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Abstract: Demand response as a distributed resource has proved its significant potential for power
systems. It is capable of providing flexibility that, in some cases, can be an advantage to suppress the
unpredictability of distributed generation. The ability for participating in demand response programs
for small or medium facilities has been limited; with the new policy regulations this limitation might
be overstated. The prosumers are a new entity that is considered both as producers and consumers
of electricity, which can provide excess production to the grid. Moreover, the decision-making in
facilities with different generation resources, energy storage systems, and demand flexibility becomes
more complex according to the number of considered variables. This paper proposes a demand
response optimization methodology for application in a generic residential house. In this model,
the users are able to perform actions of demand response in their facilities without any contracts
with demand response service providers. The model considers the facilities that have the required
devices to carry out the demand response actions. The photovoltaic generation, the available storage
capacity, and the flexibility of the loads are used as the resources to find the optimal scheduling of
minimal operating costs. The presented results are obtained using a particle swarm optimization and
compared with a deterministic resolution in order to prove the performance of the model. The results
show that the use of demand response can reduce the operational daily cost.

Keywords: demand response; distributed generation; particle swarm optimization; prosumer

1. Introduction

The future of power systems has been guided of a new structure where consumers (end-users)
are considered as a central entity. This vision is presented in the Strategic Energy Technology (SET)
plan of the European Union [1]. The transformation of end-users’ roles allows these entities to have
an active contribution in electric power systems. The prosumer is a new concept that has its origin
in the proliferation of Distributed Generation (DG) in end-user facilities. The Prosumer definition is
presented in Reference [2], where prosumers are considered agents that can either consume or produce
energy. The integration of renewable energy sources (RESs) and energy storage systems results in the
increase the complexity of energy management. In Reference [3], some methods to optimize renewable
energy systems management are revised.

Regarding demand response (DR) programs, the potential for participation in facilities is
significantly increased by the distributed energy resources and especially the energy storage systems.
With the participation in DR programs, the roles of the consumers change from a passive entity to
an active entity that manages both local consumption and generation resources [4]. DR constitutes
a modification of load profile in response to monetary or price signals, and thus provides flexibility
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and aims to help power systems during peak hours of demand or contingencies cases [5]. As the DR
programs are able to reschedule part of the load, the use of these programs is a way to increase the
flexibility of the grid management, avoiding the need to invest in more capacity [6].

Categorizing DR programs, it can be divided into two main categories: incentive-based DR
programs and price-based DR programs. The incentive-based DR programs are referred to as the first
category for DR programs, where the consumers can offer an incentive to change their consumption
patterns. Direct load control programs, load curtailment programs, demand bidding programs,
and emergency demand reduction programs are examples of incentive-based DR programs. The
“price-based DR programs” are the second category of DR programs, where the consumers are charged
with different rates at different consumptions times. Therefore, the retail electricity tariff is affected by
the cost of electricity supply. The price-based DR programs types are a time of use pricing, critical peak
pricing, real-time pricing, and inclining block rate [7]. Advanced infrastructure metering is needed to
implement DR programs at the residential, commercial, or industrial level. Such infrastructure (i.e.,
smart meters) is able to measure and store energy utilization at different times and also obtain the
current usage information remotely.

The European Union has shown significant interest in the concept of smart metering. According
to [8], it is expected by 2020 to invest ~45 million euros for 200 million smart electricity meters and
45 million smart meters of natural gas. This facilitates the application of DR programs in most
electrical facilities.

Regarding the formulation of DR optimization problems, linear programming (LP) or nonlinear
programming (NLP) can be used. Frequently the DR problems are able to use binary decision variables
for determining the status (ON or OFF) of various consumers or appliances; in these situations,
mixed-integer linear programming (MILP) or mixed-integer nonlinear programming (MINLP) may be
used. In Reference [9], the authors use MILP to optimize DR and generate scheduling in a residential
community grid using renewable energies, batteries, and electric vehicles. In this optimization, a
minimization problem of purchased energy costs of the residential community has been solved. In
Reference [10] a cost minimization in smart building microgrid considering DR optimization and
day-ahead operation is implemented using MILP. This case study is composed of two different
smart buildings with 30 and 90 houses. During the optimization process, the optimal schedule
of house appliances is found. Another MILP approach is applied in Reference [11], showing how
strategies like DR can achieve suitability in any region considering the presence of high penetration of
renewable-based generation.

An example of NLP applied for DR optimization is presented in Reference [12], where the unit
commitment problem for a microgrid is solved. The optimization problem finds the amount of load
reduction and paid incentives for each time interval. Another example of MINLP has been presented
in Reference [13], which considers the minimization of purchase gas and electricity from the grid by
including the consumption of different loads at different periods. The optimal day-ahead scheduling
of resources in energy hubs is determined.

The DR application in end consumers has been over time applied through an aggregator. It
works as a service provider, and the DR services must be paid to this provider. In Reference [14],
an aggregation of thermostatically controlled loads for performing DR is presented. In this case, the
air conditioning consumption is considered as the load. The aggregation services are not restricted
to the application of DR programs, in Reference [15] an aggregation of generalized energy storage
can be found. The aggregator storage is used to participate in the energy and regulation market. DR
programs targeting independent users, without the need of contracts or service providers, are also
possible [16,17]. These applications are considered independent because the user is not connected to
any aggregator. Usually, when the application is independent the user has a device installed in its
house to control the loads. In Reference [16], the controller is a PV inverter, while in Reference [17], a
home energy management system is used. The controllable loads can be divided into passive (i.e., air
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conditioning, fridges, washing machine) and active (i.e., DG, ESS, vehicle-to-grid, PV) loads [18]. In
References [16,19] the DR is applied on discrete loads, which only have two states: on or off.

With focus on artificial intelligence (AI), its application in power systems has increased in the
past years. The metaheuristics are a very popular part of AI for solving optimization problems.
These techniques have acceptable performance in order to solve engineering problems by finding a
near-optimal solution with a limited computation burden. Metaheuristics can be applied in problems
with a large number of decision variables and easily adapted to a problem that has several constraints [20].
A PSO variant is used in Reference [17] for finding the optimal operation of price-driven demand
response with a load shifting dispatch strategy for photovoltaic, storage battery, and power grid systems.
The optimization algorithm is implemented on Home Energy Manage System. In Reference [21], the
PSO algorithm is also used. The DR is optimized considering the variation of electricity price imposed
by DSO to provoke a consumption reduction. In the microgrid environment [22], a PSO is used for
solve the DR optimization problem. In this case a dynamic pricing model is considered for increase the
profit of costumers. In Reference [23] a PSO algorithm is proposed to optimize the performance of
a smart microgrid in a short term to minimize operating costs and emissions. Other algorithms like
genetic algorithm [24], simulated annealing [25], and differential evolution [26] are frequently used
algorithms to solve DR optimization problems.

The present paper proposes DR optimization considering the optimal battery schedule in a
residential house with Photovoltaic (PV) generation. A PSO approach is implemented to solve the
optimization problem (MILP), and the results are compared with a deterministic resolution (CPLEX
solver). The consumer (residential house) is provided with independent management that approaches
the several resources capabilities and contributions for the minimization of energy bought from the
grid. The main contributions of this paper are as follows.

(1) To perform DR without any contract with the DR service provider—this presented methodology
allows the user to perform DR actions without any connection with DR services provider. The
consumer is provided with independent management that approaches the several resources
capabilities and contributions for the minimization of bought energy from the grid.

(2) The implementation of PSO which is a very simple metaheuristic to implement, open access,
multiplatform (Windows, MacOS, Linux, etc.), executable from an Arduino/Raspberry and
also is the cheapest implementation option. Referring to the presented solution in [16], which
uses a CPLEX solver for MATLAB/TOMLAB platform, the implementation of the PSO is a
much affordable solution, once that MATLAB and TOMLAB are non-open access. PSO can be
implemented in an open access environment and can be executed in free simple platforms, such
as Python.

(3) The proposed methodology represents an optimization problem that can considerably improve
the consumer’s energy savings—the combined use of resources (PV production, storage capacity,
and loads flexibility) allows for a significant reduction in daily operation costs. The optimal
solution obtained by PSO has a daily cost of 3.28 €, while an operation without PV production,
storage capacity and loads flexibility has a cost of 16.83 € per day, which is five times higher than
PSO result for best scenario. If one considers a base scenario that was obtained by using a simple
management mechanism considering the PV production and storage capacity, the daily cost is
9.33 €, which is three times higher than PSO result for the best scenario. The assessment of PSO
can be verified in the comparison of the base scenario and the optimized base scenario with the
PSO. The daily costs with PSO decreases 1.38 €.

The paper is structured into seven sections: In Section 1 an introduction about DR and how
to solve DR problems is presented. Section 2 presents the proposed methodology; in Section 3 the
problem formulation is presented. Section 4 presents the algorithm (PSO) and its adaptation to the
problem formulation. In Section 5, the case study is presented as well as all input variables and PSO
parameters. Section 6 presents the results, and the conclusions are presented in Section 7.
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2. Proposed Methodology

With the goal to reduce the electricity bill of the end consumers is introduced the presented
methodology. This methodology aims to minimize the operation costs considering the batteries and
flexibility provided by the DR actions. The costs minimization considered the grid, the PV systems,
energy storage batteries, and consumption flexibility through load scheduling. The end consumer
is connected to the grid, and has a tariff contract that allows selling energy in the grid in exchange
for monetary payment. This methodology is able to be expanded to other consumers with different
conditions and with different numbers of resources. Figure 1 presents the context scheme of the
idea proposed. This scheme is typical for a household prosumer. The scheme of Figure 1 has a unit
generation (PV), energy storage system (ESS) (battery), one inverter module, the controllable and
noncontrollable loads, and a smart meter.
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For household, the use of PV generation is considered free (the generation unit is household
property). In this paper, the PV generation is considered priority above all others, meaning that when
it is available it will always be used either by load’s necessities, battery charge, or injection in the grid.
The connection with the grid is considered bidirectional. The PV rated power is usually limited by a
contract between retailer and household. This limitation occurs because it can be a source of problems
for the physical grid. In this way, it is difficult to reach a situation in which, as limit case if no injection
to the grid is allowed, the PV is higher than the load plus the energy that can be used to charge the
battery. However, if it happens, the inverter will disconnect the PV in order to avoid overvoltage. In
Figure 1 one can see power flows and information flows. The information flows are connected to the
inverter and controllable loads. In this case, the inverter is enabled with a control and management
system that allows controlling loads, adding DR actions in household installation.

In general, the consumer can take advantage of the use of PV generation, ESS, and DR actions
to minimize the cost of consumption from the grid. The consumer can look for the periods where
electricity is cheaper to satisfy the consumption and charge the ESS, and the periods where the electricity
price is most expensive to sell the excess electricity from the facility. Thus, it can be considered as a
management system for the consumer to improve his energy bill.

Figure 2 is a representative illustration of the load’s control using relays. The controller, in this
case, is a component of the inverter. Each controllable load must have one relay associated with it,
which allows for its control. So, when the controller sends the signal to the relay, the load is connected
or disconnected from the electrical circuit. In this case, this control is considered a DR cut (direct load
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control). The scheme in Figure 2 considers only one relay for simplification; however, the proposed
methodology is able to consider several relays, one for each load in the facility.Energies 2019, 12, x FOR PEER REVIEW 5 of 17 
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3. Problem Formulation

The mathematical formulation is presented throughout this section. With the formulation
presented it is intended to simulate the interaction of a consumer with the grid. The main goal is to
minimize the operation costs, considering that the user has storage units and is also enabled to do
DR in specific loads. The presented optimization model is considered a mixed-integer linear problem.
Equation (1) presents the objective function.

Minimize f = Energy Bill + DR Curtailment (1)

Equation (1) is comprised of the sum of two different parcels: the energy bill present in Equation (2)
and the DR curtailment present in Equation (3). The Energy Bill represents the cost of buying and
selling energy, and the DR curtailment refers to cost weighting associated with kWh curtailment.

In Equation (2) the variable Pgrid
t represents the flow of energy between household and grid,

Igrid in
t is an indicator variable for power flow into the grid and control the energy buy

(
Igrid in
t = 1

)
and energy sell

(
Igrid in
t = 0

)
, Cgrid in

t represents the cost of buying electricity and Cgrid out
t represents

the cost of selling electricity. The Energy bill in Equation (2), consider the costs of buying electricity(
Igrid in
t × Pgrid

t

)
×Cgrid in

t and the revenues of selling electricity
((

1− Igrid in
t

)
× Pgrid

t

)
×Cgrid out

t . In each
period (t) the user can make a single operation (buy or sell).

Energy Bill =
T∑

t=1

[((
Igrid in
t × Pgrid

t

)
×Cgrid in

t −

((
1− Igrid in

t

)
× Pgrid

t

)
×Cgrid out

t

)
×

1
∆t

]
+ DCP (2)

Igrid in
t =

 1, i f Pgrid
t > 0

0, otherwise
∀t ∈ {1, . . . , T}

Also, in Equation (2) the term
((

1− Igrid in
t

)
× Pgrid

t

)
represents the power sent to the network. The

term ∆t is used for to adjust the consumption to the tariff price because normally the tariff is available in
€/kWh and the optimization can be scheduled at different time intervals (e.g., 15 min). DCP represents
the daily contracted power cost. If the term Pgrid

t has a positive value during optimization it means
that there is electricity consumption from the network. However, if it has a negative value it means
that there is a sale of electricity to the network. Equation (3) presents the DR curtailment.
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DR Curtailment =
T∑

t=1

 L∑
l=1

Pcut
l,t ×Xcut

l,t ×Wcut
l,t

 (3)

If the DR curtailment equation is implemented the cost of load is cut with the use of weights, and
in fact does not have cost for the user. The variable Pcut

l,t represents the cut energy of load (l) in period
(t), the Xcut

l,t represents the decision binary variable to active the cut of load (l) in period (t), and Wcut
l,t

represents the cut weight of load (l) in period (t). The term
(
Pcut

l,t ×Xcut
l,t ×Wcut

l,t

)
shows the interest of

the user to perform cut in load (l) in period (t).
Equation (4) represents the balance between load and generation, Pbat

b,t represents the energy

charged or discharged by baterry (b) in period (t). If the value of Pbat
b,t is less than 0 the battery is

discharging, otherwise, if the value of Pbat
b,t is greater than 0, the battery is charging. The variable PPV

p,t

represents the photovoltaic production of unit p at period t, and Pload
t corresponds to the value of load

at period t.

Pgrid
t = Pload

t +
B∑

b=1

Pbat
b,t −

L∑
l=1

Pcut
l,t ×Xcut

l,t −

P∑
p=1

PPV
p,t , ∀t ∈ {1, . . . , T} (4)

The Equation (5) shows the balance of battery systems.

Estor
b,t = Estor

b,t−1 + Pbat
b,t ×

1
∆t

, ∀t ∈ {2, . . .T}, ∀b ∈ {1, . . . , B} (5)

Variable Estor
b,t represents the state of the battery b in period t, in other words, it represents the

amount of energy it has available. So, by Equation (5) the current battery state is obtained by adding the
previous state Estor

b,t−1 to the value of the variable Pbat
b,t .The power term Pbat

b,t in Equation (5) is multiplied

by 1
∆t to convert power into energy units. The system is governed by the following constraints

(Equations (6)–(10)).
− Pgrid min

t ≤ Pgrid
t ≤ Pgrid max

t ∀t ∈ {1, . . . , T} (6)

Pcut
l,t = Pcut max

l,t ∀l ∈ {1, . . . , L}, ∀t ∈ {1, . . . , T} (7)

0 ≤ Estor
b,t ≤ Estor max

b,t ∀b ∈ {1, . . . , B}, ∀t ∈ {1, . . . , T} (8)

− Pdch max
b,t ≤ Pbat

b,t ≤ Pch max
b,t ∀b ∈ {1, . . . , B}, ∀t ∈ {1, . . . , T} (9)

Xcut
l,t =

{
1
0
∀l ∈ {1, . . . , L}, ∀t ∈ {1, . . . , T}. (10)

In Equation (6), the variable Pgrid min
t and Pgrid max

t represent the limit values for variable Pgrid
t .

Equation (7) identifies that Pcut
l,t can only take the maximum value Pcut max

l,t . The Pbat
b,t variables can take

a value between −Pdch max
b,t and Pch max

b,t ; if the value of Pbat
b,t is less than zero it represents a discharge

and if the value is greater than zero it represents a charge. The variable Xcut
l,t is a binary variable and

represents a decision variable. When Xcut
l,t is equal to 1 the cut of load (l) at period (t) is active.

4. Particle Swarm Optimization

PSO was proposed by Kennedy and Eberhart in 1995, and it is a random search algorithm that
simulates the foraging and flocking of birds in nature [27]. When birds look randomly for food in a
given area, each bird can be associated with a single solution and can be considered as a particle in
the swarm.

For PSO implementations assume that it has j particles in the n-dimensional search space and
each particle represent a solution in the search space. Equation (11) presents the position vector of
particle j and in Equation (12) the velocity vector for particle j.
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→
x

j
i =

(
x j

i,1, x j
i,2, . . . , x j

i,n

)
(11)

→
v

j
i =

(
v j

i,1, v j
i,2, . . . , v j

i,n

)
(12)

where,
→
x

j
i . represents the position vector of particle j for n. variables at iteration i. The

→
v

j
i represents the

velocity vector of particle j for n variables. When the search process starts, both vectors are generated
randomly between the respective limits of the n variables.

Equation (13) represents the velocity update equation. This equation is composed of three

different components: the w j
i
→
v

j
i component represents the previous positions in memory search,

c1 j
i r1 j

i

(
P j

best −
→
x

j
i

)
corresponds to the cognitive learning component, and c2 j

i r2 j
i

(
Gbest −

→
x

j
i

)
is a global

learning component. Equation (14) represents the position update.

→
v

j
i+1 = w j

i ×
→
v

j
i + c1 j

i × r1 j
i ×

(
P j

best −
→
x

j
i

)
+ c2 j

i × r2 j
i ×

(
Gbest −

→
x

j
i

)
(13)

→
x

j
i+1 =

→
v

j
i+1 +

→
x

j
i (14)

where,
→
v

j
i+1 is the velocity vector at iteration i + 1; w j

i represents the inertia weight obtained through

Equation (15); c1 j
i and c2 j

i are acceleration coefficients, which are obtained by Equations (16) and (17),

respectively; and r1 j
i and r2 j

i are two uniformly distributed random numbers independently generated

within [0,1] for the n-dimensional search space. P j
best =

(
x j

pbest,1, x j
pbest,2, . . . , x j

pbest,n

)
denotes the historical

best position and Gbest =
(
xgbest,1, xgbest,2, . . . , xgbest,n

)
denotes the population historical best position.

Equation (15) presents an inertia weight.

w j
i = wmax

−

(
wmax

−wmin

imax

)
× i (15)

where, wmax is the maximum value for inertia weight, wmin is the minimum value for inertia weight,
and imax represents the maximum value of iterations. The inertia weight present in Equation (15) is a
linear decreasing method during the search process. The inertia weight reduction ensures strong global
exploration properties in the initial phase and strong local exploitation properties in the advanced
phase. The inertia weight is calculated at each iteration and is the same for the set of particles at each
iteration [28]. Equations (16) and (17) present the acceleration coefficients calculation:

c1 j
i = cmax

1 −

cmax
1 − cmin

1

imax

× i (16)

c2 j
i = cmin

2 +

cmax
2 − cmin

2

imax

× i (17)

where, cmax
1 and cmin

1 are the maximum and minimum values for the personal acceleration coefficient,

respectively. c1 j
i decreases over the iterations, which means that the acceleration component for the

personal position at the beginning of the search is high allowing exploration. The parameters cmin
2 and

cmax
2 represent the minimum and maximum values for the global acceleration coefficient. c2 j

i increases
over the iterations, which means that the acceleration component for the global position at the end of
the search is high allowing exploitation. The encoding of the solutions is crucial for the success of the
algorithm. Equation (18) shows the encoded vector used for solving the problem present in Section 2.

→
x

j
i =

[{
Pbat

1.1, . . . , Pbat
B,T

}
,
{
Xcut

1.1 , . . . , Xcut
L,T

}]
(18)
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where,
{
Pbat

1.1, . . . , Pbat
B,T

}
is a group of continuous variables representing the electricity amount of charge

or discharge in each battery (b) at period (t) and
{
Xcut

1.1 , . . . , Xcut
L,T

}
are binary variables to enable the

possibility of performed cut action in load (l) at period (t). Therefore, particle
→
x has dimensions of

n = B× T + L× T. This encoding allows a direct evaluation in Equation (1).
The PSO implementation starts by defining the search space limits by setting the lower and upper

bounds of each variable. In Equation (19), xlb j represents the lower limits for the solution of j particle
and xub j in Equation (20) represent the upper limit for j particle.

xlb j =
[{
−Pdch max

1.1 , . . . , −Pdch max
B,T

}
,
{
Xcut min

1.1 , . . . , Xcut min
L,T

}]
(19)

xub j =
[{

Pch max
1.1 , . . . , Pch max

B,T

}
,
{
Xcut max

1.1 , . . . , Xcut min
L,T

}]
(20)

→
x

j
1 = rand

[
xlb j, xub j

]
(21)

Equation (21) presents the process of initialization where the initial solution was created. In this
case, a random process into allowed bounds is executed. rand

[
xlb j, xub j

]
is a random number within

the lower xlb j and the upper xub j bounds of j particle for n variables.
Equation (22) presents the boundary constrains method. The search process over the iterations

will generate new solutions that may not be within the initially stipulated limits. To address this
issue the boundary control strategies are used to repair infeasible individuals. In this paper is used a
boundary control technique known as bounce-back [20].

→
x

j
i =


rand

(
xlb j,

→
x

j
i

)
i f
→
x

j
i < xlb j

rand
(
→
x

j
i , xub j

)
i f
→
x

j
i > xub j

→
x

j
i otherwise

(22)

In contrast to random reinitialization (the most used control technique), bounce-back uses the
information on the progress towards the optimum region by reinitialized the variable value between
the base variable value and the bound being violated. Making use of domain knowledge about the
problem, the Equations (23) and (24) is proposed as a direct repair equation. The Equation (23) concerns
the direct repair of Estor

b,t .

Estor
b,t =


0

Pch max
b,t
Estor

b,t

i f Estor
b,t < 0

i f Estor
b,t > Estor max

b,t
otherwise

∀b ∈ {1, . . . , B}, ∀t ∈ {1, . . . , T} (23)

Although boundary control is used it can only control the variables Pbat and Xcut, the variable Estor

is a variable of control and balance, and when it is repaired other variables are necessarily changed. For
the repair process Estor is needed to test two different conditions, Estor

b,t < 0 represents a greater discharge
than the allowed one, being that it fixes the variable to the minimum value. Estor

b,t > Estor max
b,t means that

the battery has a charge greater than the allowed, the value of maximum energy in the battery is fixed
in maximum that can accumulate. Equation (24) presents the direct repair for Pbat variable.

Pbat
b,t =


Estor

b,t − Estor
b,t−1

Estor
b,t − Estor

b,t−1
Pbat

b,t

i f Estor
b,t < 0

i f Estor
b,t > Estor max

b,t
otherwise

∀b ∈ {1, . . . , B}, ∀t ∈ {2, . . . , T} (24)

Pbat is repaired in Equation (22), but with the direct repair used in Equation (23) the variable Pbat

may not be correct, and it is necessary to perform direct repair on it. So, a battery power level test
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is performed, if Estor
b,t < 0 the value for Pbat

b,t is equal to the difference between the battery power level
in the previous period Estor

b,t−1 and the current period Estor
b,t . The same rule is applied when the battery

power level is greater than the allowed maximum Estor
b,t > Estor max

b,t .

The particles should be evaluated according to a fitness function f ′
(
→
x
)
, Equation (25), including

objective function f
(
→
x
)

Equation (1) and constrains violation p f
(
→
x
)
.

f ′
(
→
x
)
= f

(
→
x
)
+ p f

(
→
x
)

(25)

p f
(
→
x
)
=


T∑

t=1
t× ρ i f Pgrid

t ≤ Pgrid min
t ∩ Pgrid

t ≥ Pgrid max
t

0 otherwise
∀t ∈ {1, . . . , T} (26)

where, p f
(
→
x
)

in Equation (26) represents the penalty value for a solution
→
x . Despite the application of

bounce-back method Equation (22) and direct repair methods (23) and (24), the solution may still be
infeasible. The penalty value is obtained checking the limits of variable Pgrid

t for every period. In each
period that the variable is out of limit is counted and multiplied by a penalty amount ρ, the sum of all
individual (per period) penalties represents the total penalties per each solution.

Pseudocode of the PSO algorithm is presented in Algorithm 1.

Algorithm 1. PSO pseudocode.

INITIALIZE
Set control parameters wmax,wmin,cmax

1 ,cmin
1 ,cmax

2 ,cmin
2 , jmax, and imax.

Create an initial Pop (Equation (21)) and initial velocities.
IF Direct repair is used THEN

Apply direct repair to unfeasible individuals
END IF
Evaluate the fitness of Pop (Equation (25)).
Create a Pbest vector for every particle.
Create a Gbest vector of the swarm.
FOR i = 1 to imax

FOR j = 1 to jmax

Velocity update (Equation (13))
Position update (Equation (14))
Update wi, c1i and c2i (Equations (15)–(17))
Verify boundary constraints for Pbat (Equation (9))and Xcut (Equation (10))
IF Boundary constraints are violated THEN

Apply boundary control (Equation (22))
END IF
Verify boundary constraints for Estor (Equation (8)) and Pbat (Equation (9))
IF Boundary constraints are violated THEN

Apply direct repair (Equations (23) and (24))
END IF
Evaluate fitness of

→
x (Equation (25)).

Verify boundary constraints for Pgrid (Equation (6))
IF Pgrid is out of limits THEN

Apply penalty function (Equation (26))
Update fitness value (Equation (25))

END IF
Update Pbest vector for i particle.

END FOR
Update Gbest vector of the swarm.

END FOR
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Basically, if in the evaluation process constraints violations are identified, the individual is
randomly repaired using the initialization process from Equation (22). The pseudocode of Algorithm 1
is displayed step-by-step, starts with the definition of the parameters related to the PSO. The search
begins with the creation of the initial population. After being evaluated, the best position of each
particle and the best position of the population are defined. The main cycle starts, and at each iteration
of the main cycle, another cycle is performed for each particle. For each particle a new velocity is
generated, updated, verified, and evaluated. When all particles repeat the process, the value of the
best personal position of each particle and the best overall position of the population is updated.

5. Case Study

This section presents the case study. The optimization problem was solved using PSO metaheuristic
and compared to a solution obtained by a CPLEX solver in MATLAB™/TOMSYM™ environment to
compare the results.

The proposed methodology addresses a Portuguese consumer and complies with actual Portuguese
legislation, which allows small producers (consumers with local generation) to use the energy produced
to satisfy the own load necessities and sell it to the grid. The consumer has a supply power contract of
10.35 KVA with the retailer, and it is characterized by three different periods: peak, intermediate, and
off-peak [29]. The prices applied to a consumer operation are present in Table 1. The input prices in
Table 1 are real values of a Portuguese retailer (https://www.edp.pt/particulares/energia/tarifarios),
which provides a realistic case study. The prosumer can inject his excess production into grid, but a
limit is imposed by the retailer. The maximum value injected into grid is half of its contracted power,
approximately 5.1 kW. The real prices and real condition inclusion in this problem contribute to more
accurate in this study and prove the real value of the methodology application.

Table 1. Prices of the different periods and contracted power.

Parameter
Energy (€/kWh) Contracted Power

(€/Day)Peak Intermediate Off-Peak

Buy from grid 0.2738 0.1572 0.1038
0.5258

Periods 10.30 h–13 h
19.30 h–21 h

08 h–10.30 h
13 h–19.30 h, 21 h–22 h

22 h–02 h
02 h–08 h

Sell to grid 0.1659 *
−

DR weight 0 0.2 0.4

* is used for all periods.

The DR weights present in Table 1 are defined by the consumer taking into account the energy
price variation within the day, adapted from [16]. The use of DR is more appreciated when the energy
is cheaper, so the weight of 0 is given in peak periods (highest price). With this weight distribution, the
DR actions are expected to be executed during peak periods. Equation (3) gives the amount of DR
actions contributing to the objective function. It does not represent costs for the consumer, but is rather
a consumer’s preference that influences the scheduling. In Table 2 are presented the problem input
variables adapted from [16].

The system has two PV panels with different production, one has a maximum production of 7.5
kW and other has a maximum production of 2.5 kW. This PV panels and the battery storage unit
are connected to the inverter. The battery can receive power from the PV production or the grid. In
this case study, the inverter has two functionalities: the first is to convert the power from DC to AC
and vice versa; the other functionality is to give the signal to manage certain loads. In this study,
three different loads are considered: a dishwasher, an air conditioner, and a water heater. Figure 3
shows the disaggregated consumption and PV generation forecasts. In this case study, the forecast is
performed for the next 24 h. In real-time operation, the forecast can be updated at every instant. Each
time that user update the forecast can perform a new optimization. Regarding the influence of the

https://www.edp.pt/particulares/energia/tarifarios
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forecasting results on optimization, in the case that the presented day-ahead forecasting strategies in
References [30,31] are considered, the forecasting error, using Supporter Vector Machine algorithms to
predict the values for the next 24 h, will be 9.11%.

Table 2. Problem input variables.

Parameters Symbol Value Units

Maximum power injected to grid −Pgrid min
t

−5.1 kW
Maximum power required from grid Pgrid max

t
1000 kW

Maximum power accumulated in battery Estor max
b,t 12 kW

Maximum energy of battery discharge −Pdch max
b,t −6/4 kWh

Maximum energy of battery charge Pch max
b,t 6/4 kWh

Total Periods T 96 −

Total of controllable loads L 3 −

Total of batteries B 1 −

Total of PV units P 2 −

Adjust parameter ∆t 4 * −

* The factor of 4 comes from the fact that there are four 15-min periods in an hour.
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Figure 3. Disaggregated consumption by appliance and photovoltaic (PV) generation.

Figure 3 presents a typical load profile with a peak of 11.5 kW at ~11.45 h. The consumption per
controllable load is present in Figure 3 with different colors. The total consumption includes the sum
of all loads and the same situation for PV but is the sum of two PV units. The peak of production is
forecasted between the 12.00 h and 13.30 h with 6 kW. In some periods, such as 10:30, the sum of the
controllable loads corresponds to the total consumption. Table 3 presents the parameters for PSO; they
were obtained from a previous study.
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Table 3. Particle swarm optimization (PSO) parameters used.

Parameters Symbol Value

Population size jmax 500
Maximum numbers of iterations imax 500

Maximum inertia weight wmax 0.4
Minimum inertia weight wmin 0.9

Maximum cognitive weight cmax
1 1.5

Minimum cognitive weight cmin
1 0.5

Maximum global weight cmax
2 1.5

Minimum global weight cmin
2 0.5

Number of evaluations − 250,000
Number of trials − 30

The member of evaluation is equal to jmax
× imax and presents the number of fitness function is

evaluated during the search process. Considering that the PSO is an algorithm of a random nature,
a group of 30 trials is performed. With a sample of 30 results, it is possible to extract a more robust
conclusion from the application of the PSO to the problem in question.

6. Results

This section presents the results and analysis obtained from the implementation of the proposed
methodology and respective case study. Table 4 presents the results for Equation (1) in both the
CPLEX (deterministic) obtaining the optimal value, and PSO obtained an approximate resolution.
Four different scenarios were created considering the resources combination: the scenario “PV + Bat +

DR” combine the all available resources (PV production, the storage capacity and loads flexibility),
scenario “PV + Bat” combines the PV production and storage capacity resources and “PV” scenario
only considers the PV production resource. The nonoptimized value is used as a base case scenario
and was obtained by using a simple management mechanism; the scenario “PV + Bat” considers
PV production and storage capacity, and the “Without resources” scenario does not consider any
resource. Analyzing the results of CPLEX for the set of scenarios can conclude that “PV + Bat + DR”
presents the smallest fitness function. It can be said with resources combinations brings benefits for
household management.

Table 4. Results for Equation (2) (€/day).

Resources Combination Scenarios CPLEX
PSO

Min Mean STD

Values optimized
PV + Bat + DR 3.1874 3.2771 3.3381 0.0469

PV + Bat 7.8652 7.9454 8.0595 0.1169
PV 8.8478 8.8478 8.8478 0

Nonoptimized values PV + Bat 9.3298
Without resources 16.8570

The analysis of results is performed for the “PV + Bat + DR” scenario. The results present in
Table 4 of PSO correspond to 30 trials. The minimum value that the PSO reached is 2.8% higher
when compared with CPLEX value. Analyzing the standard deviation (std) value for the sample of
PSO results is possible to conclude that it is relatively small and the values of the 30 trials should be
relatively close to the mean value. The STD analysis is important because it is a measure that expresses
the degree of dispersion of 30 trials solutions. Figure 4 presented the results related to the DR actions
applied to the profile shown in Figure 3.
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Figure 4. DR result regarding initial profile.

In Figure 4, the positive values correspond to the consumption of appliances that had no changes
with the application of the methodology. Negative values are energy that has been reduced due to cut
of loads. With the loads cut, reduction of 63% in the total consumption of three loads (dish washer, air
conditioner, and water heater) was obtained. The DR actions are performed during 10.00 h to 13.00 h
and 19.00 to 21.00. Crossing this information with Table 1, one can see that these periods correspond
to a peak hour, precisely when energy is more expensive. During peak hours the consumption with
the present optimization methodology is 44.8 kW, without its application and not considering PV
generation and energy storage systems, the consumption will be 115.4 kW. This reduction represents
20% reduction of total daily consumption. In this way, it is concluded that the present methodology
has an impact on the consumption of peak hours. In Figure 5 are presented the total load consumption
(controllable and noncontrollable loads), the battery actions (charge and discharge), and the final load
(load consumption plus battery charge).

Energies 2019, 12, x FOR PEER REVIEW 13 of 17 

 

20% reduction of total daily consumption. In this way, it is concluded that the present methodology 
has an impact on the consumption of peak hours. In Figure 5 are presented the total load consumption 
(controllable and noncontrollable loads), the battery actions (charge and discharge), and the final load 
(load consumption plus battery charge). 

 
Figure 5. Load consumptions, battery actions, and final load scheduling. 

Figure 5 shows that due to this condition, the generation (see Figure 3) exceeds the consumption 
needs, and in this case, the energy surplus will either be used to charge the battery or sell to the grid. 
In this way, the user avoids buying energy from the grid to charge the battery and to meet 
consumption necessities. The battery discharge cycles are mostly represented between 11.00 and 
21.00 periods that correspond to a peak and intermediate hour. Table 5 presents a summary of the 
results obtained by both methods applied. 

Table 5. Summary of results. 

Scenario Method 
Equation 

(1) 
Equation 

(2) 
Equation 

(3) 
Daily 

Costs (€) 
Daily 

Revenues (€) 
Monthly 
Costs (€) 

PV + Bat + DR CPLEX 3.1874 3.1874 0 6.9380 3.7505 95.6233 
PV + Bat + DR PSO * 3.2771 3.2771 0 6.0565 2.7794 98.3140 

PV + Bat PSO * 7.9922 7.9922 0 8.5136 0.5683 239.7661 
PV + Bat Nonoptimized 9.3298 9.3298 0 9.3298 0 279.8928 

* represent the values of trial with the minimum fitness value. 

With the proposed methodology, the daily cost of operation for CPLEX is 3.18 (€) and 3.28 (€) 
for PSO, but if the PV system, battery and DR do not exist and the daily costs are 16.83 (€). When 
compared the results of Table 5 is possible to observe that daily cost for CPLEX is larger compared to 
PSO daily cost, but the value of revenues in CPLEX are also large than PSO values. With the case 
study present in Section 5, the value of Equation (1) is equal to Equation (2) in both of methods, which 
means that the value of Equation (3) is zero because Equation (1) is the sum of Equation (2) and (3). 
When Equation (3) has the value zero represents that the DR is performed on periods with weight 
equal to zero and do not have a contribution to Equation (1). Table 5 also presents the monthly costs, 
which are calculated considering that the profile present in Figure 3 is repeated for the 30 days of the 
month. The value obtained for PSO is 2.96 (€) higher. 

 
 

-2

0

2

4

6

8

10

0:
00

0:
45

1:
30

2:
15

3:
00

3:
45

4:
30

5:
15

6:
00

6:
45

7:
30

8:
15

9:
00

9:
45

10
:3

0
11

:1
5

12
:0

0
12

:4
5

13
:3

0
14

:1
5

15
:0

0
15

:4
5

16
:3

0
17

:1
5

18
:0

0
18

:4
5

19
:3

0
20

:1
5

21
:0

0
21

:4
5

22
:3

0
23

:1
5

En
er

gy
 (k

W
h/

4)

Period

Loads consumption Energy Charged Energy Discharged Final Load

Figure 5. Load consumptions, battery actions, and final load scheduling.
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Figure 5 shows that due to this condition, the generation (see Figure 3) exceeds the consumption
needs, and in this case, the energy surplus will either be used to charge the battery or sell to the grid. In
this way, the user avoids buying energy from the grid to charge the battery and to meet consumption
necessities. The battery discharge cycles are mostly represented between 11.00 and 21.00 periods that
correspond to a peak and intermediate hour. Table 5 presents a summary of the results obtained by
both methods applied.

Table 5. Summary of results.

Scenario Method Equation (1) Equation (2) Equation (3) Daily
Costs (€)

Daily
Revenues (€)

Monthly
Costs (€)

PV + Bat + DR CPLEX 3.1874 3.1874 0 6.9380 3.7505 95.6233
PV + Bat + DR PSO * 3.2771 3.2771 0 6.0565 2.7794 98.3140

PV + Bat PSO * 7.9922 7.9922 0 8.5136 0.5683 239.7661
PV + Bat Nonoptimized 9.3298 9.3298 0 9.3298 0 279.8928

* represent the values of trial with the minimum fitness value.

With the proposed methodology, the daily cost of operation for CPLEX is 3.18 (€) and 3.28 (€)
for PSO, but if the PV system, battery and DR do not exist and the daily costs are 16.83 (€). When
compared the results of Table 5 is possible to observe that daily cost for CPLEX is larger compared to
PSO daily cost, but the value of revenues in CPLEX are also large than PSO values. With the case study
present in Section 5, the value of Equation (1) is equal to Equation (2) in both of methods, which means
that the value of Equation (3) is zero because Equation (1) is the sum of Equation (2) and (3). When
Equation (3) has the value zero represents that the DR is performed on periods with weight equal to
zero and do not have a contribution to Equation (1). Table 5 also presents the monthly costs, which are
calculated considering that the profile present in Figure 3 is repeated for the 30 days of the month. The
value obtained for PSO is 2.96 (€) higher.

7. Conclusions

The present work addresses a methodology for resource scheduling (PV battery, storage capacity,
and load flexibility) in a residential house that has not any contract with a DR service provider. Usually,
the DR services for residential consumers are available using a DR service provider. In contrast, in the
presented methodology the user is independent of applying his preferences in decision-making. In
this case, the PV inverter, installed to convert the PV production into DC to AC, can control the charge
or discharge of the battery system and the interruption of the loads. The optimization results for Pbat

b,t
and Pcut

l,t are the inputs for the PV inverter control to act on the battery system and controllable loads.
The optimization problem was solved using a stochastic method (PSO) and a deterministic method

(CPLEX). The results obtained by PSO have a close approximation to the deterministic results. The
simple implementation and open access possibility of programming PSO over different platforms are
factors that potentiate its use in this type of problems. In fact, in the present work, it was possible to
demonstrate the results of running a PSO-based algorithm on a connection with the inverter of the PV
system for control of the connected loads and the charge or discharge of the battery storage system.

The numerical results presented demonstrate that it is possible to obtain advantages by using the
optimal combination of available resources. Table 4 presents the fitness function value for different
resources combination, showing that the scenario that combines the all available resources is the best.
Although PSO can obtain near-optimal solutions, its solution using the best combination resource
scenario is better than the normal operating solution. With the comparison between the base scenario
and the same scenario with PSO optimization, it is possible to make the assessment of the PSO approach.
The daily cost optimized by PSO for the base scenario is 14% lower compared with the obtained in the
nonoptimized base scenario.

As the presented methodology was built for been applied in an independent agent, the agent
facility (residential house) needs to be prepared with equipment to perform the actions that the
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presented method imposes. This condition may be a weakness of the methodology, as it will increase
the initial investment in equipment. Assuming that the DR program is implemented efficiently, such
investment can be recovered over time, as the user does not need to pay fees to any service provider to
use the service. The use of PSO instead of CPLEX can make the initial investment more appealing, for
reasons already discussed in the introduction.

For future work, an analysis incorporating more DR actions (e.g., reduction and shifting capabilities)
in the presented methodology can be done. Also, robust optimization considering the forecast error in
PV production and domestic consumption can also be made to analyze the impact of forecasts errors
in the electricity bill.
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Glossary/Nomenclature

Abbreviations
AI Artificial Intelligence
DR Demand Response
DG Distributed Generation
ESS Energy Storage System
LP Linear Programming
MATLAB Matrix Laboratory
MILP Mixed-integer Linear Programming
MINLP Mixed-integer Nonlinear Programming
NLP Nonlinear Programing
PSO Particle Swarm Optimization
PV Photovoltaic
RESs Renewable Energy Sources
SET Strategic Energy Technology
Indices
b Battery unit
n Dimension
i Iteration
l Load unit
j Particle
t Period
p Photovoltaic unit
Parameters

Cgrid in
t Cost of buying electricity to the grid

Cgrid out
t Cost of selling electricity to the grid

Wcut
l,t Cut weight of load

DCP Daily contracted power cost

xlb j Lower bond for
→
x

j

Pgrid max
t Maximum limit for Pgrid

t
imax Maximum number of iterations
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jmax Maximum numbers of particles
Pcut max

l,t Maximum value for cut load
Pch max

b,t Maximum value for energy charge
Pdch max

b,t Maximum value for energy discharge
cmax

2 Maximum value for global acceleration coefficient
wmax Maximum value for inertia weight
cmax

1 Maximum value for personal acceleration coefficient
Estor max

b,t Maximum value of accumulated energy in battery

Pgrid min
t Minimum limit for Pgrid

t
cmin

2 Minimum value for global acceleration coefficient
wmin Minimum value for inertia weight
cmin

1 Minimum value for personal acceleration coefficient
∆t Multiplicative factor related with the time to calculate energy
B Number of batteries
L Number of controllable loads
T Number of Periods
ρ Penalty value
PPV

p,t Photovoltaic production

xub j Upper bond for
→
x

j

Pload
t Value of load

Variables

Igrid in
t Binary variable for control the flow direction

Pcut
l,t Cut power of load

Xcut
l,t Decision binary variable to active the cut of loads

Pbat
b,t Energy charged or discharged by battery

f
(
→
x
)

Fitness function

f ′
(
→
x
)

Fitness function with penalty

Pgrid
t Flow of energy between household and grid

P j
best

Historical best position

w j
i

Inertia weight

p f
(
→
x
)

Penalty function

c1 j
i and c2 j

i
Personal and global acceleration coefficients

Gbest Population historical best position
→
x

j
i Position vector

Estor
b,t State of the battery

r1 j
i and r2 j

i
Uniform distribution random numbers

→
v

j
i Velocity vector
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