
characteristics graph, among which only one point is the true maximum power point. These multiple
peak points are considered the local maximum power points (LMPPs), and among all the LMPPs,
the true MPP is called the global maximum power point (GMPP). Most of the conventional MPPT
techniques fail to identify the GMPP among all the LMPP. For this purpose, many researchers have
proposed various stochastic, evolutionary, and swarm-based algorithms and hybridization of these
algorithms has also been done for more reliable and effective MPP tracking.

Figure 4. Cont.
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Figure 4. PV panels operation during partial shading conditions: (a) PV panels under normal operation,
(b) PV panels under a shading condition, (c) I–V characteristic of PGS during partial shading, and (d)
P–V characteristic of PGS during partial shading.

3. Intelligent Nature Inspired Algorithms: An Overview

The specific evolutionary algorithms discussed are

• particle swarm optimization (PSO) algorithm
• differential evolution (DE) algorithm
• ant colony optimization (ACO) algorithm
• artificial bee colony (ABC) optimization algorithm
• bacteria foraging optimization algorithm (BFOA).

The analysis of these algorithms has been done with respect to the convergence speed, execution,
and reliability.

3.1. Particle Swarm Optimization (PSO)

PSO is the most widely used algorithm used for the MPPT technique. This algorithm was
discovered in 1995 by Ebehart and Kennedy. PSO is widely accepted by researchers due to its simple
and easy to implementation characteristics. This algorithm is motivated by the communal activity
of the crowding of birds and schooling activity of fish. PSO is a global optimization algorithm that
finds the best solution in a multi-dimensional path. Therefore, it is able to track the GMPP from all
local MPPs even when the PV panel is under a partial shading condition or the PV panel possesses
multiple peak points. PSO uses many operating agents that share information about their respective
search behavior, where all agents are termed as a particle. Here, a number of particles move in the
search space in order to get the best solution. Each particle adjusts its movement by following the
best solution and mean while searches for new solutions will be in progress [25]. The particle referred
here can be voltage or duty cycle. For finding the optimal solution, the particle must follow the best
position of its own or the best position of its neighbor. The mathematical representation of the PSO
algorithm is given in the following equations [26,27]:

ui(k + 1) = qui(k) + c1r1
(
pbest,i − gi(k)

)
+ c2r2

(
gbest,i − gi(k)

)
(4)

gi(k + 1) = gi(k) + ui(k + 1) (5)

where i = 1, 2, 3,..., N.
ui—velocity of the particle
gi—particle position
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k—number of iterations
q—inertia weight
r1,r2—random variables which are distributed uniformly between [0,1]
c1,c2—cognitive and social co-efficient respectively
pbest—individual particle’s best position
gbest—best position between all the particle’s individual best position
PSO finds the global maxima voltage point according to the maximum power in the P–V graph.

For this, we need to specify PSO parameters such as power and voltage value, size of the swarm, and
number of iterations. PSO stores the best value as pbest and continues to update until it finds the gbest

point or it satisfies the objective function [15,27,28]:

pbest,i = gi(k) (6)

f(gi(k)) > f(gi(k + 1)) (7)

where the function “f” is the PV panel operating power. During partial shading, the particles are
re-initialized to find gbest and it must satisfy the below condition. A flowchart of the PSO algorithm is
given in Figure 5. ∣∣∣∣∣∣P(gi+1) − P(gi)

P(gi)

∣∣∣∣∣∣ > ∆P (8)

Figure 5. PSO algorithm.

In Reference [24], a cost-effective PSO algorithm is presented, which uses one single pair of sensors
for controlling multiple PV arrays. The algorithm is also compared with many conventional techniques,
from which, the proposed algorithm is found to be more effective and it also tracks the MPP even
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during partial shading conditions. The authors in Reference [9] have presented a PSO algorithm
integrated with an overall distribution (OD) algorithm. The OD technique is used to efficiently track
the MPP during any shading conditions and is again integrated with PSO to improve the accuracy of
the MPPT technique. A novel two-stage PSO MPPT is proposed in Reference [29]. Here, for partial
shading conditions and to achieve improved convergence speed, a shuffled frog leaf algorithm (SFLA)
with an adaptive speed factor is implemented with PSO. For partially shaded PV power systems,
a modified PSO is presented in Reference [30] whose effectiveness is shown in the paper. Many studies
have been done using PSO as an MPPT technique for both uniform irradiation and partially shaded
conditions. However, the standard PSO performance is enhanced and modified by using hybridization
and modification in the algorithm [25,28,31–35], which increases the system efficiency and is found to
be more reliable.

3.2. Differential Evolution (DE)

This algorithm was suggested by Price and Storn in 1995. DE is a randomly varying
population-based algorithm and it finds its application in global optimization problems [36]. This
algorithm is well-suited for non-linear, non-differentiable, multi-dimensional problems [37]. Therefore,
this algorithm can be implemented for PV panel maximum power extraction as the PV characteristics
possesses a highly non-linear graph as they are intermittent in nature [16,20]. Furthermore, even
during partial shading conditions, it can track the global optimum power point [38,39]. In the DE
algorithm, the complexity reduces as it requires much fewer parameters (particles) to tune. This tuning
of particles makes sure that in every iteration, the particles converge toward the best solution in the
search space. DE algorithm follows various steps for optimization and those are initialization, mutation,
recombination/crossover, and selection [40]. The DE algorithm flowchart is shown in Figure 6.

Figure 6. DE algorithm.
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3.2.1. Initialization

DE optimizes the problem by using different formulas for creating new particles and also by
maintaining the population size at the same time. In the search space, out of the existing particles
and newly updated particles, the best fitness value particles only remain and others having the least
fitness value are replaced. In DE optimization, various control processes are carried out step by step as
discussed below. For optimization using DE, at first, initial parameters, population, and number of
generations must be initialized [37,41,42].

If a function with “P” real parameters must be optimized, then the population size is taken as
“N”, where the “N” value should not be less than 4.

Hence, the parameter vectors can be written as:

xi,G = [x1,i,G, x2,i,G, x3,i,G, . . . . . . , xP,i,G] (9)

In the above equation i = 1, 2, . . . , N; and G is the number of generations.
During initialization process, the user sets a predefined upper and lower boundary value for

each particle:
xL

j ≤ xj,i,1 ≤ xU
j (10)

The initial values are chosen randomly for each particle but in uniform intervals between the
upper and lower interval of the particle.

3.2.2. Mutation

Here, each individual becomes a target vector. Mutation is performed for all N particles in the
search space and hence it expands the search space. For a particular particle xi,G, three random vectors
are taken such as xr1,G, xr2,G, andxr3,G in such a manner that all the indices i, r1, r2, and r3 are distinct
from each other.

For finding out the donor vector (the new particle formed from the mutation process), add the
weighted difference of two vectors with the third vector:

ui,G+1 = xr1,G + F(xr2,G − xr3,G) (11)

where F is the mutation factor, which lies between [0,2]; ui,G+1 is the donor vector.

3.2.3. Crossover

Here, the next generation is formed from the parent particles. Therefore, recombination is
performed between the target and mutant vector to get the next generation vector, which is a trial
vector. In other words, the trial vector ui,G+1 is formed by considering the elements of the target vector
xi,G and also from the elements of the mutant vector/donor vector ui,G+1.

Crossover may be reached on the D variables when an arbitrarily chosen number between 0
to 1 lies in the range of the CR value, where CR is a constant value and is used for controlling DE
parameters. The condition is given as:

uj,i,G+1 =

 uj,i,G+1 if randj,i ≤ CR and j = Irand

xj,i,G if randj,i > CR and j , Irand

(12)

where
i = 1, 2, . . . , N
j = 1, 2, . . . ., D
randj,i is any value randomly chosen within [0,1]
Irand is a random integer whose value lies within (1, 2, . . . , D). This value makes sure that

ui,G+1 , xi,G.
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3.2.4. Selection

In DE optimization, the population size is kept constant throughout the generation process.
Therefore, a selection criterion provides the best parameter for the next generation. In this process,
both parent vector/target vector and the trial vector are compared, and if the trial vector is able to give
a better fitness value compared to that of the target vector, then the target vector, i.e., the parent vector,
is replaced by the trial vector and the generation gets updated.

DE has its wide acceptance in global search problems. The authors in reference [38] have proposed
a DE-based MPPT technique that works with the boost converter for a partially shaded PV system.
In the above work, performance of DE algorithm is compared with a conventional algorithm and its
efficiency is verified. A detail survey about DE algorithm use in various fields with its advantages
and disadvantages is given in reference [43]. The fundamentals of DE, its application to various
multi-objective optimization problems, such as constrained, uncertain optimization problems are
reviewed in reference [44]. A modified DE with a mutation process being modified, i.e., instead
of choosing the parents randomly for mutation, each individual is assigned with a probability of
selection, which is inversely proportional to the distance from the mutated individual, is presented in
Reference [45]. This modified DE can be applied for solving various optimization problems with some
small changes according to the requirement of the optimization problem. A modified DE algorithm for
finding the PV model parameters during varying weather conditions and partial shading is given in
Reference [46], and the algorithm presented here uses only the PV datasheet information. The original
DE and the modified one, and also hybridization of the DE algorithm with various computational
techniques or with conventional methods, have been proposed by many researchers [47,48]. The DE
algorithm possesses many advantages, but PSO is superior to it in many aspects, such as less coding
complexity and parameter tuning.

3.3. Ant Colony Optimization (ACO)

This technique was first proposed by Colorni, Dorigo, and Maniezzo [49]. This is a
probability-based algorithm used for a computational problem-solving purpose. This algorithm
is inspired by real ants’ behavior for searching the shortest path from their colony to an available
food source. The ants will follow the shortest distance between their nest and food [15]. Initially,
when the ants search for food, they leave a pheromone trail for other ants to follow the same path.
This pheromone trail is a chemical material to which members of the same species respond [50].
The thickness of the pheromone trail increases when it is followed by more ants. These ants may also
follow the same path while returning to their nest, thereby making the pheromone trail thicker. Hence,
the same path is followed by most of the ants till they find any other shortest path by exchanging
information about the pheromone. If the path for the food is not the shortest one, then eventually the
pheromone disappears [15,27,51].

ACO in MPPT

For implementing ACO in MPPT, most of the ants’ behavior is considered. Here, ants are initialized
first and the objective function is set by considering the irradiation and temperature exposure of each
panel. The procedure followed in the ACO algorithm for optimization is given below [50]:

Step 1: Initialize all ants and evaluate K random solutions.
Step 2: Rank solutions according to their fitness value.
Step 3: Perform a new solution.
Step 4: Observe the ant that has the global best position (solution).
Step 5: Upgrade the pheromone trail.
Step 6: Check for termination criteria.
Step 7: If satisfied, then the existing solution is the global best value, else go to Step 3.
Step 8: End.



Energies 2019, 12, 1451 10 of 21

For finding the pheromone concentration, the formula is given as:

Tij = ρTij(t− 1) + ∆Tij (13)

In the above equation
t = 1, 2, 3, . . . , T
Tij is the revised concentration of the pheromone
∆Tij is the change in pheromone concentration
ρ is the pheromone concentration rate.
The main function of ACO is to track the global peak power operating point at which the PV

system operates.

Fitness function = Panel 1(V1 × (I(S1,T1))) + Panel 2(V2 × (I(S2,T2))) +

Panel 3(V3 × (I(S3,T3))) + . . . + Panel N(VN × (I(SN,TN)))
(14)

where V1, S1, and T1 represent the panel 1 voltage, irradiance, and temperature, respectively, and so on
for the other panels.

In references [42,52], the authors have used an ACO algorithm to improve the PV system efficiency
for a partial shading condition. Apart from the MPPT techniques, the ACO has wide application
such as optimization in hydro-electric generation scheduling, optimal reactive power dispatch for
line loss reduction, microwave corrugated filter design, etc. [53–55]. For further improving the ACO
performance, i.e., its convergence speed and ease of operation, it can also be combined with various
evolutionary and conventional algorithms. The ACO algorithm performs excellently for partially
shaded PV modules with improved system performance [56,57]. In reference [58], an ACO-PSO-based
MPPT technique is given for a partially shaded PV system. The proposed hybrid algorithm is
implemented with an inter-leaved boost converter, which improves the output power and provides
a constant voltage to the load. The authors in reference [59] have proposed a hybrid algorithm by
considering the simplest conventional and widely used P&O (perturb and observe) with ACO. P&O
fails during partial shading and falls on local MPP, hence in the hybrid algorithm, ACO helps the
algorithm converge towards the GMPP. This hybrid algorithm improves the system performance
and reliability.

3.4. Artificial Bee Colony (ABC)

This swarm technology-based meta-heuristic algorithm is used to solve multi-dimensional and
multi-modal problems. The algorithm was proposed by Karaboga [60]. It is inspired by various
behaviors of honeybees such as foraging, learning, memorizing, and sharing of information for
optimization [61–63]. For the ABC algorithm, food locations are considered as effective solutions
and the amount of nectar it produces defines the quality of the food source (i.e., fitness of the food
source) [64]. Here, the bees are classified into three categories (first one is called employed bees, second
one is onlooker bees, and the third one is scout bees), and the three types of bees perform mostly three
types of foraging behavior, which are first searching the food source, then employing the employed
bees for getting the food from the food source, and lastly, discarding the food source due to its lack
of nectar quality [15,27]. The employed bees search for food or find the food location. The bee that
makes decision regarding the food source is called the onlooker bee. The food sources discovered by
the employed bees that cannot be improved are discarded, and the employed bees that found them
become scout bees. Here, the number of bees is equal to the number of employed scout bees and
onlooker bees. Flowchart of ABC algorithm is given in Figure 7.
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Figure 7. ABC algorithm.

ABC as the MPPT

For analyzing the MPPT technique based on the ABC algorithm, every candidate solution is
considered as duty cycle “d” of the dc–dc converter. Hence, here the optimization function has only one
parameter “d” to be optimized. Let us consider a D-dimensional problem having NP food sources has
to be optimized, where NP is the number of number of bees in the search space. Hence, by assuming
that each food source has one employed bee, then the ith food source location for the tth iteration is
given by

Xt
i =

[
xt

i1, xt
i2, xt

i3, . . . xt
id, . . . xt

iD

]T
(15)

Randomly generate the food source as:

xid = Ld + r(Ud − Ld) (16)

where Ud and Ld are upper and lower limit for the dth dimension problem, and r is a random number
whose value is chosen between [0,1].

In the next step, the employed bees search for a new food source Vi near to Xi along with a
randomly selected dimension d:

vid = xid + β
(
xid − xjd

)
(17)

where vid is the new food source; j is a randomly chosen vector where i , j ∈ (1, 2, 3, . . .NP) and β is a
randomly chosen value between [1,−1].

In the above condition, if it is found that the new food source is better than that of the old one,
then the new food source gets updated, whereas the old one is discarded; else, the old food source
remains in the next iteration [15].
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Again, the available food source information is shared with onlooker bees and the food source is
selected by the onlooker bees based on a probability criteria:

Pi =
fitnessi∑NP

n=1 fitnessn
(18)

In this step, the employed bees also get updated with the help of a greedy selection process. In the
next step, after the prescribed number of iterations or when the limit values for the new food source
quality have not improved, then the food source gets abandoned and goes for termination. The bees
associated with the abandoned food sources become scout bees and search for new available food
sources and checks for termination criteria. If the available solutions are acceptable and maximum
iterations are reached, then the process terminates; otherwise, it continues the search.

The performance analysis of the ABC algorithm is given in reference [65]. Here, the performance
of the algorithm is compared with PSO, DE, and other evolutionary algorithms for multi-modal
and multi-functional problems where ABC is found to be giving better result compared to others.
ABC has successfully been implemented for leaf-constrained minimum spanning problems too [66].
In reference [67], the authors have done a comparative study of the ABC algorithm for a large set
of numerical optimization problems and the results obtained are compared with population-based
algorithms. It was found that the results obtained by ABC are superior, and in some cases, same as the
population-based algorithms where ABC has the advantage of having less control parameters than
others. ABC-based MPPT techniques for PV system are given in Reference [68] and the results are
compared with the P&O algorithm where the ABC-based MPPT gives a better performance. From
various researchers, the effectiveness of the ABC algorithm as an MPPT technique for both uniform
and partial shading conditions are shown and found to be better than the existing techniques [69–71].
A modified ABC algorithm (MABC) is presented in reference [72] whose performance is compared
with the genetic algorithm (GA), PSO, and ABC, and was found to be more suitable for reducing the
power loss of PV modules during a partial shading condition.

3.5. Bacteria Foraging Optimization Algorithm (BFOA)

This is a nature-inspired algorithm that is inspired by various foraging behaviors of Escherichia
Coli (E. Coli). The E. Coli bacteria present inside the intestine of humans and animals possesses various
multi-functional foraging behaviors so as to maximize the consumption of energy per unit time for one
particular foraging process. When the foraging process occurs due to the environmental conditions,
the bacterium with a high fitness value or those that are able to withstand the environmental changes
continue to survive and the others get eliminated [73]. These bacteria follows four basic steps for
getting to a nutrient-rich location, i.e., for foraging. These four steps are chemotaxis, swarming,
reproduction, and elimination-dispersal [74].

3.5.1. Chemotaxis

The E. coli bacteria moves inside the human intestine searching for a nutrient-rich location with
the help of locomotory organelles called flagella. This search of the bacteria for nutrients is called
chemotaxis. With the help of flagella, the bacterium can swim or tumble, and these are the basic
functions performed by the bacterium during the chemotaxis process [75]. In the swimming case,
the bacterium moves continuously in some direction, but in the tumble case, it changes its direction
randomly. The chemotactic method in terms of a mathematical equation is given as:

θi(j + 1, k, l) = θi(j, k, l) + C(i)
∆(i)√

∆T(i).∆(i)
(19)

where
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θi(j + 1, k, l) is the ith bacterium at jth chemotactic for kth reproductive and lth elimination
dispersal step

C(i) is the unit step size of the bacterium taken in a random direction
∆(i) represents a vector that lies in an arbitrary direction and its elements lie within [−1,1].

3.5.2. Swarming

The E. Coli and Salmonella typhimurium (S. typhimurium) bacteria show group behavior in which
stable spatiotemporal swarms are formed in a semisolid nutrient medium. The group of E. Coli bacteria
surrounded by a semisolid matrix with a single chemo-effector place themselves in the travelling ring,
thereby moving up the nutrient gradient. The cells will release an attractant aspartate when it gets
simulated by a high level of succinate, and with the help of this, the bacteria will form into groups and
will move as concentric patterns of swarms with a high bacterial density.

3.5.3. Reproduction

In this step, the bacteria with a lower fitness value or the non-healthy bacteria are eliminated,
which covers half of the bacteria population. Then, the healthier bacteria, i.e., the bacteria with higher
fitness value, will asexually split into two bacteria. In this process, reproduction occurs and the
population of the search space remains constant.

Ji
health =

Nc+1∑
j=1

Ji(j, k, l) (20)

where Nc is the number of chemotactic steps; Ji
health is the health of the ith bacterium.

3.5.4. Elimination and Dispersal

A sudden change in the environment where the bacteria lives might occur due to various reasons
and this phenomenon is called elimination and dispersal. The bacteria may be living at a better nutrient
gradient environment, but due to environmental changes, some of the bacteria may get killed or
dispersed to a new location. Due to this, many bacteria are spread all over the environment from the
human intestine to hot springs and also to the underground environment. For implementing these
phenomena of the bacteria in BFOA, some of the bacteria are randomly liquidated with a much lower
probability, whereas the new replacements are initialized over the search space randomly. These events
have the possibility of destroying the chemotaxis process, or they may assist the chemotaxis process
because the dispersal of the bacterium may place it in a new good food location.

The above explained BFOA finds its application in various fields. In reference [73], a hybrid
least square fuzzy-based BFOA is proposed for the harmonic estimation in power system voltage and
current waveforms. Due to its capability of handling non-linear optimization, the phase estimation is
done by BFOA and the linear least square method is used for amplitude estimation of the harmonic
component. In reference [76], the authors have analyzed the chemotaxis process of BFOA from
the classical gradient descent point of view. In this method the convergence speed of the BFOA
algorithm has been enhanced. BFOA has also been implemented for active noise cancellation systems
successfully [77]. Authors in reference [78] presented a grid-tied PV system based on an active shunt
power filter (ASPF) technique. As controlling a dc-link voltage using PI controller is difficult due to
the existence of varying loads, in this paper BFOA is used to optimize the PI controller parameters.
A PSO-guided BFOA algorithm is considered for PV parameter estimation in reference [79]. Here,
the optimization problem is solved using PSO, BFOA, and PSO-guided BFOA in an LDK PV test
module and it is found that the later provides best fitness value. In [80], both conventional and
computational techniques with hybridization of the algorithms are used for maximum PV power
extraction and the performance of the algorithms is compared. Here P&O, fuzzy-based P&O, and



Energies 2019, 12, 1451 14 of 21

fuzzy P&O with parameters tuned by BPSO (i.e., BFOA-PSO) have been considered for PV systems,
among which, the later BPSO tuned fuzzy P&O was found to be the best one. BFOA has been used
as an efficient parameter extraction technique for PV cells. It shows more accurate results compared
to the classical Newton–Raphson method, PSO, and enhanced simulated annealing for different PV
modules with different test conditions [81]. From the literature, it is seen that BFOA can be applied to
various global search problems for finding out the best solution.

4. Critical Evaluation of MPPT Algorithms

While selecting an algorithm for optimization problem, various aspects need to be considered
and those are reliability, implementation cost, convergence speed, complexity of the algorithm, etc.
The evolutionary algorithms play an important role while considering the partial shading condition
of PV panels. From the literature, it is seen that there are many MPPT techniques available with
different control techniques, and there is still a lot to explore. The deep analysis of the algorithms
gives clear knowledge about the recent advancement in the said area. It shows the various factors
affecting achieving the optimization goal and also shows the limitations. Among the five important
MPPT algorithms discussed, here PSO is found to be the most used one. Basic PSO has a simple coding
structure and is quite effective at tracking GMPP but sometimes due to rapidly changing weather
conditions, it may reduce its convergence speed and start oscillating near the GMPP. Hence, in the
literature it is found that many researchers’ have implemented hybrid PSO or modified PSO to achieve
the optimization goal. It is seen that PSO with DE, PSO with P&O, PSO with genetic algorithm, etc.,
has been used, which gives a better convergence speed and less oscillation. The swarm intelligent
algorithms like ACO and ABC involve simple and cost-effective implementation, and perform better
than the standard PSO algorithm. However, at some period of time, these fall on local maxima.
The performance of those algorithms can be further improved by combining them with conventional,
artificial intelligence techniques or using soft computing techniques. This will reduce the convergence
time and will track the GMPP. The DE algorithm is quite similar to the swarm intelligent algorithms
but in some cases, it fails to track the GMPP as the parameters have no direction. Hence, it may follow
a wrong direction. This algorithm can be improved by hybridizing with the soft computing techniques.
BFOA based on bacteria foraging behavior provides a large search space and simple calculations, and
the limitations of the algorithm can be overcome by modifying the parameter selection process or by
combining it with other optimization techniques. The advantages and disadvantages of these five
algorithms are listed in Table 1.

In Table 2, the use of nature-inspired algorithms as MPPT techniques for various PV models are
analyzed. These techniques can be further improved by narrowing the search space, limiting the
number of optimization parameters, and also by selecting suitable control parameters. This, in turn,
can increase the speed of convergence and can also find the best fitness value. Both the conventional
and soft computing algorithms can be integrated such that the limitations of both the algorithms
can be reduced and the resulting hybrid algorithm may improve the performance of the PV system.
However, this might increase the implementation cost and complexity of the system. From this review
of the literature, it is noted that most of these algorithms are similar and vary with a narrow border.
Therefore, selection of the algorithms solely depend on the researcher’s optimization criteria, which
may be a cost function, a simple and easy to implement technique, etc. Therefore, an efficient, robust,
economical, and simple algorithm has to be developed that, in turn, can increase the use of a PV system
to its optimum.
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Table 1. Advantages and disadvantages of reported algorithms.

Sl. No Algorithm
Name Advantage Disadvantage

1 PSO

• Fast convergence and tracks true
MPPT during partial
shading conditions.

• High efficiency

• High implement cost
• Complex calculation
• Oscillates during rapidly

changing conditions

2 ACO

• Possesses a simple and
cost-effective technique for
practical implementation

• Good convergence speed and
efficient for PSC

• Optimization process is lengthy
and complex calculation as more
parameters need to be optimized.

3 ABC

• It does not depend on the system’s
initial condition

• Simple structure
• Easy to implement

• During some period of time it fails
to track the true GMPP

4 DE

• Independent of initial parameters
for finding true GMPP

• Fast convergence
• Have fewer control parameters

• The particles have no direction
during convergence

• Particles need to be modified to
converge towards the best solution

5 BFOA

• It does not get affected more by the
system size and non-linearity

• Ability to handle more
objective function

• Fast convergence

• After some period of time it falls
on local maxima

• Complex calculation

Table 2. Comparison of various algorithms used in the literature.

Ref.
No Method Used Year of

Publication
System Under
Consideration

Observed
Condition

Converter
Used Advantages

[25] PSO combined
with P&O 2015 Stand alone PSC dc–dc

• Faster convergence, reduced
oscillation, better performance than
standard PSO

[31] Dormant PSO
and INC 2015 Stand alone PSC dc–dc

• Improved efficiency
• Reduced global search time
• Output voltage fluctuation reduced

[35] PSO 2015 Grid-Tied PSC dc–dc • Increased system efficiency

[32]
Enhanced

Leader PSO
(EL-PSO)

2017 Stand alone PSC dc–dc • Faster than classical PSO
• Performs better than PSO and P&O

[82] PSO and INC 2017 Rooftop PV PSC dc–dc • Reduced implementation cost
• Improved system efficiency

[26]
Combination of
HL and SAPSO

(HSAPSO)
2018 Stand alone PSC dc–dc

• Reduced search area
• Algorithm complexity reduced
• Improved performance

[38] DE 2010 Stand alone PSC dc–dc boost
converter

• Very fast response and
accurate results
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Table 2. Cont.

Ref.
No Method Used Year of

Publication
System Under
Consideration

Observed
Condition

Converter
Used Advantages

[47] DE 2012 Stand alone PSC dc–dc boost
converter

• More accurate results
• Fast convergence
• Eliminates steady state oscillation

after MPP is tracked

[37]

DE with
modified
mutation
direction

2014 Stand alone PSC dc–dc

• Performs well during varying load
and irradiation

• Improved efficiency than P&O
• Easy to implement

[48] Improved DE 2018 Stand alone
PSC with

varying load
condition

dc–dc sepic
converter

• High efficiency >99%
• Faster response

[59] Improved ACO
based P&O 2016 Stand alone PSC dc–dc • Improved static and

dynamic convergence

[50] ACO 2016 Stand alone PSC dc–dc • Performs better than
conventional MPPT

[56] ACO 2013 Stand alone PSC dc–dc
• Reduced cost
• Simple structure
• Finds the GMPP effectively

[57]

ACO-New
Pheromone

Update Strategy
(ACO-NPU)

2017 Stand alone PSC dc–dc • Reduced computation time

[69] ABC 2015 Stand alone PSC dc–dc

• Requires less control parameters
• Convergence is independent of

system initial condition
• Better tracking of GMPP than PSO

[70] ABC 2015 Stand alone PSC dc–dc

• Faster tracking of GMPP
• Reduced output power oscillation
• Energy saving improves
• Increased revenue generation

[72] MABC 2015 Stand alone PSC dc–dc • Optimizes the power loss constraint
• Mitigates shading effects

[78] BFOA tuned PI 2016 Grid-Tied Varying load
conditions -

• Reduced harmonics
• Meets the load demand
• Robust system

[80] BPSO Fuzzy
P&O 2017 Stand alone - dc–dc

• More effective than
conventional techniques

• Improved system performance

5. Conclusions

In this paper, five evolutionary algorithms—PSO, DE, ABC, ACO, and BFOA—were analyzed and
reviewed. The discussed evolutionary algorithms are competent enough to obtain global peak power
even in rapidly varying atmospheric conditions and also during shading. The operating principle of
the said algorithms varies along with their choice of operating parameters. The review paper also
discussed the use of those MPPT techniques by hybridizing them along with other MPPT techniques.
This method improves the performance as compared to the standard versions. Each algorithm has its
own merits and demerits, which are discussed in the review article, which gives a brief idea regarding
selecting one MPPT technique for partially shaded PVs. The practical implementation of these
algorithms still remains quite complex due to their effectiveness, reliability, cost for implementation,
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nature of coding involved, etc., in multi-objective functions. The advent of advanced processors and
simulation compatible hardware tools has made the process effective. Potential tools like hardware in
loop (HIL), dSPACE, etc., facilitates the pragmatic hardware realization of a real-time scenario. Taking
into account the necessity of MPPT for partially shaded PV, there is a wide scope of research for finding
new efficient MPPT techniques. This paper has summarized five important global search algorithms
that can kindle the interest among the researchers to either modify the five discussed algorithms or
propose a new algorithm.

Author Contributions: Investigation, writing—original draft, methodology, S.P.; project administration,
supervision, writing—review and editing, C.S.; validation, R.S.; resources, T.M.T.T.; software, S.P.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Singh, B.; Shahani, D.T.; Verma, A.K. Neural network controlled grid interfaced solar photovoltaic power
generation. IET Power Electron. 2014, 7, 614–626. [CrossRef]

2. Eltawil, M.A.; Zhao, Z. Grid-connected photovoltaic power systems: Technical and potential problems—A
review. Renew. Sustain. Energy Rev. 2010, 14, 112–129. [CrossRef]

3. Dolara, A.; Faranda, R.; Leva, S. Energy comparison of seven MPPT techniques for PV systems. J. Electromagn.
Anal. Appl. 2009, 1, 152. [CrossRef]

4. Alqarni, M.; Darwish, M.K. Maximum power point tracking for photovoltaic system: modified perturb and
observe algorithm. In Proceedings of the 2012 47th International Universities Power Engineering Conference
(UPEC), London, UK, 4–7 September 2012.

5. Ishaque, K.; Salam, Z.; Amjad, M.; Mekhilef, S. An improved particle swarm optimization (PSO)—Based
MPPT for PV with reduced steady-state oscillation. IEEE Trans. Power Electron. 2012, 27, 3627–3638.
[CrossRef]

6. Tyagi, V.V.; Rahim, N.A.; Rahim, N.A.; Jeyraj, A.; Selvaraj, L. Progress in solar PV technology: Research and
achievement. Renew. Sustain. Energy Rev. 2013, 20, 443–461. [CrossRef]

7. Kroposki, B.; Sen, P.K.; Malmedal, K. Optimum Sizing and Placement of Distributed and Renewable Energy
Sources in Electric Power Distribution Systems. IEEE Trans. Ind. Appl. 2013, 49, 2741–2752. [CrossRef]

8. Chao, R.M.; Ko, S.H.; Lin, H.K.; Wang, I.K. Evaluation of a Distributed Photovoltaic System in Grid-Connected
and Standalone Applications by Different MPPT Algorithms. Energies 2018, 11, 1484. [CrossRef]

9. Li, H.; Yang, D.; Su, W.; Lü, J.; Yu, X. An overall distribution particle swarm optimization MPPT algorithm
for photovoltaic system under partial shading. IEEE Trans. Ind. Electron. 2019, 66, 265–275. [CrossRef]

10. Celik, A.N.; Acikgoz, N. Modelling and experimental verification of the operating current of mono-crystalline
photovoltaic modules using four-and five-parameter models. Appl. Energy 2007, 84, 1–15. [CrossRef]

11. Esram, T.; Chapman, P.L. Comparison of photovoltaic array maximum power point tracking techniques.
IEEE Trans. Energy Convers. 2007, 22, 439–449. [CrossRef]

12. Belkaid, A.; Colak, U.; Kayisli, K. A comprehensive study of different photovoltaic peak power tracking
methods. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and
Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 1073–1079.

13. Priyadarshi, N.; Sharma, A.K.; Priyam, S. Practical Realization of an Improved Photovoltaic Grid Integration
with MPPT. Int. J. Renew. Energy Res. 2017, 7, 1880–1891.

14. Remy, G.; Bethoux, O.; Marchand, C.; Dogan, H. Review of MPPT Techniques for Photovoltaic Systems; Laboratoire
de Génie Electrique de Paris (LGEP)/SPEE-Labs, Université Pierre et Marie Curie P6: Paris, France, 2009.

15. Jiang, L.L.; Srivatsan, R.; Maskell, D.L. Computational intelligence techniques for maximum power point
tracking in PV systems: A review. Renew. Sustain. Energy Rev. 2018, 85, 14–45. [CrossRef]

16. Sridhar, R.; Jeevananthan, S.; Dash, S.S.; Vishnuram, P. A new maximum power tracking in PV system
during partially shaded conditions based on shuffled frog leap algorithm. J. Exp. Theor. Artif. Intell. 2017, 29,
481–493. [CrossRef]

17. Miyatake, M.; Veerachary, M.; Toriumi, F.; Fujii, N.; Ko, H. Maximum power point tracking of multiple
photovoltaic arrays: A PSO approach. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 367–380. [CrossRef]

http://dx.doi.org/10.1049/iet-pel.2013.0166
http://dx.doi.org/10.1016/j.rser.2009.07.015
http://dx.doi.org/10.4236/jemaa.2009.13024
http://dx.doi.org/10.1109/TPEL.2012.2185713
http://dx.doi.org/10.1016/j.rser.2012.09.028
http://dx.doi.org/10.1109/TIA.2013.2262661
http://dx.doi.org/10.3390/en11061484
http://dx.doi.org/10.1109/TIE.2018.2829668
http://dx.doi.org/10.1016/j.apenergy.2006.04.007
http://dx.doi.org/10.1109/TEC.2006.874230
http://dx.doi.org/10.1016/j.rser.2018.01.006
http://dx.doi.org/10.1080/0952813X.2016.1186750
http://dx.doi.org/10.1109/TAES.2011.5705681


Energies 2019, 12, 1451 18 of 21

18. Chen, L.R.; Tsai, C.H.; Lin, Y.L.; Lai, Y.S. A biological swarm chasing algorithm for tracking the PV maximum
power point. IEEE Trans. Energy Convers. 2010, 25, 484–493. [CrossRef]

19. Kamarzaman, N.A.; Tan, C.W. A comprehensive review of maximum power point tracking algorithms for
photovoltaic systems. Renew. Sustain. Energy Rev. 2014, 37, 585–598. [CrossRef]

20. Villalva, M.G.; Gazoli, J.R.; Ruppert Filho, E. Comprehensive approach to modeling and simulation of
photovoltaic arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [CrossRef]

21. Onat, N. Recent developments in maximum power point tracking technologies for photovoltaic systems.
Int. J. Photoenergy 2010, 2010, 245316. [CrossRef]

22. Karatepe, E.; Hiyama, T. Artificial neural network-polar coordinated fuzzy controller based maximum power
point tracking control under partially shaded conditions. IET Renew. Power Gener. 2009, 3, 239–253.

23. Ramaprabha, R.; Mathur, B.L. Genetic algorithm based maximum power point tracking for partially shaded
solar photovoltaic array. Int. J. Res. Rev. Inf. Sci. (IJRRIS) 2012, 2, 161–163.

24. Liu, Y.H.; Huang, S.C.; Huang, J.W.; Liang, W.C. A particle swarm optimization-based maximum power point
tracking algorithm for PV systems operating under partially shaded conditions. IEEE Trans. Energy Convers.
2012, 27, 1027–1035. [CrossRef]

25. Sundareswaran, K.; Palani, S. Application of a combined particle swarm optimization and perturb and
observe method for MPPT in PV systems under partial shading conditions. Renew. Energy 2015, 75, 308–317.
[CrossRef]

26. Koad, R.B.A.; Zobaa, A.F. Comparison between the Conventional Methods and PSO Based MPPT Algorithm
for Photovoltaic Systems. Int. J. Electr. Robot. Electron. Commun. Eng. 2014, 8, 673–678.

27. Li, G.; Jin, Y.; Akram, M.W.; Chen, X.; Ji, J. Application of bio-inspired algorithms in maximum power point
tracking for PV systems under partial shading conditions—A review. Renew. Sustain. Energy Rev. 2018, 81,
840–873. [CrossRef]

28. Chaieb, H.; Sakly, A. A novel MPPT method for photovoltaic application under partial shaded conditions.
Sol. Energy 2018, 159, 291–299. [CrossRef]

29. Mao, M.; Duan, Q.; Zhang, L.; Chen, H.; Hu, B.; Duan, P. Maximum Power Point Tracking for Cascaded
PV-Converter Modules Using Two-Stage Particle Swarm Optimization. Sci. Rep. 2017, 7, 9381. [CrossRef]
[PubMed]

30. Dileep, G.; Singh, S.N. An improved particle swarm optimization based maximum power point tracking
algorithm for PV system operating under partial shading conditions. Sol. Energy 2017, 158, 1006–1015.
[CrossRef]

31. Shi, J.; Zhang, W.; Zhang, Y.; Xue, F.; Yang, T. MPPT for PV systems based on a dormant PSO algorithm.
Electr. Power Syst. Res. 2015, 123, 100–107. [CrossRef]

32. Gavhane, P.S.; Krishnamurthy, S.; Dixit, R.; Ram, J.P.; Rajasekar, N. EL-PSO based MPPT for Solar PV under
Partial Shaded Condition. Energy Procedia 2017, 117, 1047–1053. [CrossRef]

33. Da Silva, S.A.; Sampaio, L.P.; de Oliveira, F.M.; Durand, F.R. Feed-forward DC-bus control loop applied to a
single-phase grid-connected PV system operating with PSO-based MPPT technique and active power-line
conditioning. IET Renew. Power Gener. 2016, 11, 183–193. [CrossRef]

34. Renaudineau, H.; Donatantonio, F.; Fontchastagner, J.; Petrone, G.; Spagnuolo, G.; Martin, J.P.; Pierfederici, S.
A PSO-based global MPPT technique for distributed PV power generation. IEEE Trans. Ind. Electron. 2015,
62, 1047–1058. [CrossRef]

35. De Oliveira, F.M.; da Silva, S.A.; Durand, F.R.; Sampaio, L.P.; Bacon, V.D.; Campanhol, L.B. Grid-tied
photovoltaic system based on PSO MPPT technique with active power line conditioning. IET Power Electron.
2016, 9, 1180–1191. [CrossRef]

36. Storn, R.M.; Price, K.V. Differential evolution-a simple and efficient adaptive scheme for global optimization
over continuous spaces. J. Glob. Optim. 1995, 3, 1–15.

37. Tey, K.S.; Mekhilef, S.; Yang, H.T.; Chuang, M.K. A differential evolution based MPPT method for photovoltaic
modules under partial shading conditions. Int. J. Photoenergy 2014, 2014, 945906. [CrossRef]

38. Taheri, H.; Salam, Z.; Ishaque, K. A novel maximum power point tracking control of photovoltaic system
under partial and rapidly fluctuating shadow conditions using differential evolution. In Proceedings of the
2010 IEEE Symposium on Industrial Electronics & Applications (ISIEA), Penang, Malaysia, 3–5 October 2010;
pp. 82–87.

http://dx.doi.org/10.1109/TEC.2009.2038067
http://dx.doi.org/10.1016/j.rser.2014.05.045
http://dx.doi.org/10.1109/TPEL.2009.2013862
http://dx.doi.org/10.1155/2010/245316
http://dx.doi.org/10.1109/TEC.2012.2219533
http://dx.doi.org/10.1016/j.renene.2014.09.044
http://dx.doi.org/10.1016/j.rser.2017.08.034
http://dx.doi.org/10.1016/j.solener.2017.11.001
http://dx.doi.org/10.1038/s41598-017-08009-7
http://www.ncbi.nlm.nih.gov/pubmed/28839148
http://dx.doi.org/10.1016/j.solener.2017.10.027
http://dx.doi.org/10.1016/j.epsr.2015.02.001
http://dx.doi.org/10.1016/j.egypro.2017.05.227
http://dx.doi.org/10.1049/iet-rpg.2016.0120
http://dx.doi.org/10.1109/TIE.2014.2336600
http://dx.doi.org/10.1049/iet-pel.2015.0655
http://dx.doi.org/10.1155/2014/945906


Energies 2019, 12, 1451 19 of 21

39. Tajuddin, M.F.N.; Ayob, S.M.; Salam, Z.; Saad, M.S. Evolutionary based maximum power point tracking
technique using differential evolution algorithm. Energy Build. 2013, 67, 245–252. [CrossRef]

40. Price, K.V.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization;
Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006.

41. Sheraz, M.; Abido, M.A. An efficient MPPT controller using differential evolution and neural network.
In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu,
Malaysia, 2–5 December 2012; pp. 378–383.

42. Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. Rapid MPPT for uniformly and partial shaded PV system
by using JayaDE algorithm in highly fluctuating atmospheric conditions. IEEE Trans. Ind. Inform. 2017, 13,
2406–2416. [CrossRef]

43. Neri, F.; Tirronen, V. Recent advances in differential evolution: A survey and experimental analysis.
Artif. Intell. Rev. 2010, 33, 61–106. [CrossRef]

44. Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput.
2011, 15, 4–31. [CrossRef]

45. Epitropakis, M.G.; Tasoulis, D.K.; Pavlidis, N.G.; Plagianakos, V.P.; Vrahatis, M.N. Enhancing differential
evolution utilizing proximity-based mutation operators. IEEE Trans. Evol. Comput. 2011, 15, 99–119.
[CrossRef]

46. Ishaque, K.; Salam, Z. An improved modeling method to determine the model parameters of photovoltaic
(PV) modules using differential evolution (DE). Sol. Energy 2011, 85, 2349–2359. [CrossRef]

47. Tajuddin, M.F.; Ayob, S.M.; Salam, Z. Tracking of maximum power point in partial shading condition using
differential evolution (DE). In Proceedings of the 2012 IEEE International Conference on Power and Energy
(PECon), Kota Kinabalu, Malaysia, 2–5 December 2012; pp. 384–389.

48. Tey, K.S.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Oo, A.M.T.; Stojcevski, A. Improved Differential
Evolution-based MPPT Algorithm using SEPIC for PV Systems under Partial Shading Conditions and Load
Variation. IEEE Trans. Ind. Inform. 2018, 14, 4322–4333. [CrossRef]

49. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans.
Syst. Man Cybern. Part B (Cybern.) 1996, 26, 29–41. [CrossRef]

50. Sridhar, R.; Jeevananthan, S.; Dash, S.S.; Selvan, N.T. Unified MPPT controller for partially shaded panels in
a photovoltaic array. Int. J. Autom. Comput. 2014, 11, 536–542. [CrossRef]

51. Liu, L.; Dai, Y.; Gao, J. Ant colony optimization algorithm for continuous domains based on position
distribution model of ant colony foraging. Sci. World J. 2014, 2014, 428539. [CrossRef] [PubMed]

52. Jiang, L.L.; Maskell, D.L. A uniform implementation scheme for evolutionary optimization algorithms and the
experimental implementation of an ACO based MPPT for PV systems under partial shading. In Proceedings
of the 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), Orlando,
FL, USA, 9–12 December 2014.

53. Huang, S.-J. Enhancement of hydroelectric generation scheduling using ant colony system based optimization
approaches. IEEE Trans. Energy Convers. 2011, 16, 296–301. [CrossRef]

54. El-Ela, A.A.; Kinawy, A.M.; El-Sehiemy, R.A.; Mouwafi, M.T. Optimal reactive power dispatch using ant
colony optimization algorithm. Electr. Eng. 2011, 93, 103–116. [CrossRef]

55. Mantilla-Gaviria, I.A.; Díaz-Morcillo, A.; Balbastre-Tejedor, J.V. An ant colony optimization algorithm for
microwave corrugated filters design. J. Comput. Eng. 2013, 2013, 942126. [CrossRef]

56. Jiang, L.L.; Maskell, D.L.; Patra, J.C. A novel ant colony optimization-based maximum power point tracking
for photovoltaic systems under partially shaded conditions. Energy Build. 2013, 58, 227–236. [CrossRef]

57. Titri, S.; Larbes, C.; Toumi, K.Y.; Benatchba, K. A new MPPT controller based on the Ant colony optimization
algorithm for Photovoltaic systems under partial shading conditions. Appl. Soft Comput. 2017, 58, 465–479.
[CrossRef]

58. Nivetha, V.; Gowri, G.V. Maximum power point tracking of photovoltaic system using ant colony and particle
swam optimization algorithms. In Proceedings of the 2015 2nd International Conference on Electronics and
Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015; pp. 948–952.

59. Sundareswaran, K.; Vigneshkumar, V.; Sankar, P.; Simon, S.P.; Nayak, P.S.R.; Palani, S. Development of an
improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system. IEEE Trans.
Ind. Inform. 2016, 12, 187–200.

http://dx.doi.org/10.1016/j.enbuild.2013.07.085
http://dx.doi.org/10.1109/TII.2017.2700327
http://dx.doi.org/10.1007/s10462-009-9137-2
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1109/TEVC.2010.2083670
http://dx.doi.org/10.1016/j.solener.2011.06.025
http://dx.doi.org/10.1109/TII.2018.2793210
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1007/s11633-014-0828-z
http://dx.doi.org/10.1155/2014/428539
http://www.ncbi.nlm.nih.gov/pubmed/24955402
http://dx.doi.org/10.1109/60.937211
http://dx.doi.org/10.1007/s00202-011-0196-4
http://dx.doi.org/10.1155/2013/942126
http://dx.doi.org/10.1016/j.enbuild.2012.12.001
http://dx.doi.org/10.1016/j.asoc.2017.05.017


Energies 2019, 12, 1451 20 of 21

60. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization [Technical Report-TR06]; Erciyes
University, Engineering Faculty, Computer Engineering Department: Kayseri, Turkey, 2005.

61. Tereshko, V. Reaction-diffusion model of a honeybee colony’s foraging behavior. In Proceedings of the 6th
International Conference on Parallel Problem Solving from Nature; Springer: London, UK, 2000; pp. 807–816.

62. Tereshko, V.; Lee, T. How information mapping patterns determine foraging behaviour of a honeybee colony.
Open Syst. Inf. Dyn. 2002, 9, 181–193. [CrossRef]

63. Tereshko, V.; Loengarov, A. Collective decision-making in honeybee foraging dynamics. Comput. Inf. Syst. J.
2005, 9, 1–7.

64. Hassan, S.; Abdelmajid, B.; Mourad, Z.; Aicha, S.; Abdenaceur, B. An Advanced MPPT Based on Artificial
Bee Colony Algorithm for MPPT Photovoltaic System under Partial Shading Condition. Int. J. Power Electron.
Drive Syst. 2017, 8, 647–653. [CrossRef]

65. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput.
2008, 8, 687–697. [CrossRef]

66. Singh, A. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem.
Appl. Soft Comput. 2009, 9, 625–631. [CrossRef]

67. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009,
214, 108–132. [CrossRef]

68. Bilal, B. Implementation of artificial bee colony algorithm on maximum power point tracking for PV modules.
In Proceedings of the 2013 8th International Symposium on Advanced Topics in Electrical Engineering
(ATEE), Bucharest, Romania, 23–25 May 2013.

69. Benyoucef, A.S.; Chouder, A.; Kara, K.; Silvestre, S.; Ait Sahed, O. Artificial bee colony based algorithm
for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions.
Appl. Soft Comput. 2015, 32, 38–48. [CrossRef]

70. Sundareswaran, K.; Sankar, P.; Nayak, P.S.; Simon, S.P.; Palani, S. Enhanced energy output from a PV system
under partial shaded conditions through artificial bee colony. IEEE Trans. Sustain. Energy 2015, 6, 198–209.
[CrossRef]

71. Sawant, P.T.; Lbhattar, P.C.; Bhattar, C.L. Enhancement of PV system based on artificial bee colony algorithm
under dynamic conditions. In Proceedings of the IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016;
pp. 1251–1255.

72. Fathy, A. Reliable and efficient approach for mitigating the shading effect on photovoltaic module based on
Modified Artificial Bee Colony algorithm. Renew. Energy 2015, 81, 78–88. [CrossRef]

73. Mishra, S. A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Trans.
Evol. Comput. 2005, 9, 61–73. [CrossRef]

74. Passino, K.M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst.
2002, 22, 52–67.

75. Biswas, A.; Dasgupta, S.; Das, S.; Abraham, A. A synergy of differential evolution and bacterial foraging
optimization for global optimization. Neural Netw. World 2007, 17, 607.

76. Dasgupta, S.; Das, S.; Abraham, A.; Biswas, A. Adaptive computational chemotaxis in bacterial foraging
optimization: An analysis. IEEE Trans. Evol. Comput. 2009, 13, 919–941. [CrossRef]

77. Gholami-Boroujeny, S.; Eshghi, M. Non-linear active noise cancellation using a bacterial foraging optimisation
algorithm. IET Signal Process. 2012, 6, 364–373. [CrossRef]

78. Kumar, A.; Gupta, N.; Gupta, V. A synchronization of PV source by using bacterial foraging optimization
based PI controller to reduce day-time grid dependency. In Proceedings of the 2017 IEEE International
Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur,
India, 23–25 March 2017.

79. Awadallah, M.A.; Venkatesh, B. Bacterial foraging algorithm guided by particle swarm optimization for
parameter identification of photovoltaic modules. Can. J. Electr. Comput. Eng. 2016, 39, 150–157. [CrossRef]

80. Dabra, V.; Paliwal, K.K.; Sharma, P.; Kumar, N. Optimization of photovoltaic power system: A comparative
study. Prot. Control Mod. Power Syst. 2017, 2, 3. [CrossRef]

http://dx.doi.org/10.1023/A:1015652810815
http://dx.doi.org/10.11591/ijpeds.v8.i2.pp647-653
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1016/j.asoc.2008.09.001
http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/10.1016/j.asoc.2015.03.047
http://dx.doi.org/10.1109/TSTE.2014.2363521
http://dx.doi.org/10.1016/j.renene.2015.03.017
http://dx.doi.org/10.1109/TEVC.2004.840144
http://dx.doi.org/10.1109/TEVC.2009.2021982
http://dx.doi.org/10.1049/iet-spr.2011.0092
http://dx.doi.org/10.1109/CJECE.2016.2519763
http://dx.doi.org/10.1186/s41601-017-0036-2


Energies 2019, 12, 1451 21 of 21

81. Subudhi, B.; Pradhan, R. Bacterial Foraging Optimization Approach to Parameter Extraction of a Photovoltaic
Module. IEEE Trans. Sustain. Energy 2018, 9, 381–389. [CrossRef]

82. Liu, J.; Li, J.; Wu, J.; Zhou, W. Global MPPT algorithm with coordinated control of PSO and INC for rooftop
PV array. J. Eng. 2017, 2017, 778–782. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSTE.2017.2736060
http://dx.doi.org/10.1049/joe.2017.0437
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	PV Modeling and Its Characteristic Curves 
	Intelligent Nature Inspired Algorithms: An Overview 
	Particle Swarm Optimization (PSO) 
	Differential Evolution (DE) 
	Initialization 
	Mutation 
	Crossover 
	Selection 

	Ant Colony Optimization (ACO) 
	Artificial Bee Colony (ABC) 
	Bacteria Foraging Optimization Algorithm (BFOA) 
	Chemotaxis 
	Swarming 
	Reproduction 
	Elimination and Dispersal 


	Critical Evaluation of MPPT Algorithms 
	Conclusions 
	References

