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Abstract: As miniaturized mobile devices with various functionalities are highly desired, the current
requirement for loading blocks is gradually increasing. Accordingly, the efficiency of the power
converter that supports the current to the loading bocks is a critical specification to prolong the
battery time. Unfortunately, when using a small inductor for the miniaturization of mobile devices,
the efficiency of the power converter is limited due to a large parasitic DC resistance (RDCR) of the
inductor. To achieve high power efficiency, this paper proposes an energy transfer media (ETM)
that can make a switched inductor capacitor (SIC) converter easier to design, maintaining the
advantages of both a conventional switched capacitor (SC) converter and a switched inductive (SI)
converter. This paper shows various examples of SIC converters as buck, boost, and buck-boost
topologies by simply cascading the ETM with conventional non-isolated converter topologies without
requiring a sophisticated controller. The topologies with the ETM offer a major advantage compared
to the conventional topologies by reducing the inductor current, resulting in low conduction loss
dissipated at RDCR. Additionally, the proposed topologies have a secondary benefit of a small output
voltage ripple owing to the continuous current delivered to the load. Extensions to a multi-phase
converter and single-inductor multiple-output converter are also discussed. Furthermore, a detailed
theoretical analysis of the total conduction loss and the inductor current reduction is presented.
Finally, the proposed topologies were simulated in PSIM, and the simulation results are discussed
and compared with conventional non-isolated converter topologies.

Keywords: switched inductor capacitor converter; a power converter; energy transfer media;
ripple voltage; efficiency; conduction loss

1. Introduction

The use of high-performance, power-hungry mobile devices has increased recently, prompting
the need for longer battery life [1,2]. Accordingly, power management integrated circuits (PMICs) for
mobile devices are becoming important. PMICs consist of a linear regulator, a switched capacitor (SC)
converter, and a switched inductor (SI) converter [3,4]. Although linear regulators offer the advantage
of low output voltage ripple, they have low power efficiency [5–8]. In contrast, SC converters have
high power density with better power efficiency than linear regulators, but they suffer from severe
degradation of efficiency when the conversion ratio of the SC converter differs from a pre-defined
value [9–12]. Furthermore, when the load current (ILOAD) increases, which is referred to as a heavy load
condition, SC converters require many large external capacitors. Therefore, neither linear regulators
nor SC converters are good candidates for powering high performance loading blocks that require
a large ILOAD. On the other hand, a SI converter with an external inductor is an efficient solution in
heavy load conditions [13–16]. Buck, boost, and buck-boost SI converters exist for generating lower,
higher, and lower or higher output voltage (VO), respectively, compared with the battery voltage (VIN).
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In the SI converter, there are two representative power losses, as shown in Figure 1. One is the
switching loss (PSW) which is proportional to the switching frequency. When the switching frequency is
fixed, the PSW is a constant independent of the ILOAD. The other is the conduction loss (Pcond). Since the
Pcond is proportional to the square of the current, the Pcond is dominant in heavy load conditions.
Therefore, reducing Pcond is important for improving power efficiency when ILOAD is large.
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However, due to a large inductor current (iL), under heavy load conditions, these efficient SI
converters also suffer from significant conduction loss (PDCR) dissipated at a parasitic DC resistance
(RDCR) of a small inductor for size-limited mobile devices as shown in Figure 2. This large PDCR causes
a severe thermal problem as well as low power efficiency in heavy load conditions. PDCR is expressed
as follows:

PDCR = iL,RMS
2RDCR = (IL

2 +
∆iL2

12
)RDCR (1)

where iL,RMS, IL, and ∆iL are the root-mean-square value, the DC value, and the ripple of the iL,
respectively. Since the small inductor for the miniaturized mobile device can have much larger
RDCR than the on-resistance of switches, reducing PDCR can achieve a significant improvement in
power efficiency. To minimize the PDCR, reducing iL,RMS is the only solution when a large RDCR
of the small inductor is used as shown in Equation (1). In particular, as the inductor with larger
RDCR than the on-resistance of the switch is adopted, the efficiency improvement due to low iL,RMS is
significantly increased.
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There are some alternative topologies that can reduce iL,RMS in a SI converter. For example,
Figure 3a shows a multi-level structure with an additional flying capacitor that reduces ∆iL, thereby
improving power efficiency in light or medium load conditions [17,18]. However, under heavy loads,



Energies 2019, 12, 1468 3 of 19

since IL is much larger than ∆iL, the reduction of PDCR is limited. Alternatively, Figure 3b shows a
multi-phase structure that can reduce IL and can result in increased power efficiency compared with
the multi-level structure in heavy load conditions. However, it requires an additional inductor that is
larger and more expensive than other passive components [19–21]. Furthermore, both the multi-level
and the multi-phase structures require complex balancing circuits, as shown in Figure 3.
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To resolve these issues, this paper proposes and analyzes a new type of hybrid switched inductor
capacitor (SIC) converter with energy transfer media (ETM) using an additional flying capacitor.
The topologies with the ETM provide improved efficiency by lowering IL owing to an additional
current path in heavy load conditions.

The topologies with the proposed ETM are introduced in Section 2. In Sections 3 and 4, the operation
principle and a detailed conduction loss analysis of both the buck and buck-boost topologies are
provided. In Section 5, different examples of extension to other topologies are explained and discussed.
The simulation results for verification are presented in Section 6. Finally, a brief concluding summary
is given in Section 7.

2. Energy Transfer Media

A hybrid SIC converter that possesses the advantages of both a SC converter and a SI converter
is an attractive solution [22–30]. However, it is complicated to design because of the many complex
combinations of power switches and flying capacitors. Also, various factors such as conversion ratios,
balancing circuits, and power loss should be considered. To make it easy to design, and to reduce
PDCR at the same time, this paper proposes an ETM that can be easily implemented with all types of
non-isolated converters, such as buck, boost, and buck-boost topologies, with high efficiency under
heavy load conditions. An ETM has been used previously to reduce only ∆iL [29,30]. However,
similar to a multi-level converter, this structure is not effective at improving power efficiency under
heavy load conditions. Therefore, we propose an ETM that uses an additional flying capacitor to obtain
high efficiency in heavy load conditions, as shown in Figure 4.
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Figure 4. Energy transfer media with a flying capacitor.

The ETM uses one external flying capacitor (CF) and three power switches (SM1–SM3).
This approach offers the advantage of inserting the capacitor current path into the output current
path (C-path) as well as the inductor current path (L-path). This ETM with dual current paths can be
applied to conventional non-isolated topologies by simply cascading the ETM, as shown in Figure 5.
Figure 5a is a conceptual structure showing that the ETM can be applied to conventional converter
topologies. Figure 5b–d show examples of applying the ETM to buck, boost, and buck-boost converters,
respectively. This paper analyzes buck type and buck-boost type topologies with ETMs as examples
and discusses possible extensions to other topologies.
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converter; (d) buck-boost converter.

3. Buck Converter with Energy Transfer Media

Figure 5b shows a buck converter with ETM (BKETM), which is composed of power switches S1–S2

and SM1–SM3, one inductor (L), one flying capacitor (CF), and one output capacitor (CO). The BKETM
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uses two operating modes (Φ1, Φ2), as shown in Figure 6a. The operation waveforms of the BKETM
are shown in Figure 6b.
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In Φ1, S1 and SM2 are turned on, and S2, SM1, and SM3 are turned off. At this time, iL is built up
with a slope of 2(VIN − VO)/L and is delivered to the output. In Φ2, S2, SM1, and SM3 are turned on,
and S1 and SM2 are turned off. While iL is de-energized with a slope of −VO/L, it is also delivered to the
output. In the meantime, the capacitor current iC of CF flows to the output, while the voltage of CF
is charged to VIN − VO. To derive a conversion ratio (MBK), applying the voltage sec balance to the
inductor with duty cycle D is expressed as follows:

D(2VIN − 2VO) − (1−D)VO = 0. (2)

Simplifying Equation (2), MBK is given by:

MBK =
VO
VIN

=
2D

1 + D
0 < D < 1. (3)

The MBK of the BKETM from Equation (3) has a value between 0 and 1 as D varies from 0 to 1,
which is the same as the range of a conventional buck converter (CBK). Therefore, in spite of the SIC
converter, the BKETM behaves like a CBK without the limit of the conversion ratio.

To obtain the average value of the C-path current (IC,Φ2) delivered to the output in Φ2, we also
apply charge balance to CF as shown below:

DIL − (1−D)IC,Φ2 = 0. (4)
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Simplifying Equation (4), IC,Φ2 is given by

IC,Φ2 =
D

1−D
IL. (5)

Applying the charge balance to the output capacitor CO,

D(IL − ILOAD) + (1−D)(IL + IC,Φ2 − ILOAD) = 0. (6)

Substituting Equation (5) into Equation (6), IL can be expressed with ILOAD as shown below:

IL =
1

1 + D
ILOAD = (1−

MBK

2
)ILOAD. (7)

For the CBK, IL is always the same as ILOAD [3,4,13–16]. In contrast, for the proposed BKETM,
IL is ILOAD divided by (1 + D). As MBK increases, IL decreases. Therefore, IL always has a smaller value
than ILOAD due to the two current paths (L-path and C-path). As IL decreases, PDCR also is reduced
compared to that of the CBK. To compare the total conduction loss with that of the CBK, we assume
that since the parasitic resistance (RESR) of the flying capacitors is typically much smaller than other
resistances, the loss of RESR can be ignored for simplicity. Also, the on-resistance of each switch is
assumed to be the same as RON. Thus, the total conduction loss (Pcond,CBK) of the CBK is expressed
as follows:

Pcond,CBK = DIL
2RON + (1−D)IL

2RON + IL
2RDCR = IL

2(RON + RDCR) = ILOAD
2(RON + RDCR). (8)

On the other hand, the total conduction loss (Pcond,BKETM) of the BKETM is as follows:

Pcond,BKETM = 2DRONIL
2 + (1−D)RON(IL

2 + IC,Φ2
2 + (IL + IC,Φ2)

2) + IL
2RDCR (9)

= IL
2[(1 + D +

1
1−D

+
D2

1−D
)RON + RDCR] (10)

= IL
2(

2−MBK

1−MBK
RON + RDCR) (11)

=
(2−MBK)

2

4
ILOAD

2(
2−MBK

1−MBK
RON + RDCR). (12)

For the relative comparison with CBK, the ratio between Pcond,CBK and Pcond,BKETM is expressed as:

Pcond,proposed

Pcond,conv
=

(2−MBK)
2

4 ( 2−MBK
1−MBK

RON + RDCR)

RON + RDCR
. (13)

Figure 7 depicts the value calculated by Equation (13) versus the conversion ratio MBK for different
RDCR. It shows that Pcond,BKETM is lower than Pcond,CBK across a wide range of MBK values. As described
by Equation (7), the total conduction loss decreases because IL is reduced as MBK increases. Also,
the larger the RDCR, the lower the Pcond,BKETM is compared with Pcond,CBK. Therefore, BKETM is a useful
topology for step-down when a small inductor with a large RDCR is used in heavy load conditions.
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4. Buck-Boost Converter with Energy Transfer Media

Since the boost converter with the ETM shown in Figure 5c has been previously described in
detail in [27], this paper focuses on the buck-boost converter with ETM (BBETM) shown in Figure 5d.
It is composed of power switches S1–S4, SM1–SM3, one inductor (L), one flying capacitor (CF), and one
output capacitor (CO). The BBETM also uses two operating modes (Φ1, Φ2), as shown in Figure 8a.
Its operation waveforms are shown in Figure 8b.
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In Φ1, S1 and S3 are turned on while iL increases with a slope of VIN/L and is delivered to the
output. At the same time, SM1 and SM3 turn on, and iC flows to the output through the C-path, while the



Energies 2019, 12, 1468 8 of 19

voltage of CF is charged to VIN − VO. With a conventional buck-boost (CBB) converter, current cannot
be delivered to the output while iL is building up. The ability of the BBETM to transfer the energy to
the output during iL build-up is one of the main differences between the BBETM and a CBB converter.
Owing to this operation, the output delivery current (iD) in the BBETM is continuous, resulting in a
small output voltage ripple (∆VO). In Φ2, S2, SM2, and SM3 turn on, and iL is delivered to the output.

For the BBETM conversion ratio (MBB), applying the voltage sec balance to the inductor based on
the operation is expressed as follows:

DVIN + (1−D)(−2VO + VIN) = 0. (14)

Simplifying Equation (14), MBB is given by:

MBB =
VOUT
VIN

=
1

2(1−D)
0 < D < 1. (15)

MBB of the BBETM from Equation (15) has a value between 0.5 and infinity as D varies from 0
to 1. This means that the BBETM can operate for step-up and step-down output voltages. Since the
conversion ratio is limited to less than 0.5, this approach is not appropriate for applications with a low
conversion ratio. However, it offers several advantages compared with a CBB converter.

First, similar to the buck type converter, the BBETM IL is reduced compared with that of a CBB
converter. To analyze this, the average value of the C-path current (IC,Φ1) in Φ1 can be obtained by
applying charge balance to the CF as shown below:

DIC,Φ1 − (1−D)IL = 0. (16)

Simplifying Equation (16), IC,Φ1 is given by

IC,Φ1 =
1−D

D
IL. (17)

Applying the charge balance to CO,

D(IC,Φ1 − ILOAD) + (1−D)(IL − ILOAD) = 0. (18)

Substituting Equation (17) into Equation (18), IL can be expressed with load current (ILOAD) as
shown below:

IL =
1

2(1−D)
ILOAD = MBBILOAD. (19)

Due to the two current paths in the ETM, the BBETM IL is as low as MBBILOAD, while the CBB IL is
(1 + MBB) ILOAD [4]. Therefore, the BBETM PDCR can be reduced. To compare the total conduction loss
with that of the CBB, the on-resistance of each switch is assumed to be the same as RON, and the total
conduction loss (Pcond,CBB) of the CBB is expressed as follows:

Pcond,CBB = 2IL
2RON + IL

2RDCR = (1 + MBB)
2ILOAD

2(2RON + RDCR). (20)

In contrast, the total conduction loss (Pcond,BBETM) of the BBETM is expressed as

Pcond,BBETM = IL
2RON + IL

2DRON + 2IC,Φ1
2DRON + 2IL

2(1−D)RON + IL
2RDCR (21)

= IL
2[(3−D +

2(1−D)2

D
)RON + RDCR] (22)

= MBB
2ILOAD

2[(
1

MBB(2MBB − 1)
−

2MBB − 1
2MBB

+ 3)RON + RDCR]. (23)
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For the relative comparison with the CBB, the ratio between Pcond,CBB and Pcond,BBETM for the
BBETM is expressed as

Pcond,BBETM

Pcond,CBB
=

MBB
2[( 1

MBB(2MBB−1) −
2MBB−1

2MBB
+ 3)RON + RDCR]

(1 + MBB)
2(2RON + RDCR)

. (24)

Figure 9 depicts the values of Equation (24) versus the conversion ratio MBB for different RDCR
values, showing that the Pcond,BBETM is lower than the Pcond,CBB for a wide range of MBB values.
This finding demonstrates that the BBETM is more efficient than CBB due to the dual current paths.
Also, it shows that the larger the RDCR, the lower Pcond,BBETM is, compared with Pcond,CBB. Therefore,
the BBETM is useful for step-up and step-down applications when a small inductor with a large RDCR
is used in heavy load conditions.

Energies 2019, 12, x FOR PEER REVIEW 9 of 19 

 

For the relative comparison with the CBB, the ratio between Pcond,CBB and Pcond,BBETM for the 
BBETM is expressed as 

2

,
2

,

2 11[( 3) ]
(2 1) 2

(1 ) (2 )

BB
BB ON DCR

cond BBETM BB BB BB

cond CBB BB ON DCR

M
M R R

P M M M

P M R R

-
- + +

-
=

+ +
. 

(24) 

Figure 9 depicts the values of Equation (24) versus the conversion ratio MBB for different RDCR 
values, showing that the Pcond,BBETM is lower than the Pcond,CBB for a wide range of MBB values. This 
finding demonstrates that the BBETM is more efficient than CBB due to the dual current paths. Also, 
it shows that the larger the RDCR, the lower Pcond,BBETM is, compared with Pcond,CBB. Therefore, the 
BBETM is useful for step-up and step-down applications when a small inductor with a large RDCR is 
used in heavy load conditions. 

0 1 2 3

0.2

0.4

0.6

0.8

1.0

1.2

Pcond,BBETM = Pcond,CBB
Pcond,CBB

Pcond,BBETM

 
 
 
 
 
 
 

RDCR=2RON
RDCR=5RON
RDCR=10RON
RDCR=25RON

RDCR=RON

RDCR=0

Conversion ratio MBB  (VO/VIN)  
Figure 9. Conduction loss comparison of buck-boost converter with energy transfer media (BBETM) 
and conventional buck-boost (CBB) for different RDCR values. 

5. Extension to Other Topologies 

5.1. Multi-Phase Buck Converter with ETM 

The multi-phase converter is a structure that allows multiple inductors to transfer energy to 
the output when it is difficult to support sufficient energy for the output with only a single 
converter. The proposed ETM can also easily implement a SIC converter with a multi-phase 
structure. As shown in Figure 10a, the multi-phase buck converter can be designed with two ETMs 
for a single output with heavy ILOAD. The proposed multi-phase buck converter with ETM 
(MBKETM) consists of one inductor and two flying capacitors, because two ETMs are used. Figure 10b 
shows the operation principle of the MBKETM. The advantage of the MBKETM over other 
topologies with an ETM is that the input frequency (fIN) for the input duty (Φ1, Φ2) and the output 
switching frequency (fOUT) for the output duty (ΦO1, ΦO2) can be independently controlled. As an 
example, in this paper, the input duty is controlled to regulate the output voltage, and the output 
duty is always fixed at 0.5 so that the C-path currents (IC,ΦO1, IC,ΦO2) can be maintained at the inductor 
current IL. Then, applying charge balance to the output capacitor CO in this condition, 

, 1 , 2
1
2L C O C O LOADI I I IF F= = = . (25) 

From Equation (25), IL can also be maintained at half of ILOAD, the same value as IL of the 
conventional multi-phase buck converter (CMBK) with two inductors [19]. Thus, the MBKETM can 
generate triple current paths (one L-path, two C-paths) with a single inductor and two low-cost, 

Figure 9. Conduction loss comparison of buck-boost converter with energy transfer media (BBETM)
and conventional buck-boost (CBB) for different RDCR values.

5. Extension to Other Topologies

5.1. Multi-Phase Buck Converter with ETM

The multi-phase converter is a structure that allows multiple inductors to transfer energy to the
output when it is difficult to support sufficient energy for the output with only a single converter.
The proposed ETM can also easily implement a SIC converter with a multi-phase structure. As shown
in Figure 10a, the multi-phase buck converter can be designed with two ETMs for a single output with
heavy ILOAD. The proposed multi-phase buck converter with ETM (MBKETM) consists of one inductor
and two flying capacitors, because two ETMs are used. Figure 10b shows the operation principle of
the MBKETM. The advantage of the MBKETM over other topologies with an ETM is that the input
frequency (fIN) for the input duty (Φ1, Φ2) and the output switching frequency (fOUT) for the output
duty (ΦO1, ΦO2) can be independently controlled. As an example, in this paper, the input duty is
controlled to regulate the output voltage, and the output duty is always fixed at 0.5 so that the C-path
currents (IC,ΦO1, IC,ΦO2) can be maintained at the inductor current IL. Then, applying charge balance to
the output capacitor CO in this condition,

IL = IC,ΦO1 = IC,ΦO2 =
1
2

ILOAD. (25)

From Equation (25), IL can also be maintained at half of ILOAD, the same value as IL of the
conventional multi-phase buck converter (CMBK) with two inductors [19]. Thus, the MBKETM can
generate triple current paths (one L-path, two C-paths) with a single inductor and two low-cost,
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small flying capacitors, thus reducing cost and size compared with a CMBK. Moreover, owing to these
triple current paths, the ripple of the output delivery current iD is reduced such that the output voltage
ripple ∆VO is smaller than that of the BKETM. Furthermore, by adopting a higher output frequency
(fOUT) for the output duty (ΦO1, ΦO2) than the input frequency (fIN) for the input duty (Φ1, Φ2), ∆VO
can be further reduced. These characteristics are verified with simulation results in the next section.
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5.2. Single-Inductor Multiple-Output Buck Converter with ETM

As the name suggests, a single-inductor multiple-output (SIMO) converter can regulate many
outputs with one inductor [31–33]. As shown in Figure 11a as an example, it is also easy to make a
dual-output structure with two ETMs. More outputs can be generated by increasing the number of
ETMs. Figure 11b shows the operation of a single-inductor dual-output (SIDO) buck converter with
two ETMs (SIDOETM). Because of the ETMs, IL is reduced compared with that of a conventional SIMO
converter (CSIMO). Moreover, since the SIDOETM has triple paths (one L-path and two C-paths),
the currents (iD1, iD2) delivered to each output (VO1, VO2) are continuous. In contrast, with the
CSIMO, the currents delivered to the output are discontinuous because a single inductor must be
used to distribute the energy to each output during different time slots. Therefore, the CSIMO has
the disadvantage of significant large voltage ripple at each output. In contrast, since the proposed
SIDOETM has continuous iD1 and iD2, the output voltage ripples (∆VO1, ∆VO2) can be significantly
reduced. Also, the CSIMO typically uses a comparator-based control for regulation of the outputs,
which is very vulnerable to spike noise at the outputs [32,33]. Because the discontinuous output
delivery currents can generate large spikes at every output due to the parasitic inductance that is
connected to the output capacitors in series, it can cause a malfunction on the regulation control of the
CSIMO. Therefore, the SIDOETM has an additional advantage of being able to alleviate the spike noise
due to continuous output delivery current.
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6. Simulation Results and Discussion

6.1. Buck Converter with ETM

Table 1 shows the simulation conditions for the proposed BKETM. To obtain accurate simulation
results, the switching loss model is included as well as the conduction loss in the simulation. Cgate and
Coss in Table 1 are the gate capacitance and the output capacitance of the power switch, respectively,
for considering the switching loss. Figure 12 shows the simulated waveforms to confirm the operation
of the converter.

Table 1. Simulation conditions for buck converter with ETM.

VIN VOUT ILOAD fIN L RDCR

5 V 2.8 V 1 A 1 MHz 4.7 µH 0.2 Ω

CF CO RON RESR Cgate Coss

4.7 µF 4.7 µF 50 mΩ 20 mΩ 250 pF 100 pF
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Figure 12. Simulation waveforms of a buck converter with ETM.

The results show a IL of 720 mA, lower than the ILOAD of 1 A. Also, the charge balance of the
capacitor is satisfied through ic, and the voltage and current values of each node match the calculation
in Section 3. Owing to the lowered IL, high efficiency can be achieved even when using a small
inductor, reducing PDCR. This type of converter can also solve the heat problems associated with high
performance mobile devices. However, since the BKETM has a pulsating iD due to the C-path, a large
∆VO of 35 mV is observed, as shown in Figure 12.

Figure 13 shows the simulated efficiency plots for both the BKETM and CBK with different
conversion ratios (MBK). From Equation (7), the larger the value of MBK, the larger the reduction in IL.
Thus, the efficiency of the BKETM is higher than that of the CBK when MBK is high. However, as MBK
approaches 1, the C-path current, IC,Φ2, rapidly increases according to Equation (5). Then, the total
conduction loss increases again, resulting in the degradation of the efficiency of the BKETM.

Figure 14 shows the efficiency plots with different values of ILOAD when MBK is 0.6 or 0.3.
When MBK is high, as ILOAD increases, the efficiency improves compared with that of the CBK. However,
when MBK is low, the reduction effect of IL is not significant. Then, even if ILOAD becomes large,
the increment in efficiency is negligible. Therefore, the BKETM is an efficient topology when MBK is
high under heavy load conditions.
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6.2. Buck-Boost Converter with ETM

Table 2 shows the simulation conditions for the proposed BBETM. Figure 15 shows the simulation
results to confirm the operation of the converter.

Table 2. Simulation conditions for buck-boost converter with ETM.

VIN VOUT ILOAD fIN L RDCR

5 V 6 V 1 A 1 MHz 4.7 µH 0.2 Ω

CF CO RON RESR Cgate Coss

4.7 µF 4.7 µF 50 mΩ 20 mΩ 250 pF 100 pF
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Figure 15. Simulation waveforms of buck-boost converter with ETM.

The simulation results show that the BBETM achieves a lower IL (1.2 A) than that of the CBB (2.2 A).
Also, the charge balance of CF is satisfied through ic, and the voltage and current values of each node
are matched with the calculation in Section 4. Due to reduced inductor current, the conduction loss
can be decreased even when a small inductor is used. Moreover, in contrast to the CBB iD, the BBTEM
iD is continuous due to the addition of the C-path, resulting in a smaller ∆VO of 25 mV compared with
the 130 mV observed for the CBB under the same operating conditions, as shown in Figure 16.
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Figure 17 shows the simulated efficiency plots for both the BBETM and CBB with different
conversion ratio values, MBB. The BBETM has a much higher efficiency than the CBB across a wide
range of MBB values because the buck-boost topology generates a much larger IL than the buck-type
topology due to a structural characteristic.
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Figure 17. Simulated efficiency plot of a buck-boost converter with ETM at different conversion ratios.

Figure 18 shows the efficiency plots with different ILOAD values when MBB is 0.8 or 1.3. Based on
Equation (19), a lower MBB is associated with a larger reduction in IL for the BBETM compared to the
CBB. Thus, with a low MBB, as ILOAD increases, the increment in efficiency for BBETM compared with
CBB becomes significant.
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Figure 18. Simulated efficiency plot of a buck-boost converter with ETM at different load currents.

The BBETM has another benefit of a small ∆VO. Figure 19 is a plot comparing the ∆VO of the
proposed BBETM and the CBB under the same operating conditions. The BBETM ∆VO is lower than
that of the CBB across a wide range of MBB values. However, when MBB is very low, which means
there is a small duty cycle D, the C-path current rapidly increases as shown in Equation (17), resulting
in a large ∆VO again.
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6.3. Multi-Phase Buck Converter with ETM

The MBKETM is simulated under the operating conditions as shown in Table 3.

Table 3. Simulation conditions for multi-phase buck converter with ETM.

VIN VOUT ILOAD fIN L RDCR

5 V 3.7 V 1 A 1 MHz 4.7 µH 0.2 Ω

CF CO RON RESR Cgate Coss

4.7 µF 4.7 µF 50 mΩ 20 mΩ 250 pF 100 pF

It is possible to separate fIN and fOUT as mentioned in Section 5. Figures 20–22 show the simulation
waveforms of the MBKETM with different values of fOUT. Figure 20 shows the waveforms when fIN
and fOUT are both equal to 1 MHz. IL is reduced to half of ILOAD because the output duty is fixed at
0.5, as shown in Equation (25). Moreover, ∆VO is as small as 25 mV because iD is continuous due to
the presence of both the L-path and the C-path. Figure 21 shows the waveforms when fOUT is two
times higher than fIN. Under these conditions, ∆VO is further reduced to 15 mV because the effective
frequency seen at the output is increased. Figure 22 shows the waveforms when fOUT is triple the value
of fIN. Under these conditions, ∆VO is further reduced to 10 mV. However, since high fOUT can increase
the switching loss in the converter, causing degradation of efficiency, there is a trade-off between ∆VO
and power efficiency.
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In summary, the proposed MBKETM, using one inductor and two flying capacitors, achieves a
similar reduction of IL to half of ILOAD as the CMBK does with two large, expensive inductors, thereby
reducing PDCR significantly. Furthermore, because fIN and fOUT can be controlled independently,
∆VO can be further reduced. Also, unlike the CMBK, the proposed MBKETM does not require a
complex current balancing controller in spite of the multi-phase operation.

6.4. Single-Inductor Multiple-Output Buck Converter with ETM

Table 4 shows the simulation conditions of the proposed SIDOETM. Figure 23 shows the simulated
iL, iC1, iC2, iD1, and iD2 of the proposed converter. Due to the dual current paths, IL is lower than the
sum of ILOAD1 and ILOAD2.

Table 4. Simulation conditions for single-inductor multiple-output (SIDO) converter with ETM.

VIN VOUT1/VOUT2 ILOAD1/ILOAD2 fIN L RDCR

5 V 2.8 V/2 V 0.7 A/0.5 A 1 MHz 4.7 µH 0.2 Ω

CF CO RON RESR Cgate Coss

4.7 µF 4.7 µF 50 mΩ 20 mΩ 250 pF 100 pF
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Figure 23. Simulated current waveforms of the proposed single-inductor dual-output converter with
ETM (SIDOETM).

Moreover, since iD1 and iD2 do not drop to zero, the continuous current (iD1, iD2) flows to the
respective output (VO1, VO2). Figure 24 shows that the output voltage is well regulated to 2.8 V
and 2 V. The ripples of each output are 15 mV and 13 mV, respectively. It has a lower ∆VO than the
CSIMO [31–33].
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Tables 5 and 6 summarize the advantages of the proposed topologies with the ETM. The 
common advantage is the reduction of IL, resulting in low total conduction loss in heavy load 
conditions. Moreover, unlike conventional topologies that have discontinuous iD, such as the CBB 
and CSIMO topologies, the proposed ETM topologies have very low ∆VO because of the continuous 
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Table 5. Summary table with buck and buck-boost type converters. 
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Tables 5 and 6 summarize the advantages of the proposed topologies with the ETM. The common
advantage is the reduction of IL, resulting in low total conduction loss in heavy load conditions.
Moreover, unlike conventional topologies that have discontinuous iD, such as the CBB and CSIMO
topologies, the proposed ETM topologies have very low ∆VO because of the continuous iD.
The MBKETM can control fIN and fOUT independently, resulting in further reduction of ∆VO.

Table 5. Summary table with buck and buck-boost type converters.

Advantages BKETM CBK BBETM CBB

Reduction of IL O × O ×

Reduction of ∆VO × × O ×

Continuous iD O O O ×

O: Yes; ×: No.

Table 6. Summary table with multi-phase buck and single-inductor dual-output (SIDO) buck
type converters.

Advantages MBKETM CMBK SIDOETM CSIMO

Reduction of IL O × O ×

Reduction of VO O × O ×

Continuous iD O O O ×

Separated frequency O × × ×

O: Yes; ×: No.

7. Conclusions

In this paper, an ETM was proposed to make a promising hybrid switched inductor capacitor
converter easier to design for heavy load conditions. New topologies with ETM, which generate dual
current paths, were analyzed and compared with conventional topologies that have a single current
path. Owing to the dual current paths (L-path and C-path), all of the topologies with the ETM shared
the common advantage of reduced inductor current. Since it significantly decreases conduction loss
dissipated at a considerable parasitic DC resistance of the inductor, the heating issue can be resolved at
the same time as the power efficiency is improved, which was discussed with buck and buck-boost
converters with ETMs as examples. Moreover, the buck-boost converter with ETM has continuous
output delivery current, resulting in much smaller output voltage ripple than that of a conventional
buck-boost converter. Also, a multi-phase converter and single-inductor multiple-output converter
with several ETMs were proposed and simulated. The multi-phase converter with ETM offered the
additional advantage of separating the switching frequency between the input frequency and the
output frequency to further reduce the output ripple voltage. Additionally, the SIMO converter with
ETM achieved a small output voltage ripple, similar to that of a buck-boost converter with ETM, due to
the continuous output delivery current. In summary, the ETM can be implemented easily by combining
with conventional topologies, and it has several merits such as reduced inductor current, small output
voltage ripple, and independent frequency control. The proposed ETM can be applied to various
non-isolated topologies as a promising solution for use in heavy load conditions with a small inductor.
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