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Abstract: Natural gas has been proposed as a solution to increase the security of energy supply and
reduce environmental pollution around the world. Being able to forecast natural gas price benefits
various stakeholders and has become a very valuable tool for all market participants in competitive
natural gas markets. Machine learning algorithms have gradually become popular tools for natural
gas price forecasting. In this paper, we investigate data-driven predictive models for natural gas
price forecasting based on common machine learning tools, i.e., artificial neural networks (ANN),
support vector machines (SVM), gradient boosting machines (GBM), and Gaussian process regression
(GPR). We harness the method of cross-validation for model training and monthly Henry Hub natural
gas spot price data from January 2001 to October 2018 for evaluation. Results show that these four
machine learning methods have different performance in predicting natural gas prices. However,
overall ANN reveals better prediction performance compared with SVM, GBM, and GPR.

Keywords: natural gas price; natural gas price forecasting; prediction model; machine learning methods

1. Introduction

The world total primary energy supply (TPES) by fuel in 2016 was as follows: 0il (31.9%), coal
(27.1%), natural gas (22.1%), biofuels and waste (9.8%), nuclear (4.9%), hydro (1.8%), and other
(0.1%) [1]. Natural gas thus has the third-largest share among the TPES. Furthermore, natural gas
production continues to grow at a higher pace, most notably with a 3.6% increase in 2017 compared
to 2016 that constitutes the largest increase since 2010. In today’s world, concerns about air quality
and climate change are growing, but renewable energy is expanding at a limited rate and low-carbon
energy sources are hard to find in some areas. Natural gas offers many potential benefits as a solution
to environmental problems. Natural gas generates heat, power, and mobility with fewer emissions,
including both carbon-dioxide (CO;) emissions and air pollutants, than the other fossil fuels, helping
to address widespread concerns over air quality. Because the natural gas energy causes less pollution
to the environment than other kinds of energy resource, it has received much more recognition recently.
Natural gas exploitation has significantly helped many countries to reduce CO, emissions nationally
and globally since 2014 [2]. Natural gas, which is one of the most important energy resources, is going
to play an expanded role in the future of global energy due to its significant environmental benefits.

Forecasting natural gas prices is a powerful and essential tool which has become more important
for different stakeholders in the natural gas market, allowing them to make better decisions for
managing the potential risk, reducing the gap between the demand and supply, and optimizing the
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usage of resources based on accurate predictions. Accurate natural gas price forecasting not only
provides an important guide for effective implementation of energy policy and planning, but also
is extremely significant in economic planning, energy investment, and environmental conservation.
Therefore, researchers continue to study natural gas price forecasting models with great interest,
with the aim of making predictions as accurate as possible in future.

There are plenty of methods for analyzing and forecasting natural gas prices and machine learning
is increasingly used. Machine learning algorithms can learn from historical relationships and trends in
the data and make data-driven predictions or decisions. A great number of researchers have investigated
natural gas price prediction with the aid of various machine learning methods so far. For instance,
Abrishami and Varahrami mixed the data handling neural network technique with a rule-based expert
system in forecasting natural gas prices [3]. Busse et al. used a nonlinear autoregressive exogenous
model neural network [4]. Azadeh et al. studied a hybrid neuro-fuzzy method composed of ANN,
fuzzy linear regression, and conventional regression [5]. Salehnia et al. developed several nonlinear
models using the gamma test, including local linear regression, dynamic local linear regression,
and ANN models [6]. Ceperic et al. proposed a strategic seasonality-adjusted, support vector
regression machine-based model [7]. Su et al. utilized a least squares regression boosting algorithm in
natural gas price prediction [8].

As indicated in the abovementioned existing studies that exploited machine learning tools for
natural gas price prediction, ANN and SVM are widely used machine learning methods in forecasting
natural gas prices. In addition to ANN and SVM, this study will introduce two other common machine
learning approaches, GBM and GPR (these two methods were used for forecasting hourly loads in
US [9]). GBM can solve classification, regression, and ranking problems efficiently, and is frequently
applied in the field of competition and industry. For example, it was applied by Yahoo and Yandex
in their machine-learned ranking engines [10]. GBM is a part of team kPower’s probabilistic wind
power forecasting method that was used to win the wind track of the Global Energy Forecasting
Competition 2014 [11]. Moreover, GBM shows excellent prediction performance in a wide range
of applications like energy prediction in both the machine learning and statistics literature, such as
modelling freeway travel time [12], energy use of appliances in a low-energy house [13], and natural
gas price forecasting [8].

GPR is a general statistical interpolation method [14]. Although originally developed for
applications in geostatistics, GPR can be applied within many disciplines to sampled data from random
fields that satisfy appropriate mathematical assumptions. GPR is a type of non-parametric modelling
approach based on Bayesian learning, which can provide a tractable and flexible hierarchical Bayesian
framework for forecasting [15]. GPR is also an effective kernel-based machine learning algorithm,
which was utilized by Sun et al. for probabilistic streamflow forecasting [16]. Yu et al. developed
a new approach for long-term wind speed forecasting by integrating a Gaussian mixture copula
model (GMCM) and localized GPR [15]. Sanz et al. proposed a particular time-based composite
covariance temporal GPR (TGPR) to account for the relevant seasonal signal variations in solar
irradiation predictions [17].

The aim of this paper is to discuss data-driven models for natural gas price forecasting, which utilize
machine learning approaches including artificial neural networks (ANN), support vector machines
(SVM), gradient boosting machines (GBM), and Gaussian process regression (GPR). Specifically, we will
introduce the fundamental frameworks, basic concepts, and major technical features of each machine
learning approach; then we analyze and compare their practical applications in natural gas price
prediction and investigate future developments with potential research significance of these approaches
in the forecasting of energy prices field.

The rest of this paper is organized as follows: the next section gives a systematic introduction of
different machine learning approaches. Data preparations and descriptions are shown in Section 3.
Section 4 elucidates the empirical study including forecasting performance evaluation criteria,
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model validation techniques, model parameter selection, and empirical study results using prepared
models. Finally, Section 5 presents the conclusions.

2. Machine Learning Approaches

2.1. ANN

The neural network is a computational model created in 1943 by McCulloch and Pitts based on
mathematics and threshold logic algorithms [18]. The neural network is a framework for absorbing
various machine learning algorithms for cooperative work, and thus it is not an algorithm. ANN has
risen in importance since the 1980s and has been a research hotspot in the field of artificial intelligence.
ANN has widespread applications in terms of data processing, classification, regression, function
approximation, and numerical control.

ANN process the information like the neural network of the human brain, i.e., by connecting
different simple units/nodes, named as artificial neurons, to form different complex networks [19].
Each node includes an activation function to produce an output value based on one or multiple
inputs. The output signal of a node can be passed to another node using a weighted connection.
Thus, the output an ANN depends on the connection structure, the weight value and activation
function [20]. A simple signal layer ANN is illustrated in Figure 1.
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Figure 1. A single artificial neuron process.

Given one unit (an artificial neuron) j, let its input signals connected from other units be x; (i =1, 2,
..., n) with corresponding weights w;; (i=1,2, ..., n). There are two basic operations in the processing
unit, namely summation and activation of the input signals [18]. The unit’s output of y; is defined as:

n
yi= f(Zizlwijxi +t5),

where t; is a bias for the unit j, and f is the activation function which can be commonly defined as the

sigmoid function [21]:
1
flx) = 1+4ex"

The output y; will pass to the connected units from the next layer as an input signal. Given

a designed architecture, all units in ANNs are interconnected in different layers. A simple example of
a three-layer ANN is shown in Figure 2: the information flows through the input, hidden and output
layers. The input layer or the first layer contains the same number of units as the input vector size,
followed by the hidden layer with an arbitrary number of units. The output layer aggregates the
weighted outputs from the hidden layer units.
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Input Layer Hidden Layer Output Layer
Figure 2. Feed-forward ANNSs.
2.2. SVM

SVM is mainly based on the theory of statistical learning theory. It a machine learning tool
for solving a convex quadratic problem containing linear constraints, in which local minimum does
not exist. Linear support vector machines can be extended into nonlinear space by introducing the
kernel method, which barely increases the computational cost for high-dimensional data. Vapnik and
Chervonenkis proposed the VC theory of exponential function sets, which motivated the progress of
support vector machines in the historical stage [22]. With the development and maturity of theoretical
research, Boser et al. proposed SVM by harnessing the theory of statistical learning knowledge and
realized the nonlinear support vector machine according to the kernel function theory [23]. With respect
to the risk minimization principle, ANN employs the empirical mode while SVM relies on the structural
mode. So far, it has been widely used in various classification tasks, such as pattern recognition,
images and text classification. In addition, SVM has been used for the regression task with some
loss functions [24].

SVM can realize the regression version, which is called support vector regression (SVR). SVR
solves regression problems on the basis of support vector machines [25,26]. SVR has powerful learning
ability and generalization ability suitable for a small set of samples and has got great success in
forecasting work with promising results [27,28]. This results from that it can adaptively process various
tasks through generalization and meanwhile gets gain access to satisfactory answers. In particular,
a nonlinear relation can be transferred into a linear relation with the utilization of SVR and thus
the task can be easily solved. A drawback is that this becomes time-consuming when the task scale
becomes large [29,30].

For the decision function, it can be represented by:

f(x) =wTx+b,

where w, x, and b represent the weight vector, the input vector, and the bias, respectively. For the
training input vector and target output, we assume x;; and y;,; be the m-th (m =1, 2, ... , M) input and
output, respectively. Let C be a positive parameter for penalizing the samples which does not satisfy
inequality constraints. The error function can be defined as:

1 M
] = EwTw+CZm:1|ym - f(xm)|e
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The error function has two terms, which are used for penalizing model complexity and representing
the e-insensitive loss function, respectively. The loss function is mathematically given as:

o = ], = (. = )]

This function cannot penalize errors less than ¢ in order to reduce model complexity. The solution
of minimizing the error function can be defined as:

f@) =Y (@ - am)xhx+,

m=1

in which the parameters o, and a;, are Lagrange multipliers. Support vectors from the training vectors
give non-zero Lagrange multipliers and contribute directly to the solution, while the non-support
vectors do not. The relationship between support vectors and the model complexity is that its number
can measure the latter [31,32].

The key in SVR applications is the utilization of kernel functions, which can map non-linear
data into spaces in which they are essentially linear for the optimization process. One can utilize the
following kernel function:

K(xtm, x) = K(xLx) = ¢ (xm) ().

Then, the model is changed into:

f@) =Y (o, - am)K(xh) + b

m=1

For kernel functions, Gaussian, polynomial, and hyperbolic tangent type can be used. The Gaussian
type is one of the most popular kernel functions used in empirical analysis, mathematically described
as follows:

K(xm, x) = exp(=yllxm —x||2), fory > 0.

2.3. GBM

Friedman proposed the concept of gradient boosting and introduced the gradient boosting
machine (GBM) technique for the extension of the boosting to the regression [33-35]. GBM has many
applications in regression and classification by generating forecasting models in the form of the set of
weak forecasting models (usually decision tree). GBM is a kind of boosting method. The basic idea
of boosting is to utilize some way such that base learners of each round are more concerned about
the misclassified learning samples of last round during the process of training, but GBM focuses on
each modelling using the gradient descent direction in the previous model loss function. The negative
gradient is used as the measurable indicator that base learners of last round and are fitted in the next
round learning to correct mistakes appeared in the last round. The difference with traditional boosting
is that the purpose of each computation is to reduce the residual of last computation. In order to
eliminate the residual, one can refer to the gradient direction of residual decrease for model build-up.
Thus, the building-up of each new model is to make the residual of the previous model cut down
along the gradient direction in the gradient boosting, which greatly differs from traditional boosting in
weighting correct and wrong samples.

GBM has been shown significant success deployed in various kinds of practical applications
in different fields. It can be considered as a methodological framework, i.e., it is very flexible and
customizable which can achieve high accuracy in many data mining tasks. However, in practice,
the most issue of GBM is it memory-consumption. With respect to a GBM algorithm, given an output
y, an input x, a training set {(xi, Yy j)}?:l' and number of iterations M, we seek an approximation F(x) for
a function F(x) and the approximation requires minimizing the expected value of some specified loss
function L(y, F(x)):

F(x) = arg min E, y[L(y, F(x))]
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The gradient boosting method assumes a real-valued y and seeks an approximation F(x) and
a base-learner model £;(x):

A

F(x) = Zj\ilpih,’(x) + const.

F(x) = ¥ M, pihi(x) + const can be approximated in a greedy way:
. N
Fo(x) = arg mmpzi:lL(yi, ),

Fiu(x) = Fyy—1(x) + arg miny, [ZilL(yi, Froq (xi) + hm(x1)) |-

The negative gradient is calculated by:

_ _[8L(yi,F(xi))

_ ,i=1,---,N.
BF(XI) ]F(X)Fnll (X)

hm(x) is utilized for fitting y; through minimizing the squared error:

Qay = arg mma,ﬁzi:l [y; — ph(x; @) ?

One can employ line search for p,; so as to minimize the loss function:

N
pm = arg minPZizlL(%'Pm—l (xi) + ph(xi; am))-

Finally, it is updated:
Fu(x) = Fpe1(x) + pmh(x; am).

2.4. GPR

GPR builds upon the Gaussian process (GP). GP is a kind of random processes that generalizes
multivariate normal distribution in the infinite dimensional space and therefore is defined in the
distribution over functional values. It is a powerful nonlinear multivariate interpolation tool. The prior
information of GP is used for the inference of continuous value, which is referred to as GPR. GPR is
an interpolation method, in which the interpolation is controlled by prior covariances, and can give
the best linear unbiased prediction for median under the appropriate prior assumptions. It can also
be illustrated by the theory of Bayesian inference [36]. GPR is proposed by Rasmussen et al. at first,
which is an efficient machine learning algorithm based on kernel function and provides a principle,
practicable, and probabilistic method for kernel machine learning [37,38]. In comparison with other
machine learning methods, the advantages of GPR lie in being able to seamlessly integrate multiple
machine learning tasks such as parameter estimation; therefore, the regression can be obviously
simplified and the objective influence for the result is slight, more convenient for an explanation.
GPR possesses excellent performance with relatively small training dataset and offers confidence
interval for prediction by adopting flexible kernel function. However, a known bottleneck is that the
computation complexity in prediction is cubic about |x|, thus it is infeasible for large datasets.

Let X be the matrix of input vectors and x; be the i-th training input vector. Let K(X, X) be the
covariance matrix for pairwise vectors, such that:

lhej—x;12
_ 2,72
K(xi, xj) = ore ¥

The variable f follows the following distribution:

f-mg(0,K(X, X)),
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which is a multivariate Gaussian density distribution. mg(u, X) represents the normal density function.
Additionally, some noise can be added for the estimation of target output y:

y=/,+e

where the noise ¢ yields the independent normal distribution with mean zero and standard deviation
on. Then, given an input vector x+ from the test data, the output ﬁ becomes:

-1
X, y,x.) = K(x., X)[K(X, X) + 021 y.

f=E(f
3. Data Preparation and Description

There exist a great number of factors that affect the natural gas price, e.g., crude oil, heating oil,
drilling activity, temperature, natural gas supply, demand, storage, imports, etc. To better forecast the
gas price, we should consider as many relevant factors as possible. To begin with, the relationship
between crude oil price and natural gas price is a continuous research focus [39]. They often behave
a strong connection and crude oil price fluctuations usually affect the natural gas price. Secondly,
the natural gas can be seen as an alternative energy resource to heating oil in US industry and power
plants, thus, their demands can be shifted between each other based on the market prices [40]. Thirdly,
the prosperity level of the natural gas market can be reflected based on the gas drilling activities [41].
Fourthly, the price of natural gas often suffers from the temperature and weather changes are also
a key factor [42]. The demand for natural gas varies with season. In addition, obviously, natural
gas supply, demand, storage, and imports are important indicators related to natural gas price.
Thus, the abovementioned variables include crude oil price (WTI), heating oil price (HO), natural gas
rotary rigs (NGRR), heating degree-days (HDD), cooling degree-days (CDD), natural gas marketed
production (NGMP), natural gas total consumption (NGTC), natural gas underground storage volume
(NGUSV), and natural gas imports (NGI) are used as inputs in this study. Table 1 lists the details of
several variables in terms of data, unit, and source, where EIA [43] and NOAA [44] represent the US
Energy Information Administration National Oceanic and Atmospheric Administration, respectively.

Natural gas price is the output variable and Henry Hub Natural Gas Spot Price is adopted, which is from
the US EIA [43] and quoted in dollars per million btu. Henry Hub is the earliest representative American
natural gas spot trading centre and is also the largest one until now. It has greatly benefited the development
of the natural gas market and energy economic prosperity since its establishment. For the abovementioned
variables, our dataset comprises monthly data within the period from January 2001 to October 2018 and all
data in the months in this period are complete, which guarantees the availability of data.

Historical trends of natural gas and relevant variables are described in Figure 3, in which Figure 3a
depicts the natural Henry Hub spot price from January 2001 to October 2018, containing a total of 214
records. It can be known that during this period, the average natural price was $4.71, the median was $4.05,
and the standard deviation was $2.22. As shown in Figure 3a, the peak price (13.42 dollars per million btu)
and the bottom price (1.73 dollars per million btu) occurred in October 2005 and March 2006, respectively.
One can easily find that there are a few sharp rises for natural gas before 2009. The first sharp rise appeared
in the winter of 2003, which is mainly caused by extremely cold weather, consistent with the case of storage
reserves being substantially reduced, as shown in Figure 3i. The second upsurge appeared in October to
December of 2005 when hurricanes Katrina and Rita happened in succession. Hurricanes make natural gas
supply drop markedly. The lowest marketed production is in September 2005, only 1,400,941 million cubic
feet, while in October, it increased by 74,708 million cubic feet, which can be observed in Figure 3g. The third
rapid rise is before the global financial crisis in 2008, which, to a great extent, was caused by an increase of
the crude oil prices that led a strong demand for natural gas, as shown in Figure 3b—d. Since 2009, natural
gas in the US has remained at a low level and this is mainly due to two aspects: one is that the demand for
natural gas is not urgent. The other aspect is the oversupply due to the rapid development of shale gas.
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Table 1. A list of the variable used in this study.

Variables Data Unit Source
Natural gas price Henry Hub Natural Gas Spot Price Dollars/million btu EIA
Crude Oil Price Cushing, OK WTI Spot Price FOB Dollars/barrel EIA
Heating Oil Price New York Harbor No. 2 Heating Oil Spot Price FOB Dollars/gallon EIA
Drilling Activity U.S. Natural Gas Rotary Rigs in Operation Count EIA

Heating Degree-Days Number

Temperature Cooling Degree-Days Number NOAA
Natural Gas Supply U.S. Natural Gas Marketed Production Million Cubic Feet EIA
Natural Gas Demand U.S. Natural Gas Total Consumption Million Cubic Feet EIA
Natural Gas Storage U.S. Total Natural Gas Underground Storage Volume  Million Cubic Feet EIA
Natural Gas Imports U.S. Natural Gas Imports Million Cubic Feet EIA

Comparing Figure 3a—c can find the natural gas price, WTI price, and HO price have similar
trends before 2009. After 2009, the WTI price and HO price behaviour show a basically consistent
trend. As for the number of rotary rigs, it shows a similar tendency as natural gas price according
to the comparison between Figures 3a and 3d. The relationships between natural gas price and the
number of rotary rigs is quite telling, as it shows that business activities in the drilling industry depend
on market conditions and potential value to a great extent.
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Figure 3. Historical trends of natural gas and relevant variables.

The fluctuation range of HDD doubles that of CDD or so and thereby the uncertainty of temperature
changes in winter is greater than that in autumn in the US, affecting the expectation of natural gas
demand in winter. It can be seen from Figure 3g,i that the supply of natural gas basically went up and
the storage volume increased continually during the observation period, which results from the shale

gas revolution in the US. Total consumption of natural gas has a rising trend while the imports show

the opposite.

Table 2 lists the descriptive statistics for natural gas spot price (NGSP)and relevant variables
including max, min, median, mean, standard deviation (SD), and relative standard deviation (RSD).
It can be seen from Table 2 that we can know that the standard deviation of natural gas price is far
smaller than that of other variables, except for heating oil price, while the relative standard deviation

of natural gas is at the mid-level among all the variables.
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Table 2. Summary statistics of natural gas prices and relevant variables.

Variables Max Min Median Mean SD RSD
NGSP 13.42 1.73 4.045 4.7064 2.2156 0.4708
WTI 133.8 19.39 61.795 63.8696 26.5254  0.41538
HO 3.801 0.524 1.7695 1.8602 0.806 0.4333
NGRR 1585 82 792.5 762.1682  445.8986  0.5850
HDD 969 3 279.5 352.5374  313.4179  0.8890
CDD 404 3 52.5 1159766 ~ 122.9591  1.0602
NGMP 2,909,415 1,400,941 1,827,382 1,959,300 340,660 0.1739
NGTC 3,307,711 1,368,369 1,926,900 2,036,900 424,400 0.2084
NGUSV 8,384,087 5,041,971 6,920,016 6,865,600 806,420 0.1175
NGI 426,534 200,669 306,952 300,010 55,160 0.1839

10 of 17

Table 3 shows the correlations among the variables. It can be known from Table 3 that with respect

to the correlation between the natural gas price and other variables [45], the strongest is with the
number of rotary rigs and second are marketed production and imports. The weakest correlations
are with heating degree-days and cooling degree-days. Among relevant variables, the crude oil price
and the heating oil price have the strongest correlation. The variables with strong correlations also
occur between the number of rotary rigs and marketed production, the number of rotary rigs and
imports, heating degree-days and cooling degree-days, heating degree-days and total consumption,
and marketed production and imports. The variables with weak correlations occur between crude oil
price and total consumption, the number of rotary rigs and heating degree-days, and the number of
rotary rigs and cooling degree-days, in which the weakest correlation is between the number of rotary
rigs and heating oil price.

Table 3. Correlations between variables.

Variables NGSP WTI HO NGRR HDD CDD NGMP NGTC NGUSV NGI
NGSP 1.0000

WTI 0.1964 1.0000

HO 0.1321 0.9805  1.0000

NGRR 0.7504 0.0936  0.0144 1.0000

HDD 0.0911 —-0.0860 -0.0493  0.0221 1.0000

CDD -0.0590  0.0897  0.0592 -0.0299 -0.8244  1.0000

NGMP -0.6053  0.1976  0.2814  -0.8315 -0.0872  0.1117 1.0000

NGTC -0.2021 0.0238  0.0958 -0.3744  0.8085 —-0.4791 0.3956 1.0000

NGUSV ~ -0.3099  0.1341 0.1618 -0.2203  -0.2975  0.2449 0.2933 -0.1730 1.0000

NGI 0.6082 -0.2653 -0.3319  0.8078 0.2445 -0.0989  -0.8007 —0.0906  —-0.2951 1.0000

4. Empirical Study

4.1. Forecasting Performance Evaluation Criteria

There existed many model evaluation criteria and we choose some classic statistical criteria for
testing model forecasting performance. R-square (R?) is often used for measuring the goodness-of-fit [46]

_ %2?1:1(%_%)2

R - square(R?) = var(y)

1

7

where y; and y; represent the actual value and the prediction value at the time ¢, respectively. N means
the total number of samples in the dataset. R?> can manifest the goodness and badness of fitting by
using changes in the data. The value of R? ranges from is from zero to one. The regression fitting effect
becomes better when the value of R? is closer to 1 [47,48]. In general, the value greater than 0.8 can
indicate that the model has a high enough goodness-of-fit. Moreover, there are four criteria used for
measuring the forecasting errors.
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Mean absolute error (MAE) is also a common forecasting performance evaluation tool obtained
by averaging the absolute errors [49,50]:

1 N _
MAE = =%} [ =l

Mean square error (MSE) is an average of the quadratic sum of the deviation of forecasting value
and actual value and is good at measuring the degree of change [51,52]. The prediction model gets
better accuracy with the decrease of the MSE value. In contrast to MAE, MSE enlarges the value of great
prediction deviation and compares the stability of different prediction models. It is represented as:

1 N 2
MSE = N X Zt:1(yt _]/t) .

Root-mean-square error (RMSE) can be directly obtained from MSE by calculating the square
root [53,54]. It is very sensitive to the very large or very small error value and thus has a good reflection
for precision, formulated as:

1 N 2
RMSE = VMSE = \/ﬁxztl(yt—yt) .

Mean absolute percentage error (MAPE) is often used as a loss function, since it can intuitively
explain the relative errors [55,56]. It considers not only the deviation of prediction value and actual
value, but also the ratio between them. It is given by:

vt

1 N =t
MAPE_NXZ”:l -

y

In the above-mentioned evaluation indices including MAE, MSE, RMSE, and MAPE, the smaller
the value, the better the forecasting model accuracy.

4.2. Model Validation Technique

Cross-validation is an important method for model selection to obtain feasible and stable models in
machine learning. In cross-validation, K-fold validation is a common method of preventing over-fitting
when the model is too complex. It has been demonstrated that compared with Holdout method and
Leave-one-out cross-validation, K-fold validation has more advantages in precision estimation and
model selection [57]. With the help of K-fold validation, we partition training dataset into K equal folds,
of which K — 1 folds are employed for model training while the remaining fold is used for validation.
This operation of training and validation is repeatedly done by rotating K folds. After carrying out this
operation K times, we gather all the errors to calculate out the final error. Note that, K is often taken as
10 in reality [57].

4.3. Model Parameter Selection

Machine learning methods involve many parameters, some of which are key parameters and thus
are carefully selected. The complexity of the model is often related to these key parameters, which is
also called model selection parameters. With regard to ANN, we choose a nonlinear autoregressive
model with external input. The number of hidden neurons and the number of delays are selected as
10 and 2, respectively. In the train network, the training algorithm chosen is Levenberg-Marquardt,
which typically needs more memory but less time. According to the MSE value of the validation
samples, the training will stop automatically once the generalization cannot improve.

The kernel function should be carefully selected in the SVM model. In order to pick off the
appropriate kernel function, our strategy is to test different functions and then the one with minimum
error is what we need. Accordingly, six common kernel functions including linear type, quadratic
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type, cubic type, fine Gaussian, medium Gaussian, and coarse Gaussian are investigated, as shown in
Table 4. Over one hundred experiments are deduced to the cubic type, which has better results than
others overall and thereby serves as the kernel function of SVM in this study.

Table 4. RMSE values of different kernel functions.

Kernel Function 1 2 3 4 5 96 97 98 99 100
Linear 14296 1.4284 1.4245 14373 14175 ... ... 14200 1.4262 14246 1.4347 14175
Quadratic 1.0052 1.0185 1.0037 1.0274 0.9923 ... ... 1.0067 1.0153 1.0056 0.9848 1.0319
Cubic 0.8373 0.8401 0.8187 0.9027 0.8367 ... ... 0.8322 0.8853 0.9418 0.8103 0.8505
Fine Gaussian 1.8277 1.8442 1.8259 1.8393 1.8154 ... ... 1.8336 1.8347 1.8400 1.8535 1.8437
Medium Gaussian 1.0947 1.0996 1.0761 1.1129 1.0653 ... ... 1.0851 1.0943 1.0947 1.0731 1.1001
Coarse Gaussian 14394 1.4425 14318 1.4414 14256  ...... 14292 1.4283 1.4320 1.4363 1.4261

GBM requires a reasonable loss function. The gradient boosting strategy harnesses several
popular loss criteria: least-squares, least absolute deviation, Huber, logistic binomial log-likelihood, etc.
We choose least-squares as loss function, since only the case of least-squares is suitable for regression
model while others are usually applied in classification. In addition, the covariance function or kernel
function is needed in GPR, such as Gaussian kernel and squared exponential kernel used in many
machine learning algorithms. In this paper, squared exponential is used as the kernel function, since it
behaves better results.

4.4. Empirical Study Results

Based on the before-mentioned machine learning methods, prepared data, forecasting performance
evaluation criteria, model validation technique, and selected model parameters, the empirical study is
carried out. Table 5 lists the data that describe the forecasting performance of four machine learning
methods, in which each value is the average of one hundred tests for the purpose of more accurate
results. Observing data of four criteria can easily find that the forecasting performance of ANN and
SVM is better than that of GBM and GPR. In particular, ANN is obviously superior to other methods
while GBM has the worst behaviour. Overall, the performance ranking is ANN, SVM, GPR, and GBM
from strong to weak.

Table 5. Forecasting performance of four machine learning methods.

Model  R-Square MAE MSE RMSE MAPE
ANN 0.8904 0.5115 0.5363 0.7247 0.1117

SVM 0.8437 0.5673 0.7673 0.8757 0.1202
GBM 0.8006 0.6490 0.9786 0.9888 0.1366
GPR 0.8374 0.6026 0.7980 0.8932 0.1270

Figure 4 intuitively compares the prediction suitcases of four machine learning methods,
which contains 214 observed values from January 2001 to October 2018. ANN delays two values,
i.e., from March 2001. It can be obtained from Figure 4 that overall, all the methods have a strong
prediction ability, since their predicted natural gas spot prices are close to the actual prices and
approximatively depict the characteristics of the Henry Hub natural gas spot price time series. From the
view of the whole tendency, ANN outperforms others, in particular, for the prediction of abnormal
values at the beginning of 2009 and the second half of 2010. SVM and GPR are inferior to ANN,
but SVM excels the other three methods in terms of price prediction in the middle of 2008. GBM
behaves the worst prediction ability among the methods, especially for outliers.
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Figure 5 shows the distribution suitcases between predictive values and actual values. It can
be seen that the actual normal price is centered around 2 to 8 and these four methods give a good
prediction for normal values. The fluctuation of ANN is less than that of others. However, they are
unsatisfactory when the price goes up greater than §, e.g., from September to December and April to

July 2008. The prediction of abnormal values is still a difficult task so far.
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Figure 5. Distribution suitcases between predictive values and actual values.
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From the above results, we can understand that there are obviously distinct differences among the
four machine learning models, and there is a general ranking reference. Overall, ANN and SVM have
better prediction performance than GBM and GPR, where ANN wins the best and GBM is the worst.
ANN has a good ability of self-learning, self-adapting, and self-organizing [58], which can analyze the
patterns and rules of observed data and form complex non-linear functions through training, and adapt
to large-scale, multi-factor, incomplete, and inaccurate data processing. The number of delays in ANN
is 10 in this study, which is greater than traditional ANN'’s (the number of delays is 3 at most). That may
be one reason that ANN is superior to SVM. SVM has an abundant and theoretical foundation and has
strong approximation ability and generalization ability based on structural risk minimization. SVM
aims at small sample, of which the optimal solution is based on limited sample. GPR has a simplified
regression process and easily explains the consequence. It has favourable performance in number and
stability, but it is suitable for research on relatively small training dataset. GBM has a relatively weaker
performance than the above methods in forecasting natural gas prices, however, we can obtain the
degree of importance of explanatory variables by using GBM.

5. Conclusions

The aim of this study is to investigate natural gas price forecasting based on four machine learning
methods (ANN, SVM, GBM, and GPR). Monthly Henry Hub natural gas spot price data from January
2001 to October 2018 (there are 215 observations) were used in four prediction methods. Nine variables
were investigated as inputs, which are NGSP, WTI, HO, NGRR, HDD, CDD, NGMP, NGTC, NGUSV,
and NGI. The method cross-validation was used in model training. Four forecasting performance
evaluation criteria including R2, MSE, RMSE, and MAPE are employed in prediction methods. Finally,
the empirical results demonstrate that four prediction methods have decent performance in forecasting
natural gas price. Overall, ANN and SVM have better forecasting performance than GBM and GPR.
In particular, ANN obviously outperforms the other methods while GBM is the worst. This study
could be improved by more thorough research, e.g., by comparing more different aspects of the
prediction performance such as computation efficiency and using more diverse machine learning
methods such as random forest [59,60]. For future work, we will evaluate the effect of emerging
machine learning algorithms, such as deep learning and reinforcement learning, on energy price and
correlation prediction.
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