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Abstract: The parameters considered in structural dynamic reliability analysis have strong
uncertainties during machinery operation, and affect analytical precision and efficiency. To improve
structural dynamic fuzzy reliability analysis, we propose the weighted regression-based extremum
response surface method (WR-ERSM) based on extremum response surface method (ERSM) and
weighted regression (WR), by considering the randomness of design parameters and the fuzziness of
the safety criterion. Therein, we utilize the ERSM to process the transient to improve computational
efficiency, by transforming the random process of structural output response into a random variable.
We employ the WR to find the efficient samples with larger weights to improve the calculative accuracy.
The fuzziness of the safety criterion is regarded to improve computational precision in the WR-ERSM.
The WR-ERSM is applied to perform the dynamic fuzzy reliability analysis of an aeroengine turbine
blisk with the fluid-structure coupling technique, and is verified by the comparison of the Monte Carlo
(MC) method, equivalent stochastic transformation method (ESTM) and ERSM, with the emphasis
on model-fitting property and simulation performance. As revealed from this investigation, (1) the
ERSM has the capacity of processing the transient of the structural dynamic reliability evaluation, and
(2) the WR approach is able to improve modeling accuracy, and (3) regarding the fuzzy safety criterion
is promising to improve the precision of structural dynamic fuzzy reliability evaluation, and (4) the
change rule of turbine blisk structural stress from start to cruise for the aircraft is acquired with the
maximum value of structural stress at t = 165 s and the reliability degree (Pr = 0.997) of turbine blisk.
The proposed WR-ERSM can improve the efficiency and precision of structural dynamic reliability
analysis. Therefore, the efforts of this study provide a promising method for structural dynamic
reliability evaluation with respect to working processes.

Keywords: dynamic fuzzy reliability analysis; extremum surface response method; weighted
regression; turbine blisk; fuzzy safety criterion

1. Introduction

In mechanical systems, the structures always endure complex loads in the extreme environment.
For instance, an aeroengine turbine blisk always suffers from high temperature, high pressure and high
speed under operation [1]. With the increasing complexity of a mechanical system, the requirements on
structural design have become higher. A structural failure during operation could seriously threaten
the safety of the entire system and could even be catastrophic. Therefore, it is worthwhile to perform
reliability analysis to improve the performance of mechanical system.

In respect of a large number of investigations on the structural reliability evaluations, many
methods were developed and briefly described below. Liu et al. [2] adopted a first-order reliability
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method (FORM) in the chatter reliability analysis of milling system. Keshtegar [3] used the hybrid
conjugate search direction to improve the efficiency and robustness of FORM in structural reliability
analysis. Zhang et al. [4] proposed a second-order reliability method (SORM) for mechanical reliability
design. Huang et al. [5] developed a new SORM with saddlepoint approximation for reliability analysis.
Hu et al. [6] explored a novel second order approximation for structural reliability analysis. Nakamura
et al. [7] discussed the Monte Carlo (MC) method by the probabilistic transient thermal analysis of an
atmospheric reentry vehicle structure. Martinez-Velasco et al. [8] studied the reliability of distribution
systems with distributed generation using the parallel MC method. Yang et al. [9] evaluated the
structural reliability of a beam pumping unit by the finite element (FE) method with the MC simulation.
However, it is difficult to employ FORM and SORM in complicated calculations in structural reliability
analysis for low computing accuracy. Moreover, the MC method always spends tremendous time on
structural reliability analysis for the requirement of a large number of iterations and simulations.

To address the above issues, surrogate models (called response surface methods, RSM) emerged
and underwent rapid development. So far, various surrogate models have been appeared, such as
RSM-based polynomials, Kriging model, neural network method, support vector machine, and so
forth. Yang et al. [10] used the RSM and FE model to optimize preform shapes, to improve deformation
homogeneity in aerospace forgings. Allaix and Carbone [11] proposed the coupling method of the
RSM and FE method for structural reliability analysis to prohibit computational cost. In the above
works, the RSM has been validated to hold higher computational efficiency than the MC simulation.
However, it is troublesome to apply the RSM to process the nonlinearity and transient problems of
complex structural reliability analyses, because it is impossible for the RSM model to perfectly reflect
the parameter features in high-dimensional space and thus ensure modeling precision. In this case, the
Kriging model was developed by Danie G. Krige (after whom the method is named), and then also
applied in the field of structural reliability [12,13]. As a classical implicit and intelligent algorithm,
the neural network method was investigated in structural reliability analyses [14,15]. Additionally, a
support vector machine is also widely focused on since the outstanding performance in overcoming
high-dimensional and nonlinear features in structural reliability [16,17]. Although these methods have
acceptable accuracy in modeling and reliability assessment in static reliability analysis, it is difficult for
these methods to accurately evaluate structural dynamic reliability with time-varying features and the
increasing limit state functions.

With respect to the solution of the above questions, extremum RSM (ERSM) was first proposed to
handle the transient problem of two-link flexible rotor manipulator reliability analysis, by regarding the
time-varying feature and the extremum values of output responses [18]. Later, the ERSM was extended
to the dynamic probabilistic designs of aeroengine typical components such as disks and blades [19,20].
The investigations revealed that the ERSM is efficient to reduce computational burden in structural
dynamic reliability design to some extent. As for the transients and nonlinearity of structural dynamic
reliability analyses, however, the ERSM still face with the low and even unacceptable computational
accuracy. In addition, the use of the parameters always influences the modeling precision. In the
improvement of modeling accuracy, the weighted regression (WR) is an efficient way by seeking for the
better values of the parameters in modeling. Broadie et al. [21] improved the risk estimation model of a
financial budget via the WR. The WR technique was also applied to the surrogate modeling of structural
reliability analyses. Kaymaz and McMahon [22] utilized the WR to improve the response surface model.
In the related published works, it has not been found that the technique is employed in structural
dynamic reliability analysis. Along with the heuristic thought, we apply the WR to structural dynamic
reliability analysis to refine the modeling precision and accuracy. Meanwhile, the strong fuzziness
of parameters is ubiquitous in the material property, boundary conditions, geometry sizes, safety
criteria, and so forth [23–25]. Herein, the safety criterion is fuzzy when a specific failure value cannot
be determined. The fuzzy safety criterion is more reasonable in structural fuzzy reliability analyses,
because the analytical accuracy is improved by transforming fuzzy safety criterion to stochastic safety
criterion [26–28].
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To perform a structural dynamic reliability analysis with high-precision, this study proposes an
efficient approach based on the ERSM and WR, called as WR-based ERSM (WR-ERSM), to improve the
accuracy of surrogate modeling and reliability analysis. In the WR-ERSM, the ERSM is employed to
address the transient problem of structural dynamic reliability analysis by simplifying the stochastic
process of output response as a random variable, the WR is introduced to find the efficient samples
for the ERSM modeling to improve modeling accuracy, and the fuzziness of the safety criterion is
considered to improve the precision of dynamic reliability analysis by transforming fuzzy safety
criterion into stochastic safety criterion. The proposed WR-ERSM is validated by the dynamic fuzzy
reliability analysis of a turbine blisk with regard to both the randomness of input variables and the
fuzziness of safety criterion.

In Section 2 WR-ERSM is developed for structural dynamic fuzzy reliability analysis. Section 3
investigates the dynamic fuzzy reliability analysis of an aeroengine turbine blisk based on the WR-ERSM
by considering fluid-structure interaction and fuzzy safety criterion. The developed WR-ERSM is
validated by the comparison of methods in Section 4. The conclusions on this study are summarized in
Section 5.

2. Basic Theory on Dynamic Fuzzy Reliability Analysis

In this section, we discuss the basic principle of the WR-ERSM for structural dynamic fuzzy
reliability analysis as drawn in Figure 1.
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Figure 1. Flow chart of structural dynamic fuzzy reliability analysis with weighted regression extremum
response surface method (WR-ERSM).

As revealed in Figure 1, the process of structural dynamic fuzzy reliability analysis comprises
analytical preparation, WR-ERSM modeling, sample extraction, safety criterion transformation and
reliability analysis. The analytical preparation is to structure finite model (FE) model and set all
constraint conditions, workloads and time domain. The objective of the samples’ extraction is to
collect all input and output samples from dynamic deterministic analyses as one pool of samples for
dynamic probabilistic analysis. Herein, the samples of random inputs are extracted by the full factorial
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design [29,30], and then the extrema of response processes are gained as new output responses based
on dynamic deterministic analysis in the time domain of interest, and their weights are confirmed
by a series of deterministic analyses with the acquired input samples and FE model. In the process
of WR-ERSM modeling, the samples with larger weights, which include input samples and output
samples, are chosen from the pool of samples as the fitting samples for the WR-ERSM modeling. When
the fitting accuracy does not satisfy the requirements, the fitting samples are reselected to achieve the
weighted values. Otherwise, the probability density functions (PDFs) of outputs are gained by MC
method. The objective of safety criterion transformation is to transform the fuzzy safety criterion into
a stochastic safety criterion based on the fuzzy entropy principle [31,32]. Lastly, structural dynamic
fuzzy reliability analysis is performed to achieve the reliability degree considering the randomness of
input variables and the fuzziness of safety criterion.

2.1. Weighted Regression Extremum Response Surface Method (WR-ERSM) Modeling

The ERSM was developed to evaluate structural dynamic reliability by considering the extremum
values instead of all the output responses within the time domain of interest, and was proved to be
efficient in terms of the efficiency improvement [18,33]. In other words, the random process of an
output response in the time domain is transformed into a random variable as the ERSM is modeled.
When y(x) denotes the extremum of output response within the time domain [0, T], corresponding
to the input variables x = [x1, x2, . . . , xk]T, where k is the number of inputs, the ERSM model can be
expressed as:

y(x) = A + Bx + xTCx (1)

in which A, B and C indicate constant term, linear term and quadratic term. B and C are denoted as:
B = [b1, b2, · · · , bk]

C =


c1 0

. . .
0 ck

 (2)

here i = 1, 2, . . . , k. Thus, the ERSM function can be rewritten as:

y(x) = a +
k∑

i=1

bixi +
k∑

i=1

cix2
i (3)

In this equation, the number of undetermined coefficients is 2k + 1. To compute these coefficients,
we extract a series of input samples by the full factorial design method in Equation (4).

E1 = (µ1,µ2, · · · ,µk)

E2 = (µ1,µ2, · · · ,µi ± fσi, · · · ,µk)

E3 =
(
µ1,µ2, · · · ,µi ± fσi, · · · ,µ j ± fσ j, · · · ,µk

)
...
Es = (µ1 ± fσ1,µ2 ± fσ2, · · · ,µi ± fσi, · · · ,µk ± fσk)

(4)

where El (l = 1, 2, . . . , s) is the l-th sampling category, namely experimental condition, which is the rule
of generated sample set of random variable with respect to both the mean µ and standard deviation σ;
the subscripts i, j indicate the i-th and j-th random variables; the subscript s expresses the number of
sampling types; f denotes the empirical coefficient which is usually selected from 1 to 3.
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Based on structural dynamic deterministic analysis and the least square method [1,19,34], the
output responses are then acquired by Equation (5).

d =
(
vTv

)−1
vTy

v =


1 x11 x12 · · · x1k x2

11 x2
12 · · · x2

1k
1 x21 x22 · · · x2k x2

21 x2
22 · · · x2

2k
...

...
...

. . .
...

...
...

. . .
...

1 xn1 xn2 · · · xnk x2
n1 x2

n2 · · · x2
nk


d = [a, b1, b2, · · · , bk, c1, c2, · · · , ck]

(5)

The symbol v is the n × (k + 1) matrix of input variables, in which n is the number of samples; d is
the vector of undetermined coefficients in the ERSM model.

In respect of the ERSM, the computational burden is effectively reduced in structural dynamic
reliability evaluation. However, the modeling precision is still unacceptable because of the limitations
of quadratic polynomials in processing the high non-linearity problem and large-scale parameters.
To resolve this issue, this study develops the WR-ERSM with respect to the ERSM and WR. We adopt
the ERSM to compute the global extreme value rather than all the values for the dynamic output
responses under different input parameters in the time domain [0, T], and employ the WR to find the
optimal parameters in the process of the ERSM modeling.

The comparison of the ERSM and the WR-ERSM are shown in Figure 2. The ERSM model
(indicated by the red dotted curve) is established by all the samples based on the least square method.
For the WR-ERSM modeling (denoted by the blue solid curve), we first apply the WR to select the
efficient samples (annotated by the blue dots) with larger weights from the pool of n samples, to
determine the undetermined coefficients and gain the WR-ERSM model. This method is termed the
weighted least square method.
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Regarding the ERSM model (Equation (1)), the WR-ERSM model yWR(x) is structured as:

yWR(x) = AWR + BWRx + xTCWRx (6)

where AWR, BWR and CWR are the weighted constant, weighted linear vector and weighted quadratic
matrix, respectively. BWR and CWR are denoted as

BWR =
[
bWR,1, bWR,2, · · · , bWR,k

]
CWR =


cWR,1

cWR,2
. . .

cWR,k


(7)
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To intuitively express the WR-ERSM model, the Equation (6) is written as quadratic polynomial,
i.e.,

yWR(x) = aWR +
k∑

i=1

bWR,ixi +
k∑

i=1

cWR,ix2
i (8)

in which aWR, bWR,i and cWR,i are the weighted coefficient of A, B and C, respectively.
To determine these weighted coefficients in Equation (8), we first need to search the minimum of

output responses yobj(x) with respect to n samples, the weighted values are then obtained by dividing
the minimum value yobj(x) from all the output responses ytrue(x), which are ensured by dynamic
deterministic analysis with the FE model. The m efficient samples with larger weights are selected
from this pool of n samples, and the weighted matrix w is restructured. The related formulas are:

yobj(x) = min
∣∣∣ytrue, j(x)

∣∣∣
w j =

yobj

ytrue, j(x)

w =


w1

. . .
wm


(9)

here j = 1, 2, . . . , n; ytrue, j(x) indicates the true value of the j-th output response; wj is the weighted
value of the j-th sample; m (m ≥ (2k + 1)) is the number of efficient samples.

We confirm the undetermined coefficients of WR-ERSM model, i.e.,

dWR =
(
vT

WRwvWR
)−1

vT
WRwyWR (10)

where dWR denotes the vector of undetermined coefficients in the WR-ERSM model; vWR is the matrix
of efficient samples; yWR is the output response corresponding to the efficient samples. dWR, vWR and
yWR are structured as:

dWR =
[
aWR, bWR,1, bWR,2 · · · , bWR,k, cWR,1, cWR,2 · · · , cWR,k

]

vWR =


1 xWR,11 xWR,12 · · · xWR,1k x2

WR,11 x2
WR,12 · · · x2

WR,1k
1 xWR,21 xWR,22 · · · xWR,2k x2

WR,21 x2
WR,22 · · · x2

WR,2k
...

...
...

. . .
...

...
...

. . .
...

1 xWR,m1 xWR,m2 · · · xWR,mk x2
WR,m1 x2

WR,m2 · · · x2
WR,mk


y = [y(x1), y(x2), · · · , y(xn)]

T

(11)

Based on the above analysis, we can derive the WR-ERSM model.

2.2. Safety Criterion Transformation

In engineering practice, most factors have stochastic and fuzzy characteristics. For structural
dynamic reliability analysis, various methods have been developed so far to process the effect of the
random parameters. However, those methods are unable to resolve the influences of the randomness
and fuzziness simultaneously. As typical fuzzy factors, the allowable values, e.g., deformation, stress,
strain, and so forth, of the safety criterion generally depend on experimental statistics. Actually, these
parameters always vary in small range in engineering. Hence, it is more reasonable to consider the
randomness of inputs and the fuzziness of safety criterion in structural dynamic reliability analysis.

To address this issue, we transform the fuzzy safety criterion into a random safety criterion in the
structural dynamic fuzzy reliability evaluation. This paper deals with the fuzzy safety criterion by
the fuzzy entropy principle, which has been validated to be feasible [31,32,35,36]. For transforming
the fuzzy safety criterion into random safety criterion, we first determine the membership function of
safety criterion distribution feature, which is generally chosen as a triangular membership function in
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engineering practice [23,28,36]. Hence, we also select a triangular membership function to describe the
information for the safety criterion as shown in Equation (12).

uỹ(x) =


x−a1
a−a1

, a1 < x ≤ a
a2−x
a2−a , a < x ≤ a2

0, otherwise
(12)

We can compute the mean and standard deviation of stochastic safety criterion with a normal
distribution based on the fuzzy entropy principle in Equation (13), and then acquire the PDF of safety
criterion:

µeq =

(
1∫ +∞

−∞
uỹ(x)dx

)∫ +∞

−∞
xuỹ(x)dx

σeq =
1
√

2π
exp(Gx − 0.5)

(13)

where µeq and σeq indicates the mean and standard deviation of equivalent random parameter; µỹ(x) is
the membership function of fuzzy safety criterion; Gx is defined as:

Gx = −

∫ +∞

−∞

u′ỹ(x) ln u′ỹ(x)dx = −

∫ uu

ul

uỹ(x)∫ uu

ul
uỹ(x)dx

ln
uỹ(x)∫ uu

ul
uỹ(x)dx

dx (14)

here uu and ul are the upper bound and lower bound of fuzzy variable interval, respectively.
Finally, the PDF of safety criterion is reshaped as:

feq
(
zeq

)
=

1
√

2πσeq
exp

−
(
zeq − µeq

)2

2σ2
eq

 (15)

Through the above analysis, we can transform the fuzzy safety criterion into a stochastic safety
criterion by using the fuzzy entropy principle.

2.3. Structural Dynamic Fuzzy Reliability Analysis

To accomplish structural dynamic reliability analysis, we need to build the PDF of output. In this
case, we take structural stress as analytical object (output response). Based on the derived WR-ERSM
model in Equation (8), we extract a large number of samples of the output based on MC method, and
achieve the mean and standard deviation. The formula of PDF is then established, i.e.,

f (z) =
1

√
2πσz

exp

− (z− µz)
2

2σ2
z

 (16)

where z expresses the structural stress; µz and σz are both mean value and standard deviation,
respectively.

With the PDF of safety criterion, the fuzzy reliability index β and reliability degree Pr of the
complex structure are: 

β =
µz−µeq√
σ2

z+σ
2
eq

Pr = Φ(β)
(17)

where µz and σz present the mean value and standard deviation of output response; µeq and σeq indicate
the mean value and standard deviation of the safety criterion.

3. Example Analysis

In this section, we regarded the dynamic fuzzy reliability analysis of an aeroengine turbine blisk
as one case to verify the feasibility and effectiveness of the proposed WR-ERSM algorithm.
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3.1. Deterministic Analysis for Turbine Blisk

Working in the extreme environment, turbine blisk endures high temperature, high pressure
and high speed. To simulate the variation of turbine blisk stress under different operation status,
the analytical range of start, idle, take off, climb and cruise is selected from the flight profile of the
aeroengine in the time domain [0 s, 215 s] [37,38]. In this time domain [0 s, 215 s], 12 critical points of
angular speed shown in Figure 3 are selected during the aeroengine operation of time domain. In this
study, nickel-base alloy is selected as the material of the gas turbine blisk.
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Figure 3. Change curve of angular speed in time domain [0 s, 215 s].

The turbine blisk is a typically cyclic symmetric structure comprising one disk and 40 blades,
and is shown in Figure 4. To reduce the calculation burden, the 1/40 of the blisk model is regarded as
the study object, besides the cooling holes on blisk are simplified. The FE models of the turbine blisk
(29,332 elements and 47,933 nodes) and flow field (222,370 elements and 321,632 nodes) are shown in
Figures 5 and 6, respectively.
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To simulate the variation of structural stress caused by fluid and structural loads within the time
domain [0 s, 215 s], the dynamic deterministic analysis of the turbine blisk is fulfilled by both the close
coupled analysis method and fluid–structure interaction [39–41]. The variation curve of turbine blisk
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stress in the time domain [0 s, 215 s] is displayed in Figure 7, in which σ is the stress of turbine blisk
(similarly hereinafter).
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As revealed in Figure 7, the turbine blisk stress rises with the increasing angular speed.
The maximum of stress emerges at t = 165 s in cruise phase. Thus, we regarded t = 165 s as
the computational point of turbine blisk dynamic fuzzy reliability analysis. The nephograms of
pressure and stress distributions on the fluid–structure coupling interface at t = 165 s are acquired in
Figures 8 and 9, in which P is the pressure on the fluid–structure coupling interface. As revealed in
Figure 9, the maximum stress is at the root of the turbine blade.Energies 2018, 11, x FOR PEER REVIEW  10 of 17 
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3.2. The WR-ERSM Model of Turbine Blisk

To achieve the surrogate model of turbine blisk, the factors (parameters) impacting the analytical
results are selected as the random input variables as listed Table 1, including inlet velocity, inlet
pressure, material density and angular speed.

Table 1. The statistical characteristics of random input variables.

Parameters Variable Distribution Mean, µ St.Dev., δ

Inlet velocity (m·s−1) v Normal 168 5.04
Inlet pressure (Pa) P Normal 600,000 12,000

Material density (kg·m−3) ρ Normal 8210 246
Angular speed (rad·s−1) w Normal 1168 35

As revealed in Table 1, the mean µ of the random input variables is determined within the time
domain by using the extremum selection method [42]. To establish the WR-ERSM model of turbine
blisk, the samples are extracted from the random inputs and outputs at the selected calculation points
by the full factorial design in Equation (4). The weighted values of output responses are calculated by
Equation (5). The 40 samples are listed in Table 2.

Table 2. Weighted samples based on weighted regression analysis.

Parameters and Weighted Coefficient Parameters and Weighted Coefficient

v
m·s−1 P, ×105 Pa

ρ
kg·m−3

w
rad·s−1 σ × 108 Pa W v,

m·s−1 P, ×105 Pa
ρ,

kg·m−3
w,

rad·s−1 σ, ×108 Pa W

168.00 6.00 8210 1168 9.687 0.9105 173.04 6.00 8210 1133 9.098 0.9694
162.96 6.00 8210 1168 9.693 0.9099 168.00 6.12 8210 1133 9.105 0.9687
168.00 5.88 8210 1168 9.686 0.9106 168.00 6.00 7964 1133 8.827 0.9992
168.00 6.00 7964 1168 9.392 0.9391 173.04 5.88 7964 1168 9.385 0.9398
168.00 6.00 8210 1133 9.105 0.9687 173.04 5.88 8210 1133 9.098 0.9694
173.04 6.00 8210 1168 9.686 0.9391 162.96 6.12 7964 1168 9.398 0.9385
168.00 6.12 8210 1168 9.687 0.9105 162.96 6.12 8210 1133 9.111 0.9681
168.00 6.12 8210 1203 10.29 0.8576 168.00 6.00 8456 1203 10.59 0.8575
162.96 5.88 8210 1168 9.687 0.9105 168.00 6.12 7964 1133 8.829 0.9989
162.96 6.00 7964 1168 9.391 0.9392 162.96 6.00 8456 1133 9.389 0.9394
162.96 6.00 8210 1133 9.105 0.9687 168.00 5.88 8456 1133 9.383 0.9400
168.00 5.88 7964 1168 9.391 0.9392 173.04 6.12 7964 1168 9.385 0.9398
168.00 5.88 8210 1133 9.105 0.9687 173.04 6.12 8210 1133 9.098 0.9694
168.00 6.00 7964 1133 8.827 0.9992 173.04 6.00 8456 1133 9.376 0.9407
173.04 6.12 8210 1168 9.687 0.9105 168.00 6.12 8456 1133 9.383 0.9400
162.96 6.12 8210 1168 9.693 0.9099 162.96 5.88 7964 1168 9.398 0.9385
168.00 6.00 8210 1203 10.28 0.8576 173.04 6.00 8210 1203 10.28 0.8576
173.04 5.88 8210 1168 9.681 0.9111 162.96 5.88 8210 1133 9.111 0.9681
173.04 6.00 7964 1168 9.385 0.9398 162.96 6.00 7964 1133 8.827 0.9992
168.00 6.12 7964 1168 9.391 0.9392 168.00 5.88 7964 1133 8.826 0.9993

Note: the symbols v, P, ρ and w are the inlet velocity, inlet pressure, material density and angular speed, respectively;
σ presents the turbine blisk stress; W denotes the weighted value. Additionally, the underlined samples (20 samples)
are used to establish the WR-ERSM model, and the underlined and bold samples (30 samples) are applied to derive
the ERSM model.

Based on 20 groups of samples with larger weights underlined in Table 2, the coefficients of
Equation (8) are acquired, and then the WR-ERSM model of turbine blisk is

y(x) = −2.746× 109 + 2.258× 106x1 − 9.681× 102x2 + 1.063× 105x3 + 3.053× 106x4 − 7.036× 103x2
1

+8.078× 10−4x2
2 + 0.418x2

3 − 4.722× 102x2
4

(18)

Let the response y(x) in Equation (18) obey a normal distribution, the dynamic fuzzy reliability
analysis of turbine blisk is accomplished with the MC method. The simulation histories and stress
histograms of turbine blisk are drawn in Figures 10 and 11, respectively.
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As shown in Figures 11 and 12, the histogram of turbine blisk stress obeys a normal distribution
with the mean value µz = 9.669 × 108 Pa and standard deviation σz = 5.743 × 106 Pa. Moreover, in light
of Equation (16), the built model in Equation (18) is rewritten as the PDF, i.e.,

f (z) =
1

√
2π× (5.743× 106)

exp

−
(
z− 9.669× 108

)2

2× (5.743× 106)2

 (19)
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3.3. Turbine Blisk Reliability Evaluation

The safety criterion is a typical fuzzy parameter because its allowable values are uncertain in
practical engineering. To accomplish the dynamic fuzzy reliability analysis of the turbine blisk with
the PDF, the fuzzy safety criterion needs to be transformed into a stochastic safety criterion by the
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fuzzy entropy principle. When the membership function of fuzzy safety criterion obeys a triangular
distribution, the formula and distribution characteristics of the triangular membership function for the
turbine blisk are obtained as shown in Equation (20) and Figure 12, respectively.

uỹ(x) =

 x−9.812×108

5×106 , 9.812× 108 < x ≤ 9.862× 108

9.912×108
−x

5×106 , 9.862× 108 < x ≤ 9.912× 108 (20)

After confirming the membership function of fuzzy safety criterion, the triangular membership
function is transferred into the PDF of safety criterion (namely a stochastic safety criterion) with a
normal distribution by the fuzzy entropy theory. The mean value µeq and standard deviation σeq are
consequently achieved. The PDF f (zeq) can be expressed by:

f
(
zeq

)
=

1
√

2π× (4.980× 106)
exp

−
(
zeq − 9.862× 108

)2

2× (4.980× 106)2

 (21)

With respect to Equations (19) and (21), the probability density curves f (z) and f (zeq) of stress and
the safety criterion of the turbine blisk are drawn in Figure 13, respectively.
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As demonstrated in Figure 13, the mean values (9.669 × 108 Pa and 9.862 × 108 Pa) and standard
deviations (5.743 × 106 Pa and 4.980 × 106 Pa) of the two methods are acquired. In line with Equation
(17), the structural reliability index and reliability degree are β = 2.751 and Pr = 0.9970, respectively.

4. WR-ERSM Verification Procedure

In this section, the proposed WR-ERSM is verified by the comparison with the MC method, ERSM
based on least-square and equivalent stochastic transformation method (ESTM).

4.1. Model-Fitting Properties

By the 30 groups of underlined and bold experimental data in Table 2, the model of ERSM is
established as:

y(x) = −2.015× 108 + 3.734× 106x1 + 1.998× 103x2 + 9.989× 104x3 − 2.756× 106x4 − 1.137× 104x2
1

−1.669× 10−3x2
2 + 9.166× 10−1x2

3 + 1.907× 103x2
4

(22)
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In this paper, we adopt the square-error r2 and maximum absolute error rmax to test the fitting
accuracy for the WR-ERSM and ERSM. The r2 and rmax are illustrated as follows,

r2 = 1−

n∑
i=1

(yi−ŷi)
2

n∑
i=1

(yi−y)2

rmax =
n

max
i=1

(
|yi−ŷi|

S

) (23)

in which n is the number of experimental data; yi denotes the authentic output responses; ŷi is the
output responses gained by the mathematical models; y indicates the mean of the experimental data;
S expresses the standard deviation of experimental data. If the square-error r2 is close to 1 and the
relative maximum absolute error rmax is close to 0, the fitting accuracy is high.

The remaining 10 groups of the experimental data in Table 2 are employed to test the fitting
accuracy of the models (Equations (18) and (22)) with respect to r2 and rmax. The results are listed in
Table 3.

Table 3. The computational results of the ERSM model and WR-ERSM model.

Method
Fitting ERSM Model Fitting Accuracy

Sample Number Fitting Time, h r2 rmax

WR-ERSM 9 7.05 0.9984 0.0535
ERSM 29 22.39 0.9742 0.0834

As illustrated in Table 3, the proposed WR-ERSM only needs 9 samples for modeling, which is far
less than 29 samples for the ERSM. Besides, the fitting time of WR-ERSM is 7.5 hours which is also
far less than the 22.39 hours of the ERSM. As for the fitting accuracy, the square-error and maximum
absolute error of the WR-ERSM and ERSM are 0.9984, 0.9742 and 0.0535, 0.0834, respectively. Because
of the square error 0.9742 < 0.9984→1 and the relative maximum absolute error 0.0834 > 0.0535→0, the
fitting accuracy of WR-ERSM is obviously higher than ERSM in modeling precision. Therefore, the
WR-ERSM is superior to ERSM in fitting efficiency and accuracy. Because of the high computational
accuracy of WR-ERSM, it is also demonstrated to be reasonable and efficient that WR is considered to
select better samples to establish ERSM model.

4.2. Simulation Performances for Dynamic Fuzzy Reliability Analysis of Turbine Blisk

In this section, we compare the reliability degree assessments as using four methods, i.e., the
MC method, ESTM, ERSM and WR-ERSM. The MC method with direction simulation is considered
as the reference when the simulation precisions of other three methods are evaluated. The fuzzy
reliability evaluation with the ESTM considers all calculations in the response process in the time
domain [0 s, 215 s] without the simplification of the response process just like the ERSM. The ERSM
is employed for the dynamic reliability analysis by simplifying the response process as a random
parameter without the consideration of both the WR of the output responses in the sample selection for
the modeling and the fuzziness of the safety criterion in the reliability analysis. When the WR-ERSM
is applied to the dynamic fuzzy reliability estimation of turbine blisk, we completely regard the
simplification of the response process, the WR of output responses and the fuzziness of safety criterion.
All the calculations and simulation are completed based on the same input variables in Table 1 and
computer environment. The computational results are shown in Table 4.

As revealed in Table 4, the WR-ERSM is closer to the MC method than both ESTM and ERSM for
the reliability degree of turbine blisk. Besides, the proposed WR-ERSM has higher analytical accuracy
than the ERSM and ESTM as the precision 0.9989 for the WR-ERSM is larger than the precision 0.9956
for the ERSM and the precision 0.9981. The result that the precision of the WR-ERSM is superior to the
ERSM indicates that considering the fuzziness of the safety criterion besides the WR is efficient for the
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improvement of structural dynamic reliability analysis. The fact that the precision of the WR-ERSM is
superior to the ESTM reveals that the ERSM is effective to deal with the transient in structural dynamic
reliability analysis instead of the ESTM. In brief, the WR-ERSM, which considers both the WR of the
parameters in the model and the fuzziness of the safety criterion in the analysis, is able to improve
the computational accuracy of structural dynamic reliability analysis while keeping to a high degree
of reliability. Besides, the structural dynamic fuzzy reliability analysis with the fuzziness of safety
criterion is more reasonable and accurate than the structural dynamic reliability analysis without the
fuzziness of the safety criterion.

Table 4. The simulation results of turbine blisk dynamic reliability analyses with four methods.

Methods Pr Errors Precision, %

MC method 0.9981 - -
ESTM 0.9962 0.0019 99.81
ERSM 0.9937 0.0044 99.56

WR-ERSM 0.9970 0.0011 99.89

Based on the above results, it is fully demonstrated that the developed WR-ERSM is able to
improve computational efficiency and precision for structural dynamic reliability analysis while
maintaining a high degree of reliability, by both introducing the WR method to find more effective
samples for the ERSM modeling and considering the fuzziness of safety criterion in reliability analysis.
The structural dynamic fuzzy reliability analysis with the WR-ERSM is effective and feasible for
improving the designs of structures and mechanical system.

5. Conclusions

To improve the computational accuracy and efficiency of structural dynamic fuzzy reliability
analysis, we present the weighted regression-based extremum response surface method (WR-ERSM)
based on the extremum response surface method (ERSM) and weighted regression (WR), for structural
dynamic fuzzy reliability analysis. Through this study, some conclusions are summarized as follows:

(1) The WR-ERSM is highly precise and efficient in structural dynamic reliability evaluation, since
ERSM has the capacity of processing the transient problem;

(2) The WR approach can improve modeling accuracy so that the proposed WR-ERSM possesses
high fitting efficiency and accuracy, due to the requirement of small samples;

(3) WR-ERSM possesses good simulation performance in structural dynamic fuzzy reliability
evaluation, as the fuzzy safety criterion is considered to improve the precision;

(4) The change rule of turbine blisk structural stress from start to cruise for an aircraft is acquired
with the maximum value of structural stress at t = 165 s and the reliability degree (Pr = 0.997) of
the turbine blisk.

(5) The efforts of this study provide a promising method for the dynamic reliability analysis and
evaluation of complex structures with respect to the working process.
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