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Abstract: The development of Short-Term Forecasting Techniques has a great importance for power
system scheduling and managing. Therefore, many recent research papers have dealt with the
proposal of new forecasting models searching for higher efficiency and accuracy. Several kinds
of artificial intelligence (AI) techniques have provided good performance at predicting and their
efficiency mainly depends on the characteristics of the time series data under study. Load forecasting
has been widely studied in recent decades and models providing mean absolute percentage errors
(MAPEs) below 5% have been proposed. On the other hand, short-term generation forecasting models
for photovoltaic plants have been more recently developed and the MAPEs are in general still far from
those achieved from load forecasting models. The aim of this paper is to propose a methodology that
could help power systems or aggregators to make up for the lack of accuracy of the current forecasting
methods when predicting renewable energy generation. The proposed methodology is carried out in
three consecutive steps: (1) short-term forecasting of energy consumption and renewable generation;
(2) classification of daily pattern for the renewable generation data using Dynamic Time Warping;
(3) application of Demand Response strategies using Physically Based Load Models. Real data from a
small town in Spain were used to illustrate the performance and efficiency of the proposed procedure.

Keywords: short-term load forecasting; demand response; distributed energy resources; prosumers

1. Introduction

There is a large literature related to short-term forecasting in the context of electric energy and this
topic also has a great interest in many other fields. In fact, the proposal of new forecasting methods is
daily increasing because of their applicability to dispatch unit commitment or market operations [1].
In this sense, short-term load forecasting models have always been a key instrument for carrying out
such operations, although in recent years, with the increasing integration of power plants based on
renewable energy with high variability (mainly wind and solar), forecasting models for these kinds of
power plants has gained the attention of researchers and utilities. Photovoltaic (PV) systems are the
most widespread renewable based power generation systems (they stand for more than half of the
total installed capacity in power plants based on renewable sources) with a large number of small-scale
installations on medium or low-voltage grids, right next to residential consumers.
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The search for more accurate and faster forecasting methods, both in load and in PV power
generation, has resulted in a set of efficient techniques that can be divided into three different categories:
time-series approaches, regression based, and artificial intelligence methods (see [2,3]).

In the field of short-term load forecasting there are some examples of classical time-series
approaches with auto-regressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA)
and ARIMA with exogenous variables (ARIMAX) (see [4–6]). Regression-based models (see [4,7])
are also widely used in the field of short-term load forecasting, including non-linear regression [8]
and nonparametric regression [9] methods. Examples of artificial intelligence methods include
fuzzy logic [10,11], artificial neural networks (ANN) [12–14], ensemble methods based on regression
trees [15,16], and support vector machines (SVM) [17,18]. Recently [19], a new hybrid model was
proposed to improve accuracy that performs well in electricity load forecasting.

On the other hand, the development of short-term PV power forecasting models has followed
a parallel path. Thus, some published works use classical time-series approaches [20], regression
methods [21], fuzzy logic models [22], ANN-based models [23], ensemble methods [24,25], and support
vector machines [25]. A comparative study of the forecasting performance of different models of the
above-mentioned approaches for the same PV plant is presented in [26], and in which the best model,
among those studied, changes according to the data available for the training process.

Undoubtedly, fitting and computation velocity improvements are desirable, but at the same time,
it is essential to take advantage of current forecasting methods. The main objective of this paper was
not to propose a new short-term forecasting method, but to illustrate how some recent ones can be
combined to predict electricity consumption and photovoltaic (PV) generation, in order to propose
efficient strategies of Demand Response (DR) for an aggregated load of consumers. On the other
hand, DR acts a regulator or damper to correct excursions of net demand of Power System buses
with demand and generation (i.e., “prosumers”) due to punctual errors of forecasts both in demand,
but specially in renewable generation, reducing the own volatility of this last resource.

Political and regulatory scenarios in several countries support the development of the so-called
Distributed Energy Resources (DER), i.e., the integration of demand flexibility, energy storage, and
generation (mainly Renewable Energy Sources, RES), which facilitates the de-carbonization objectives
of power systems by 2030–2050 [27]. For example, the European Commission (EC) is concerned with
a necessary increase of flexibility of demand involved with the integration and exploitation of DER
possibilities. The Direction General of Energy (DG ENER) reported, in a public dissertation [28], that
the theoretical level of Demand Response in 2017 was 100 GW, but only 21 GW were activated (75% of
them through incentive based options, i.e., the so-called explicit DR). The policy scenario for 2030 is
160 GW of theoretical demand potential with 52 GW activated (24% of peak load demand, assuming it
will reach 570 GW).

To accomplish this forecast, this future scenario makes necessary an increase of 300% in DR
resources in a decade, and this seems a difficult task if future forecasts fail again in the trends about
the evolution of DR [29]. In this way, it is important to consider and enhance DR. Moreover, the
net benefit of the overall deployment of DER and RES could reach €5600 million/year for the EU
economy (i.e., generate up to 1% Gross Domestic Product increase over the next decade). The potential
in the Spanish case is 17 GW; around 50% of this potential could be explained by DR and RES in
small and medium customer segments. For these reasons, DR policies in this paper are centered in
these segments. This participation also involves the capability of aggregators and system operators
to develop more accurate forecasts both on demand and generation and the necessity of making
this information (forecasts) easily accessible to customers in order to increase their participation and
engagement in markets (mainly in energy markets but also in Ancillary Service markets). More accurate
forecasts could allow customers to take advantage of the retributions of energy markets and avoid
possible penalties due to imbalances between generation and consumption. Due to the size of demand
and generation, forecasts are more difficult and can represent a barrier for customers, especially in
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tasks involved with RES forecasting. This fact makes demand flexibility a potential tool to change
this scenario.

The proposed methodology can be summarized as follows:

• Firstly, short-term forecasting methods are used to predict hourly load and photovoltaic generation
with a horizon of 24 h.

• Secondly, the predicted daily PV generation of the training dataset is grouped into homogeneous
clusters according to their shape. Next, a representative PV curve is obtained for each cluster,
and a discriminant analysis is developed to assign each predicted PV curve of the test dataset to
a cluster.

• Finally, Demand Response strategies are applied to those days with a predicted PV curve in the
suitable cluster (the one that provides more accurate predictions).

Among the wide variety of machine learning methods, we have chosen random forest to predict
the electricity consumption with a horizon of 24 h due to its proven efficiency in short-term load
forecasting [15]: high accuracy, fast computing (even for parameter tuning), and easy understanding
of feature importance results. Prediction results obtained with random forest for this dataset showed
great accuracy; therefore, other forecasting methods were not really needed.

In the case of forecasting hourly PV generation, several machine learning methods were applied
and compared, searching for the most accurate. Specifically, linear regression, neural networks, random
forest, gradient boosting, and support vector regression models were developed and tuned choosing
the optimal values for their parameters by means of genetic algorithms. Unlike hourly load forecasting,
the goodness-of-fit measures of the predicted PV curves showed lower accuracy. Regarding the
clustering method applied to the PV curves, the dynamic time warping distance [30] and average
linkage were selected for the classification stage.

The rest of the paper is organized as follows: Section 2 describes in detail all forecasting and
clustering methods used, as well as DR strategies applied in this paper. Section 3 present the results
obtained for load and PV forecasts, explaining the application of clustering and DR to minimize the
effects of forecasting errors. Finally, some conclusions and future developments are stated in Section 4.

2. Materials and Methods

2.1. Methodology Overview

Day-ahead markets represent the most active markets in terms of economic value of transactions,
but other markets have experienced a noticeable growth (for example Intraday Markets in France
and Belgium with growth rates of 54.5% and 82.9%, respectively, in 2018). Real-Time Markets
have facilitated the integration of renewables in USA markets in the last decade, and wider-scale
markets with later gate closure would facilitate the integration of renewable in other systems (e.g.,
Balancing Markets, and specifically, Reserve Replacement). The integration of demand-side resources
in markets presents both risks and opportunities for Balance Responsible Parties (BRP, responsible for
its imbalances) and Balance Service Providers (BSP, i.e., the provision of bids for balancing) and need
the development of new and more integrated methodologies. The main idea of this research work
is providing new tools to aggregators for a best management of demand and generation in markets,
both in the short-term (around 24 h) and in the very short-term (from several minutes to 1 h), to
evaluate net demand unbalance, while the aggregator or other parties take into account gate closure
times. To perform this task, the proposed methodology takes profit from different databases which
should be able for DR (demand, customer, RES, and weather). From these databases, this work applies
different methodologies to obtain well fitted 24 h forecasts for demand and PV generation, and with
these predictions aggregators evaluate bids and offers to be sent to Intra-Day or Real Time Energy
Markets (with the objective of minimizing the energy costs for customers or prosumers). Logically,
both models (demand and PV) exhibits errors and these errors can involve penalties in the markets
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because other agents (BSP, LSE) should change their energy balance and buy or sell energy in the very
short term. Considering that PV-forecasts usually have a greater error than demand-forecast, and that
a fast model is needed to manage the potential flexibility of demand in the aggregator-side, a simple
and very short-term PV forecast model is developed based on historical recordings of PV generation
(in the site) and available real-time measurements (Information and Communication Technology, i.e.,
ICT devices). This model and the results of cassation processes in short-term energy markets provide a
reference signal for flexible resources (only DR resources are considered in this paper). With the help
of different tools and scripts from a DR-toolbox (e.g., segmentation, classification, disaggregation and
modeling), the aggregator can evaluate the “demand baseline” for different end-uses in the short-term
and can propose a control signal to change demand according to its requirements. This demand is
simulated and evaluated hour by hour with several indices of performance (and modified in some
cases) to fit the demand packages offered to energy markets (i.e., net demand). In other cases, when
the power system tackles for flexibility, the aggregator can provide additional flexibility to energy and
ancillary services markets, agents or Transmission Operators.

Figure 1 presents an overview flowchart, which depicts the methodologies and tools to be used
through the paper.

Figure 1. Methodology flowchart.

A quantitative analysis for demand-side flexibility seems necessary thorough the definition and
the evaluation of some indicators (i.e., DR indices in Figure 1) that allows to score the flexibility and
performance of loads being controlled, basically at the aggregated level. These indicators converge
with the idea of some voluntary schemes in the EU that intend to express the “readiness of a building”
(in this case the readiness of the load inside buildings). According to these proposals [31], these
indicators mean: “readiness to adapt in response to the needs of the occupants, readiness to facilitate
maintenance and efficient operation, and readiness to adapt in response to the situation of the energy
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grid”. Taking into account this last requirement, a score is performed through the indicators to be
described in Section 3.4.3.

2.2. Characteristics of the Customers: Demand, Photovoltaic Generation, and End-Uses

All electricity customers from a small town (4400 inhabitants), sited in the north Spain, have
been selected for simulation purposes in this work. These customers include residential, commercial,
and industrial clients, although most of the power consumption is due to the residential ones. Basically,
this group corresponds to average residential customers in the south countries of the EU. The rated
power per customer ranges from 3 to 8 kW. The climate is continental, and winter temperatures range
from 0 to 13 ◦C and in summer from 13 to 29 ◦C.

Regional investors built a PV plant in the vicinity of the town, with a significant capacity with
respect to its power demand. The PV plant is composed of two-axis solar trackers with a rated power
of 1.9 MW, and it is connected to the same power substation that links the town to the grid.

Hourly load and photovoltaic generation data from 1 October 2008 to 31 March 2011 (both included)
were available. These data were obtained from the electric utility distributor and corresponded to
hourly average power measurements in the substation. It is worth mentioning that it has been very
difficult to obtain real data corresponding to a considerable customer group that can act as prosumers
(consumers and producers); thus, we had to manage data not as recent as desired.

Figure 2a shows the winter and summer loads for two selected workdays monitored at the
distribution level (substation) that supplies power at 13.2 kV to the distribution transformer centers (CT)
of customers (basically residential and commercial supply). Figure 2b shows the average temperature
in the area for the same two selected workdays. Figure 2c plots the hourly PV power generation on the
peak production days (days with the highest energy generation) of January and June 2010. The PV
power generation values in the central hours of the day can mean an important fraction of the town
consumption (30–40%). The selection of January and June as representative months is due to the fact
that June corresponds to the month with the highest PV generation, while January corresponds to the
lowest PV generation and the highest energy consumption. In Figure 2, it is also shown the average
profiles of demand, temperature and PV generation for the period in which data is available (from 1
October 2008 to 31 March 2011). It is remarkable that the average PV generation profile (Figure 2c)
is lower compared to the other ones (June and January). This fact can be explained because months’
profiles are representing the peak power days, while the average profile includes days in which there
are no PV generation due to adverse weather conditions.

Figure 2. Load, Temperature and PV Generation profiles: (a) example of winter and summer Load
Curves in the power substation; (b) example of winter and summer temperature behavior; (c) example
of winter and summer power generation in the PV plant on peak production days.
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The use of DR portfolio for damping both the errors in the evaluation of demand in short-term and
the intrinsic variability of PV generation sources need the evaluation of DR potential and its flexibility
in each customer segment. First, this evaluation must be based on the knowledge of end-uses for an
average customer. The first alternative to know demand composition behind-the-meter is the use of
the information provided by Smart Meters (SM) and then apply some Non-Intrusive Load Monitoring
(NILM) methodology, for example [32]. This last approach involves the full development of capacities
of available home automation technologies, considering the increasing deployment of Smart Meter in
several countries around the world [33]. Some of these methodologies have been reported by authors
in previous papers [34] to obtain end-use disaggregation/profiles in residential segments and their real
flexibility when DR policies are applied (i.e., DR validation).

In some cases, and from a practical point of view, it is possible that some problems arise for a
practical implementation of DR based on end-uses, for instance: small customers do not have yet any
SM, confidentiality of data is in question, Data Exchange Platforms (DEO) are not fully developed,
and the availability of data is scarce [35] or the aggregator has access to meter data but without the
necessary granularity or quality (i.e., it is usual to have data with granularity ranging from 15 min to 1 h
which usually makes much more complex the identification of loads through NILM methods). In this
way, an alternative access to demand data should also be considered by aggregators to accomplish the
evaluation of DR potential. This alternative is based on periodic surveys performed by international
or national Energy Agencies, for example EIA (data from 2015, [36]) in the United States or the Joint
Research Centre (data from 2016, [37]) in the European Union. In this way, a residential “average” EU
or USA customer (and its end-use share) can be estimated according to these data. In the case under
study, available reports from the Institute for Energy Diversification and Energy Savings (IDAE, Spain)
and the Spanish Government [38] have been analyzed. Table 1 depicts the main end-uses for Spain,
EU-28 countries and the USA. Notice that in European Mediterranean countries, the Air Conditioning
load represents a higher percent (66% of households have this appliance and the increasing trend is
quite solid). A similar trend can be reported in the USA, because 87% of homes use air conditioning.
It accounts for 12% of annual residential energy expenditures and is a large factor in fluctuations in
residential electricity use. Heat Pumps (HP) exhibit similar trends according to EIA estimations [36]:
the share of heated homes using HP increased from 8% to 12% in a decade (from 2005 to 2015). At
the same time, the share of homes using electricity for water heating (WH) increased by 7% (to 46%).
Due to this fact, both loads (HP and WH) have been considered to evaluate demand flexibility in this
work. Moreover, winter period has been selected for simulation purposes in the following paragraphs,
because demand in winter is higher than in summer and the climate in this Spanish area is more
restrictive for PV generation possibilities.

Table 1. Main end-uses share in the residential sector according to some estimates in the USA [36],
EU-28 [37], and Spain [38] adapted and updated from [39].

Type of End-Use USA (2015)
All Fuels

USA (2015)
Electricity

EU (2016)
All Fuels

Spain (2014)
All Fuels

Spain (2014)
Electricity

Space Heating 43 14.76 64.7 42.9 7.36
Water Heater 19 13.65 14.5 17.9 7.47

Air Conditioning 6.24 16.89 0.3 0.98 2.33
Refrigerators 4.75 7.02 - 7.94 -

Other * 29.8 47.67 20.5 39.22 82.84

*: Appliances and Electronics.

To obtain some representative profiles, it seems necessary to evaluate load dynamics, and the
service the customer obtains from them. Figure 3a,b shows some real end-use load profiles for a
household belonging to the overall customer demand, previously shown in Figure 2. In this case,
feedback from everyday activities [40] of the customer is important to refine profiles, improve DR&EE
(Demand Response and Energy Efficiency) success and gain customer interest in energy concerns.
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Regulations can help aggregators to establish load profiles. Figure 3a shows an average HP consumption
profile in winter, as in this study, DR simulations to balance generation are focused on this period.
Figure 3b shows an average water flow use to determine WH requirements extracted from EN 15316-3-1,
Section 5 (EU normative). Figure 3c shows the proposed end-use profiles for an average customer.

Figure 3. Daily end-uses and customer service: (a) HP profile; (b) daily use of residential Water Heater.
(c) Daily profiles for main end-uses (winter). Acronyms: EH: Heating (Electric heaters and Heat
pumps), WH: Water Heating; CO: cooking; LIG: lighting; FR: fridges; WM: washing machines; DW:
dishwasher; OV: Oven; PC: computers; DRY: dryers; OT: Others; and CUST: overall customer demand.

The procedure for obtaining end-uses profiles (Figure 3) could be explained as follows. In the
first place, the aggregator needs to recover basic information about customer daily overall demand
(aggregated or not) through Smart Metering (Figure 1, left bottom side). This information, alongside
weather databases and public reports of energy household demand and share of end-uses in terms of
energy, allows the aggregator the calculation of “household baselines”. At this point, the aggregator is
able to run and refine Physically Based Load Models (PBLM) both at elemental and aggregated levels
(i.e., include inputs/outputs for these models). With PBLM and average weather inputs the aggregator
obtains “end-use baselines” for each end-use with relevant potential for DR (e.g., HVAC, space heater,
WH, or thermal ceramic heaters, Figure 1), and their average daily demand in each season/month.
Finally, “elemental baselines” (kWh and profiles) are modulated through coefficients (considering
weather conditions and customer behavior) to fit the “overall baseline” for the customer.

2.3. Short-Term Forecasting Methods

In this section, the forecasting methods used to predict hourly load and PV generation are described.

2.3.1. Random Forest

Random forest is an ensemble method based on regression trees whose efficiency in load forecasting
has been widely illustrated [15]. Being based on regression trees makes random forest a flexible method
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in case of complex and non-linear relationships, and as an ensemble method, it can provide low bias
and reduces the variance of predictions.

Some other ensemble methods based on regression trees are bagging, conditional forest or boosting,
whose efficiency in load forecasting has been shown in different papers (see for instance [41]).

Random forest is a generalization of bagging (bootstrap aggregating), but only a random sample
of “mtry” predictors can be chosen at each split of the regression tree. This approach will reduce the
variance of the estimations more than bagging, mainly in the case of correlated predictors. In this paper
we have decided to use random forest to predict the electricity consumption instead of conditional
forest of boosting due to its simplicity in parameter calibration and fast computation.

The efficiency of random forest depends on a suitable selection of the number of trees N and the
number of predictors “mtry” tested at each split. However, random forests will not overfit when N
increases, thus, we can focus on calibrating only the parameter “mtry”. The calibration of the parameter
and the random forest method have been implemented throughout the R package “caret”, see [42].

2.3.2. Stochastic Gradient Boosting (SGB)

Another ensemble method based on regression trees is the stochastic gradient boosting. It has been
successfully used in short-term load [43] and PV power [44] forecasting applications. The SGB method
is based on the sequential construction of additive regression models, usually in the form or regression
trees with a maximum tree size. At each iteration, the models are fitted, by least squares, to a random
sample of pseudo-residuals of the previous stage. Thus, the SGB method applies a gradient descent
algorithm, reducing the error (difference between output value and expected value) at each iteration.

The develop of an SGB forecasting model requires the selection of the values for a set of tuning
parameters which include the number of trees (also called as iterations), the interaction depth,
the shrinkage or learning rate, the minimum number of observations in terminal nodes of the trees,
and the bagging or sampling fraction. Unlike the random forest method, SGB models with many
trees are prone to overfitting; thus, that number must be carefully chosen. The complexity of the SGM
model is related to the interaction depth which corresponds to the maximum size of each tree. The
shrinkage parameter manages the influence of each sequential tree on the final value provided by the
SGM model. The minimum number of observations in terminal nodes or leaves of the trees limits
the observations used to provide their mean value as the response of that terminal node. Finally, the
bagging fraction corresponds to the fraction of the training dataset observations randomly selected to
build each tree (small values reduce the possibility of overfitting, but increase the model uncertainty).
For a detailed description of the SGB method, see [45].

2.4. Time-Series Clustering

Clustering is an unsupervised technique whose objective is to separate objects (represented
by a multivariate dataset) into homogeneous groups (called clusters), such that objects in the same
cluster have high similarity among them, but low similarity with the objects in a different cluster. It is
considered an exploratory technique very useful by itself or as a previous step for other kind of data
analysis. Depending on the way the clusters are generated, clustering methods can be divided in two
big sets: hierarchical methods and divisive methods. In addition, the resulting clusters are determined
by the distance or similarity measure and the linkage method selected.

A special case is time-series clustering, where each object to be grouped corresponds to a sequence
of values as a function of time. One of the main advantages of clustering time-series is that it allows
the discovery of hidden patterns in time-series datasets. Generally, three different objectives can
be considered in this context: finding similar time series in time, in shape, or in change (structural
similarity). The selection of a suitable distance measure is essential and depends on the objective
pursued. Interesting surveys in the field can be found in [46,47].

In this paper, we have focused on similarity in shape to cluster the daily curves of photovoltaic
generation. Dynamic Time Warping (DTW) distance, described below, was chosen for that purpose.
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Regarding the nature of the clustering, hierarchical technique together with average linkage were
selected. These clustering methods were developed by means of the R package TSclust [48].

DTW distance, introduced by [30], is commonly used for measuring shape-based similarity
between two time series, which may vary in timing. The main advantage against other shape-based
distances such as Euclidean or Wavelet Transform is its invariance to warping. In our context, daily
curves of PV generation are conditioned by sunlight hours, which vary along the different seasons.
That makes DTW distance suitable for clustering a set of daily PV curves along different years.

Given two time series (xi) I = 1, . . . ,m and (yj) j = 1, . . . , m, it starts calculating a nxm matrix D
= (Dij) with the distance between every possible pair of point xi and yj in the two time series, Dij =

d(xi,yj), I = 1, . . . , n, j = 1, . . . , m, where d(xi,yj) can represents the Euclidean or the absolute distance.
According to [30], a warping path w is a contiguous set of matrix elements which defines a mapping
between (xi) and (yj) that satisfies the following conditions:

• Boundary conditions: w1 = (1; 1) and wk = (m; n), where k is the length of the warping path.
• Continuity: if wi = (a, b) then wi−1 = (a’, b’), where a − a’ ≤ 1 and b − b’ ≤ 1.
• Monotonicity: if wi = (a, b) then wi−1 = (a’, b’), where a − a’ ≥ 0 and b − b’ ≥ 0.

The objective in DTW distance is to find the shortest warping path. Due to its high computational
cost, different approaches have been proposed to optimize the calculation (see [49]).

2.5. Demand Response Strategies

Demand Response policies have been used by ISOs since the early 1980s. In the first years of
DR, the objective was to achieve a more rational planning and operation of resources. In recent years,
with the development of energy markets and the increasing share of RES in the generation mix, DR
becomes more centered in the customer and in the integration of the available RES potential. Demand
Response can be divided into explicit and implicit DR. Implicit DR means the change of demand due
to prices whereas explicit DR involves the change of demand when System or Distribution Operators
(i.e., ISO or DSO) forecast and declare an event into the system in the short-term.

To respond to these events or prices, the most common policy is to limit demand. This reduction
can be performed through the cycling of power supply (the supply is switched ON and OFF alternatively
following a rectangular wave u(t)). If the natural “cycling” of the end-use being controlled, m(t)
(the operating state of the control device), is greater than u(t), the DR action is effective (notice that
an appliance can describe cycles or not, for example a fridge or an inverter heat pump, but every
load has its operating state m(t) with respect to rated power). Considering that, in practice, demand
measurements are discrete (every 5, 15 or 60 min) and it is necessary to define average values in a time
period [t, t + k]. Mathematically, Equation (1):

m(t) =
Peu(t)
RPeu

; m(t, t + k) =
1

kRPeu

∫ t+k

t
Peu(t)dt; u(t, t + k) =

tON
k

(1)

where m(t, t + k) and ū(t, t + k) are mean values of m(t) and u(t) in the time period k, respectively,
and tON is the time in this period where a “representative” (average) load remains switched ON and
demands power.

The models to be used (to obtain m(t) and apply u(t)) are PBLM, a methodology proposed first
to solve problems such as cold load pickup. The main reason for this choice is that these models are
“white” [50] or “grey” [51] models which allow physically explaining the dynamics of the appliance
and its environment and consequently foreseeing its changes. In this work, PBLM “grey” models for
HVAC (Heating, Ventilation and Air Conditioning) and WH loads (heating and ventilation) previously
proposed in [39] have been used. Figure 4 shows an electrical-thermal equivalent for this model for
heating loads (a broader explanation of parameters can be found in several references [52,53]).
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Figure 4. Example of PBLM for: (a) HVAC (Heating, Ventilation and Air Conditioning); (b) WH
(Water Heater).

The main features of these models are: they consider heat gains and losses, for instance solar
radiation (Hsw, Hw) or internal gains due to inhabitants (Hr) or appliances (Ha) (Figure 4a); the model
takes into account heat storage from the specific heat of external walls (Cw), indoor masses (Ca, C1 and
C2, especially important for WH) or roof/ground (Crg); and it considers the control mechanisms which
drive appliances (for instance thermostats m(t) and DR policies u(t)). Moreover, their state variables
are temperatures: indoor (Xi), walls (Xw), roof/ground (Xrg) for HVAC loads (Figure 4a), and X1, X2 for
the stratification of water in the reservoir (“hot” WH1 and “cold” WH2 sub-tanks, Figure 4b), that is to
say, characteristics that allow the evaluation of energy flows and storage capabilities (i.e., the indirect
capacity of storage in the envelope of buildings), the direct storage in WH or the loss of customer
service due to the application of DR (i.e., internal or hot water temperature).

These models are individual ones and need a further aggregation to reach a minimum demand
level (size of reduction packages) established by specific regulations of electricity markets to bid or offer
into these markets (e.g., from 100 kW to 1 MW depending on each specific service or market [54,55]).
This task is often developed by energy aggregators.

To achieve these packages, the aggregator needs to rise ON-time to increase demand of each specific
end-load whereas a decrease of demand requires a reduction of ON-time. The second alternative
(the traditional one) is easier because the aggregator only needs to manage the rate of switching-OFF
and switching-ON times of the power supply to load. This is easy to perform through hardware by
classical methods (e.g., ripple control of WH in Germany, [56,57]) or home automation methods (e.g.,
controlled plugs through Z-Wave protocols [58] and universal software platforms for control [59]).

An important concern for the practical implementation of modern DR policies is the Automated
Demand Response (ADR), because customer manual control does not fit the requirements both of
accuracy and reliability of response. It is imperative for the success of ADR the development of standards
for the communications between operators, aggregators and their customers’ automation equipment [60]
and the feedback from them. Open automated demand response protocol (OpenADR [61]) represents
a good example of such a standard. Every day, more and more devices are certified to use OpenADR
2.0 protocols, and especially Smart Thermostats, but this certification is not necessary if some gateway
assumes the role of “last-mile” controller and is compliant to receive and transmit OpenADR protocols.
For example, home automation platforms such as Universal Devices ISY994 Series [62] allows the
communication of residential customers with OpenADR, sending consigns and commands to home
automation technologies working with different protocols (Zwave+, Insteon/X10, Zigbee Pro, Amazon
Echo or Google Home). Other platforms, from well-known manufacturers, such as ABB SACE’s Emax
2 Power Controller, develop similar functions [63] but at building scale. Examples of ADR capabilities
of grid-integrated buildings and building microgrids, architecture, and standards can be found in [60].

The rate of change is defined to the PBLM software by PWM waves: the carrier wave being tried
has a frequency of 0.833 mHz (i.e., 1 cycle every 20 min) and the modulating waveform is the desired
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decrease in the average value in m(t, t + 20 min) according to deviations between 24-h PV forecasts
(see Section 3.2) and 1-h PV forecasts used in markets (Figure 1).

The reasons for choosing 20 min have physical and technical senses. The first can be explained
from the point of view of load service in the case of HVAC: if a harsh control is needed, switch-OFF times
greater than 20 min can cause thermal fluctuations in the dwellings, easily noticeable by consumers
(this can produce a lack of customer engagement in DR). The second reason is the so-called “lock-out”
or mechanical delay of heating and air conditioning units. This mechanism is used to prevent a rapid
recycling of the compressor avoiding mechanical damages. From the point of view of DR, it can cause
an additional delay when applying ON/OFF and thermostat control signals. To evaluate the effect and
characterize (from a statistical point of view) this process, some residential HP appliances (rated power
from 1 kW to 3 kW) were monitored by authors. Changes in customer demand due to control actions
have been recorded by an electronic meter and several Z-wave wall plug switches which send data to
PCs using an USB gateway. Results depict that ON latency time ranges from 20–60 s and OFF latency
times range from 10–40 s [64]. That is to say, the minimum ON-time should be in the range of one
minute to limit inherent errors due to latency.

The first alternative (i.e., the increase of demand) is a less traditional option for DR [65]. Several
reasons explain both the lack of use of these alternatives and their real interest. For instance, the increase
of demand requires the control of thermostats. This control is more expensive than the supply control
because smart thermostats are expensive. The cheapest option (e.g., Z-Wave) cost around € 150–200,
whereas a remote switch costs around € 40–60. Fortunately, modern appliances include control of
temperature though mobile-phones or PC, and these alternatives can be used for control (notice that
some of them are compliant with well-known DR standard protocols [61]). In other cases, where
the control device is intrusive (this is the case of WH), the cost of thermostat is similar, but the
same maintenance (labor cost) is needed to include this option in the appliance. Over the last few
years, some HPWH manufacturers in the USA have included these options for large units (200–500 L
reservoir/storage tanks), for example [66].

The control of the thermostat (up or down, according to season, and usually used for pre-heating
or pre-cooling policies in the dwelling being conditioned) has been proposed as a “virtual-storage”
resource [67] for customers to take profit from Time of Use (ToU) tariffs or to “prepare” loads to face to
DR events policies and maintain customer service (i.e., internal temperatures of houses or dwellings).

Usually, these policies have been used before the load is controlled, but the proposal in this paper
is to use them continuously to adapt demand to changes in the forecasted PV generation. The control of
the thermostat is evaluated and changed, if necessary,±0.5 ◦C every 20 min. The reason for selecting this
value is that 0.5 ◦C is a usual value for the change of temperature settings in home smart-thermostats.

In this way, the proposed control strategy u(t, t + k) for heating is done by Equation (2):

u(t, t + k)


> m(t, t + k)→ Xsup =


Xsup + ∆X; u(t, t + k) > u(t− k, t) + db

2 and Xsup < Xlim

Xsup; u(t, t + k) > u(t− k, t) + db
2 and Xsup

≥ Xlim

Xsup; u(t− k, t) − db
2 < u(t, t + k) < u(t− k, t) + db

2
Xsup

− ∆X; u(t, t + k) < u(t− k, t) − db
2

< m(t, t + k)→ u(t, t + k) =
{

PWM(∆PVgen); Xi(t− k, t) > Xserv
i

u(t− k, t); Xi(t− k, t) < Xserv
i

(2)

where Xsup is the upper temperature of load’s thermostat, which is set as a simple hysteresis cycle with
dead-band db (usually ranging from 0.01–0.03 pu), and Xlim is the maximum reasonable temperature
inside the dwelling (for example 22–23 ◦C in the case of HVAC, in winter) or the maximum temperature
of water inside the tank (68 ◦C), which avoids risk of burns if a mixing valve is not used for the
control of hot water pipeline. Xi

serv is a minimum service level for the appliance (a minimum comfort
temperature inside the dwelling, for example 16 ◦C, or a minimum temperature of hot water inside the
WH, for example 36 ◦C).
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Basically, Equation (2) means that load control is done by a double control. In the case of heating
(electric heaters or HP) if the load must go up, the thermostat goes up until it reaches the maximum
allowable value (Xlim). Otherwise, if demand must fall to balance a decrease in PV generation (with
respect to 24 h forecast), the thermostat or the supply is controlled to reduce demand. Notice that a
“baseline”, (i.e., load demand evaluated without control m(t, t + k)) is also needed as reference for
controlled load. This baseline also comes from PBLM models (Figure 1).

3. Results and Discussion

3.1. Prediction Results for the Electricity Consumption

In this subsection, we provide 24-h-ahead predictions for the electricity consumption of the Spanish
town in order to apply them to the context of Demand Response. For that, the ensemble method
random forest described above was applied and some other aspects such as predictors importance or
parameter selection was also developed.

On the one hand, it is well known that hourly loads of the previous days are the most important
factors in short-term load forecasting. On the other hand, temperature is a factor that might affect the
electricity consumption (cooling and heating of buildings). Therefore, prediction of hourly temperature
for the location of the town under study was also used as an input in the load forecasting model,
obtained as explained in the Section 3.2. In addition, several calendar variables such as the hour of
the day, the day of the week, the month of the year and holidays have been taken into account in the
design of the load forecasting model. Table 2 depicts the 49 predictors used for the load forecasting
model: 23 dummies for the hour of the day, six dummies for the day of the week, 11 dummies for the
month of the year, one dummy for holidays, one predictor of the forecasting temperature and seven
predictors of historic loads (lags 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, and 168 h).

Table 2. Description of the predictors.

Predictors Description

H2, H3, . . . H24 Hourly dummy variables corresponding to the hour of the day
WH2, WH3, . . . WH7 Hourly dummy variables corresponding to the day of the week

MH2, MH3, . . . , MH12 Hourly dummy variables corresponding to the month of the year
FH1 Hourly dummy variable corresponding to national, regional or local holidays

Temperature Predicted hourly external temperature.
LOAD_lag_i Hourly load lagged “i” hours, with i = 24, 48, . . . ,168.

Before any analysis, a previous data filtering has been developed in order to detect and substitute
missing cases or measurement errors. Moreover, in all cases the training period for model fitting
ranges from 1 October 2008 to 31 November 2010, whereas the test period ranges from 1 January 2011
to 31 March 2011.

Three different measurements, given in Equations (3)–(5), were used to obtain the accuracy of the
forecasting models: the root mean square error (RMSE), the R-squared (percentage of the variability
explained by the forecasting model), and the mean absolute percentage error (MAPE).

The root mean square error is defined by:

RMSE =

√√ n∑
t=1

(yt − ŷt)
2

n
(3)

The R-squared is given by:

R− squared = 1−

∑n
t=1 (yt − ŷt)

2∑n
t=1 (yt − y)2 (4)
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The mean absolute percentage error is defined by:

MAPE =
100
n

n∑
t=1

∣∣∣∣∣ yt − ŷt

yt

∣∣∣∣∣ (5)

where n is the number of data, yt is the actual load at time t, ŷt is the forecasting load at time t, and yt
is the mean value of the actual load. A slightly variants of this measure are the mean absolute error
(MAE) and the cumulative absolute error (CAE).

Taking into account that the accuracy for special days (weekends and holidays) is usually lower
than for regular days, the above goodness-of-fit measurements were obtained separately for each
group of the test data.

Parameter tuning in random forest mainly refers to select an optimal number of trees (ntree) and
an optimal number of predictors considered at each split (mtry). In fact, the selection of parameter
ntree is quite easy because higher values do not lead to overfitting; thus, only a high enough value is
needed. The optimal mtry = 12 was obtained by means of 10-fold cross-validation with three repeats
and using a random grid with nine values (among the 49 possible).

Table 3 shows the goodness-of-fit measures for the training and test datasets after applying
random forest with ntree = 200 and mtry = 12, and even for regular and special days separately.
Furthermore, the importance of each predictor in the forecasting model has been obtained through
the node impurity, getting that the electricity consumption at the same hour of the previous week
(predictor LOAD_lag_168) is the most important predictor and that the following five most important
ones are also historical loads. Temperature was in the 11th position of importance.

Table 3. Goodness-of-fit measures for regular and special days in the training and test datasets.

Measure Regular Days Special
Days

All
Days

Error_mean_train (kW) 6.88 −11.87 0.83
Error_mean_test (kW) 35.39 −4.94 22.84
Error_sd_train (kW) 114.29 107.18 112.39
Error_sd_test (kW) 173.84 154.95 169.19

Error_skewness_train −0.16 −0.19 −0.15
Error_skewness_test 0.37 0.45 0.42
Error_kurtosis_train 10.93 8.48 10.21
Error_kurtosis_test 4.05 5.74 4.44
RMSE_train (kW) 114.49 107.83 112.39
RMSE_test (kW) 177.34 154.92 170.68
R-squared_train 0.98 0.94 0.98
R-squared_test 0.95 0.81 0.95

MAPE_train 2.05 2.45 2.18
MAPE_test 3.36 3.63 3.44

Figure 5 represents the evolution of the goodness-of-fit measures for each hour of the day, where
the best accuracy is reached early in the morning.

As an example, Figure 6 shows the actual and predicted load for a complete week in the test dataset.
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Figure 5. Goodness-of-fit measures by hour of the day in the test dataset: (a) using RMSE; (b)
using MAPE.

Figure 6. Actual and forecasting load for a week (14–20 February 2011).

3.2. Prediction Results for the Photovoltaic Generation

In this subsection, we describe the short-term PV power forecasting model able to offer 24-h-ahead
predictions for the PV plant placed in the town under study in the context of Demand Response.
As mentioned above, this forecasting model is based on the SGB method, which allowed the creation
of the forecasting model with the lowest RMSE from a set of models developed with techniques
such as linear multivariate regression, artificial neural networks, random forest, and support vector
machines. The SGB method was selected because it achieved the lowest RMSE with a five-fold
cross-validation procedure with the training dataset. All the forecasting models used the same training
dataset, and their parameters were optimized following a similar procedure to the described, for the
SGB, in the following paragraphs.

Table 4 shows the explanatory variables used to develop the PV power forecasting model.
The dependent or output variable was the hourly power generation in the PV plant for each hour of
the day (only daylight hours were considered). The explanatory variables include hourly weather
predictions obtained with the Weather and Research Forecast (WRF) mesoscale model [68], a numerical
weather prediction (NWP) model able to produce forecasts for a geographical region with the desired
spatiotemporal resolution. In order to produce the weather forecasts, the WRF model is started every
day with the initial and boundary conditions provided by the forecasts of the GFS model, an NWP
model with global coverage, run and maintained by the National Centers for Environmental Prediction
(NCEP) from USA. From the values provided by the GFS model with a 1◦ × 1◦ (latitude–longitude)
spatial resolution for the 00:00 Universal Time Coordinated (UTC) cycle, the WRF model provided
predictions of weather variables over the region where the town under study is located with a time
resolution of one hour, and a spatial resolution (distance between points of the grid of analysis) around
12 km. The forecasts of the desired weather variables for the location of the PV plant, or for the location
of the town, were calculated by bilinear interpolation from the forecasts for the four nearest grid points.



Energies 2020, 13, 11 15 of 31

For a real operation, these weather predictions can be available for a new day before dawn and include
all the forecasts for the 24 h ahead.

Table 4. Explanatory variables for the PV power forecasting model.

Name Description

swflx Surface downwelling shortwave flux (W·m−2)
temp Temperature at 2 m (Kelvin)
pres Surface sea level pressure (hPa)
mod Wind speed at 10 m (m/s)
dir Wind direction at 10 m (degrees)
rh Relative humidity at 2 m (per unit)
cft Global cloud cover (per unit)
cfl Cloud cover at low levels (per unit)

cfm Cloud cover at medium levels (per unit)
cfh Cloud cover at high levels (per unit)
prec Accumulated rainfall in the hour (kg·m−2)
vis Visibility (m)

clear Clear-sky global horizontal irradiance (W·m−2)
aghi Average global horizontal irradiance (W·m−2)
aip Average irradiance on panel (W·m−2)
h1 Cosine of the day fraction for the hour
h2 Sine of the day fraction for the hour

The WRF model provided the hourly values of most of the 17 explanatory variables of Table 4
(variables from swflx to clear). The variable swflx corresponded to the global horizontal irradiance.
Wind speed and direction were included because of the effect they could have on the temperature of
the PV panels and, therefore, in their efficiency. The aghi variable matched to the average value of
the forecasts for two consecutive hours of the swflx variable, that is, the average value of the global
horizontal irradiance throughout the last hour. The aip variable corresponded to the average value
of the irradiance on the PV panel throughout the last hour and it was calculated considering the
characteristics of the PV panel with two-axis trackers and the solar geometry, as the aggregation
of the direct normal and total diffuse irradiances on the tilted surface of the PV panels. The direct
normal irradiance was obtained with the Erbs model [69] using the values of aghi and the total diffuse
irradiance was calculated by means of the King model [70]. The variables h1 and h2 were used to code
the hour (on UTC hour basis).

In order to select the best structure of the forecasting model, an optimization methodology was
used based on the genetic algorithm (GA) with advanced generalization capabilities. This methodology
is the GA-PARSIMONY [71], which allows the selection of parsimonious models. The main difference of
this methodology with respect to the conventional GAs is a rearrange in the ranking of the individuals
based on their complexities, so that individuals with less complexity (in this case, models with a less
complex structure) are promoted to the best position of each generation. The promotion of less complex
models with respect to the rest of individuals in the same generation with comparable fitness, allows
the obtainment of models with improved generalization capability.

The GA-PARSIMONY methodology is implemented in the R package GAparsimony [72], which
was the tool used to optimize the PV power forecasting models. In the case of the SGB model,
the optimization process could choose the number of trees (in the range 20–250), the maximum
interaction depth (range 3 to 8), the shrinkage value (range 0.001 to 0.25), and the minimum number
of observations per terminal node (range 2 to 8), as well as select the input variables among those
available (Table 4). The bagging fraction was fixed in 0.5. The fitness function corresponded to the
negative value of the average RMSE obtained with five-fold cross-validation and three repeats with the
training dataset. The complexity of the forecasting models evaluated in the optimization process was
ten times the number of input variables used by the model plus the square of the maximum interaction
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depth. The number of individuals per generation was 50, the maximum number of generations 100,
and the re-rank error value 0.1 (individuals with lower complexity and difference in the fitness value
lower than the re-rank error were promoted to top positions in the ranking of each generation). The
final model, achieved after the optimization process, used only 11 input variables (swflx, hr, pres, prec,
mod, clear, cfm, temp, dir, cfl, and h2), had 182 trees, its maximum interaction depth was 6, its shrinkage
value was 0.1197, and the number of minimum observations in a terminal node was 3. Table 5 shows
the goodness-of-fit measures for the training and test datasets, where the RMSE, R-Squared and MAPE
values are calculated using Equations (3)–(5), taking as yt the actual PV generation power at time t and
ŷt the forecasted value for such hour. The high MAPE values are mainly due to very low actual PV
generations in early and late daylight hours, when a small forecasting error can correspond to a very
high absolute percentage error value.

Table 5. Goodness-of-fit measures in the training and test datasets for the PV power forecasting model.

Measure Value

Error_mean_train (kW) 4.96
Error_mean_test (kW) −19.52
Error_sd_train (kW) 308.60
Error_sd_test (kW) 362.12

Error_skewness_train −0.021
Error_skewness_test −0.173
Error_kurtosis_train 0.906
Error_kurtosis_test 0.994
RMSE_train (kW) 302.52
RMSE_test (kW) 350.34
R-squared_train 0.78
R-squared_test 0.70

MAPE_train 237.31
MAPE_test 310.06

Figure 7 plots the actual and forecasted hourly PV power generation values for a week in the testing
dataset. Notice that the forecast is carried out each day before dawn and, up to now, no correction is
applied along the day.

Figure 7. Actual and forecasting PV power for a week (14–20 February 2011).

3.3. Classification Results of Photovoltaic Curves

The classification stage of the proposed method has been carried out in three steps: firstly,
the predicted daily curves of PV generation corresponding to the training period (from 1 October 2008
to 31 December 2010) are clustered into homogenous groups using DTW distance and average linkage;
secondly, the “desired” cluster is selected (the one whose predicted PV curves better fit the real PV
curves) and a centroid curve for each resulting cluster is obtained; finally, each predicted daily curve in
the test period (from 1 January 2011 to 31 March 2011) is classified into the nearest cluster by computing
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its DTW distance with each centroid curve. Those days in the test dataset of which the predicted PV
curves are classified into the “desired” cluster will be the ones selected for applying DR policies.

First step described above implies the hierarchical clustering of 822 time series (number of days
in the training dataset) of length 24 (hourly data). The resulting dendrogram provided five possible
groups, whose centroid curves are given in Figure 8 (observe that the main difference among the curves
falls on the magnitude of the generated energy, except for the fifth cluster). For each of the five resulting
clusters, we computed the median of the percentage error for all days in the clusters, obtaining 19.36%
for Cluster 1, 39.95% for Cluster 2, 77.41% for Cluster 3, 57.09% for Cluster 4, and 48.15% for Cluster 5.
Therefore, Cluster 1 provided lower fitting errors than the rest of clusters, and hence, it was considered
the “desired” cluster for our purpose. As the desired cluster provides lower errors, those forecasting
PV curves of the test dataset that are classified into the desired cluster are expected to better fit the real
PV curves than the ones that are classified into any of the not desired clusters.

Figure 8. PV centroid curves of each cluster in the training dataset.

The results obtained in the final step of the classification stage were the following. A total of
31 days in the test period were classified into Cluster 1 (the “desired” cluster), whose dates are given in
Table 6 (recall that all days refer to year 2011) and some examples comparing the real PV and predicted
PV (24 h ahead) are given in Figure 9.

Table 6. Dates of the test period (2011) classified into Cluster 1 (and therefore selected for DR actions).

Day (Number) Date (dd/mm) Day (Number) Date (dd/mm) Day (Number) Date (dd/mm)

1 4 February 11 10 March 21 20 February
2 5 February 12 11 March 22 20 March
3 5 March 13 12 February 23 21 March
4 6 February 14 14 January 24 22 March
5 6 March 15 14 February 25 3 January
6 7 February 16 16 January 26 23 March
7 7 March 17 18 February 27 24 January
8 8 February 18 18 March 28 25 February
9 9 February 19 19 March 29 28 March
10 10 February 20 20 January 30 29 March

31 31 March
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Figure 9. Comparisons of actual PV and 24 h forecast PV generation for some days in Cluster 1: (a) day
3; (b) day 4; (c) day 9; (b) day 28.

3.4. Results for Demand Response Strategies

3.4.1. Very Short-Term PV Adjusted Forecasting

As was seen in Sections 3.1 and 3.2, the main accuracy problem when obtaining a 24 h-ahead
forecast of net demand is due to errors in the prediction of PV generation (compares Figures 6 and 7),
because this forecast is carried out each day before dawn, and no correction is applied during the
day. The problem of balancing net load with respect to 24 h predictions should be taken into account
by aggregators, because any imbalance can produce an important money flow from aggregators to
Balance Service Providers (BSP) or Load Serving Entities (LSE). For this reason, a very short-term
correction has been proposed. The idea is similar to the procedure used by ISOs to correct demand
when some power event is declared in the system taking into account measurements of demand before
the correction (i.e., the generation of customer’s baselines or CBL, for example [73]). In these methods
(used for the retribution of demand response in reliability programs), the adjustment factor is obtained
by means of the first two hours of the four-hour period prior to the commencement of the reliability
event. In our case, the methodology to correct the forecasting values should balance accuracy and
fast computation (it takes less than a minute to have enough time for the load control processing).
In this stage, we propose the determination of an adjustment factor by means of the first 60 min of
actual PV records of the one-and-a-half-hour period prior to the forecast window (it is assumed that PV
generation has an SM able to record every minute and that sends this information to the aggregator).
This adjustment factor is evaluated through the Equation (6):

a f (d, t) =

∑k=90
k=30 PVA(d, t− k)∑k=90
k=30 PVF(d, t− k)

(6)
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where af (d, t) denotes the adjusted factor for the time t of the current day d used to fix generation
forecasts, PVA(d, t − k) is the actual PV generation k min before, and PVF(d, t − k) is the predicted
24 h PV generation for day d at time t–k. Then, a first approximation of the forecasted PV baseline
(PVBL_aux) is computed in the time interval [t − 30, t] to obtain [t, t + 30] values (that is, predictions are
corrected in a time-window corresponding to very short-term according to the reduction of imbalances.
For the participation of customers in other markets, the window can be enlarged according to gate
closure times) through Equation (7):

PVBL_aux(d, t + k) = a f (d, t) × PVF(d, t + k); k = 1, 2 . . . 30 min (7)

To improve the goodness of this 1 h-ahead forecast, PVBL is compared with the average of
historical values of PV generation in the last two weeks:

PVupl(d, t) =
1

450

15∑
j=1

k=15∑
k=−15

PVA(d− j, t + k) (8)

where PVupl is the upper limit considered as acceptable for any correction through the adjusted factor
af (d, t). Therefore, Equation (7) is improved by Equation (9):

PVBL(d, t + k) =
{

PVBL_aux(d, t + k), i f PVBL_aux(d, t + k) < PVupl(d, t + k)
PVupl(d, t + k), otherwise

; k = 1, ..30 (9)

Results showed that the proposed correction by Equation (9) suits well its objective (Table 7
depicts the MAPE of the 24 h-ahead forecasts (PVF) and the 1 h-ahead forecasts (PVBL) for some
representative days in Cluster 1). As expected, 1 h-ahead forecasts outperform 24 h-ahead forecasts,
but achieve a significant improvement on days when the most serious errors took place (days 14, 16,
17, and 23). In some cases, a small increase of errors is reported (days 5 and 26).

Table 7. Improvement in PV forecast attributable to the adjustment given in Equation (9).

Day MAPE (%) of PVF (24 h-Ahead Forecast) MAPE (%) of PVBL (1 h-Ahead Forecast)

1 12.5 7.7
2 13.9 9.1
4 18.6 8.7
5 4.8 5.6

14 28.2 11.1
16 128.1 30.6
17 39.2 11.9
20 22.9 5.8
23 52.6 21.7
26 9.7 9.9
28 8.2 6.7

3.4.2. Balancing Net Demand through DR

Once the predictions (for customers’ demand and PV generation) were calculated, and the
clustering process selected the “desired” days for applying DR, the next objective was trying to adapt
the net demand (difference between customers’ real demand and real PV generation) to the predicted
net demand made for the day ahead (Figure 1).

In order to achieve this aim, DR policies were applied to two flexible loads: WHs and HVACs.
The reason of choosing these loads is their facility for implementing control strategies by changing the
thermostat temperature and their ability to act as thermal energy storage systems (by doing preheating
of water in the case of WH and precooling and preheating of rooms/walls in the case of HVAC),
see Section 2.5. DR policies were applied through PBLM and aggregation models [52], with the aim of
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ensuring that the final net consumption is adapted in a significant extent to the profile of net energy
demand predicted the day before, so that it was not necessary to trade additional resources into the
wholesale electricity market or to pay BSP.

The planning of DR actions that have to be performed was obtained hour-by-hour. That is to
say that DR actions for each next hour were planned, taking into account the differences between
predictions made for 24 h ahead and predictions made for 1 h ahead. As forecasts for electricity
consumption are more accurate than PV forecasts, in this study, the predictions made for 1 h ahead
only estimated the PV generation, thus, DR strategies only acted in order to manage the PV forecasting
error. This fact means that the control was performed in the period in which there was PV generation,
that is, approximately, from 8 a.m. to 9 p.m.

The PV variations between 24-h predictions and 1-h predictions must be compensated with
changes in the consumption of WHs and HVACs. As WHs and HVACs represent the 17.9% and 42.9%
of the total consumption, respectively (see Table 1); 25% of the PV variations was managed by WHs
loads, and the rest (75%) was assigned to HVACs.

To demonstrate the ability of the loads (HVAC and WH) to adapt their consumption and the
capacity of minimizing variability between predictions and real consumption and generation, the
31 days obtained from the “desired” cluster of PV curves have been simulated. Two different examples
(days 14 and 23) have been selected to illustrate the application of DR strategies and its results, being
explained in detail. Later, in Tables 8 and 9, overall results and indicators for a set of representative
days in Cluster 1 will be shown.

Table 8. Results for the net energy consumption (day 23).

Energy
24-h

(MWh)

Energy
w/o DR
(MWh)

Energy
w/DR

(MWh)

CAE 24
h-w/o DR

(MWh)

CAE 24
h-w/DR
(MWh)

Error
w/o DR

(%)

Error
w/DR

(%)

Max. ∆P
w/o DR

(kW)

Max. ∆P
w/DR
(kW)

42.16 45.96 40.37 6.02 2.96 14.27 7.02 1256.93 579.32

Table 9. Results for net energy consumption (day 14).

Energy
24-h

(MWh)

Energy
w/o DR
(MWh)

Energy
w/DR

(MWh)

CAE 24
h-w/o DR

(MWh)

CAE 24
h-w/DR
(MWh)

Error
w/o DR

(%)

Error
w/DR

(%)

Max. ∆P
w/o DR

(kW)

Max. ∆P
w/DR
(kW)

50.13 47.23 49.43 4.13 1.79 8.25 3.58 805.45 451.54

Figure 10a,b presents the results for day 23 (21 March 2011) in which the PV generation forecasts
made 24 h in advanced overestimate the real PV energy generated. As can be seen in Figure 10a,
the forecasts made 1 h in advance are much more accurate; thus, they can be used as a baseline
curve to plan the DR actions (Table 7 presents overall results). Figure 10b shows the effects on the
net consumption forecasts. In order not to trade additional resources, the objective is to reduce the
consumption in the way that the final actual net consumption matches the 24-h-ahead forecasts.

Taking into account that there is PV generation only from 8 a.m. to 9 p.m., control actions will be
applied to WH and HVAC only during this period. Figure 11 presents the variations in each predicted
load demand that have to be performed to obtain the desired net consumption profile.

Figure 12 depicts the load consumption after DR control strategies and the desired consumption
profile from 24-h forecasts. As can be seen, DR actions work properly and the differences between the
final and the “desired” load consumption have been significantly reduced.
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Figure 10. Differences between 24-h-ahead and 1-h-ahead forecasts (day 23): (a) PV generation;
(b) Net consumption.

Figure 11. Load demand variations between 24-h and 1-h forecasts (day 23): (a) WH; (b) HVAC.

Figure 12. Load consumption after DR actions and 24-h forecasts (day 23): (a) WH; (b) HVAC.

By modifying the WH and HVAC load consumption, it is also changed the temperature of water
and rooms respectively. These variations can cause some comfort problems for users, thus, aggregators
should assure that there are no large temperature variations and that the customer comfort is always
guaranteed. This effect is considered in double control strategies defined in Section 2.5. by Equation (2).

Figure 13 shows the temperature profile of the loads. In the case of WHs (Figure 13a), the
temperature is always above 45 and 50 ◦C in the cold and hot sub-tank, respectively [74]. Figure 13b
shows the temperature of the rooms, the temperature of the internal walls, the temperature of the
external walls, and the external ambient temperature. As can be seen, the internal temperature was
always above 16 ◦C, while the maximum internal and ambient temperature (external) were 19.5 and
13 ◦C, respectively; the difference between internal and external temperature was always above 5.5 ◦C.
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Figure 13. Loads’ temperature profile after DR actions (day 23): (a) WH (state variables X1 and X2,
Figure 4b); (b) HVAC (state variables Xi, Xw, Xrg, and input Xext, Figure 4a).

Finally, Figure 14 shows the net profiles for the 24-h-ahead forecasts compared with final net
consumption after DR actions and the real net consumption if no DR action was performed.

Figure 14. Net consumption profiles (day 23): 24-h forecasts, after DR actions and without DR.

It is clearly demonstrated that DR actions significantly reduce the differences with 24-h-ahead net
profile, efficiently compensating the forecasting errors and balancing the final net load consumption.
Table 8 presents some numerical results from this example. All variables were calculated during the
control period (from 8 a.m. to 9 p.m.).

As can be deduced from the Table 8, the total net consumption of the day is reduced from
45.96 MWh if no DR action is taken to 40.37 MWh if DR actions are applied. The differences between
the 24-h-ahead forecasts and the final net consumption are also shortened: cumulative absolute error
(CAE) reduces from 6.02 MWh without applying DR to 2.96 MWh with DR actions. In the same way, the
percentage of error, understood as the rate between the CAE and the net consumption for 24-h-ahead
forecasts, decreased from 14.27% (without DR) to 7.02% (with DR), which is a 51% of reduction.

In the next paragraphs, a different example of the DR strategy will be presented. In this case, day
14 (14 January 2011) was analyzed, where the 24-h-ahead forecast predicted less PV energy than the
final real PV generation; thus, the aggregator has bought more energy than is necessary in Electricity
Markets required. In order to not waste this energy, it was used to increase the temperature of WH
and HVAC, exploiting their capacities to act as thermal energy storage systems. Figure 15a presents
the 24-h-ahead and 1-h-ahead forecasts compared with real PV generation data. As can be seen,
the 24-h-ahead forecasts have underestimated the PV generation, while 1-h-ahead forecasts have much
more precision. Figure 15b shows that it is necessary to increase the final net demand to adapt the
1-h-ahead profile to 24-h-ahead forecasts, and in this way, consume the “excess” of PV generation.

Figure 16 depicts the results from the application of DR policies to the flexible loads (WH and
HVAC). In both cases, the consumption after DR actions follow the target, to match its energy
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consumption with the 24-h-ahead predicted energy consumption for each load. Thus, it is fair to say
that the DR control was working efficiently.

Figure 15. Differences between 24-h-ahead and 1-h-ahead forecasts (day 14): (a) PV generation;
(b) Net consumption.

Figure 16. Load demand variations among 24-h forecast, 1-h forecasts and final load consumption after
DR (day 14): (a) WH; (b) HVAC.

As mentioned before, the increase in the energy consumption of both WH and HVAC was used to
rise the temperature of the water inside the tank (in the case of WHs) and the temperature inside the
rooms (HVAC). In the case of the WHs (Figure 17a), the temperature increases in the cold sub-tank
from 49 to 59 ◦C and in the hot sub-tank from 58 to 63 ◦C (always ensuring that, for health security
issues, the temperature is not above 68 ◦C in any WH), while in the HVACs (Figure 17b), the internal
temperature of the rooms increased from 17 to 20.5 ◦C, whereas the maximum ambient temperature
(external) was 11.5 ◦C.

Figure 18 depicts the 24-h-ahead forecasts for the net energy consumption. The final net energy
consumption profile after the application of DR strategies is also shown, as is its comparison with the
net energy that will be consumed if no DR action is taken. The graph shows that DR actions reduced
the differences between the 24-h forecasts and final net consumption, minimizing the necessity of
selling back to Electricity Markets the PV generation surplus or to pay additional charges (or penalties)
for unbalance in markets.

Table 9 presents some numerical results from this example. All variables were calculated only
during the control period (8 a.m.–9 p.m.). Results show that the net energy consumption with DR
strategies increased to 49.43 MWh compared with the 47.23 MWh consumed without the application
of DR, and reached 50.13 MWh for 24-h forecasts. The variations between forecasts and final net
consumption were reduced from 4.13 MWh to 1.79 MWh, reducing the percentage of error by 57%
(from 8.25 to 3.58%). The maximum power peak difference was also reduced by 44%.
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Figure 17. Loads’ temperature profile after DR actions (day 14): (a) WH (state variables X1 and X2,
Figure 4b); (b) HVAC (state variables Xi, Xw, Xrg, and input Xext, Figure 4a).

Figure 18. Net consumption profiles (day 14): 24-h forecasts, after DR actions and without DR.

Table 10 shows overall results for net energy consumption of a representative part of the 31 days in
Cluster 1. Day 16 (Figure 19a) obtained the greatest reduction in the error (from 31.63 to 6.7%), whereas
day 28 (Figure 19b) was the one in which the percentage of error increased most (from 6.55 to 9.99%).
Notice that this rise in the error was not due to DR actions, but because of the lack of accuracy in the
prediction of customers’ load profile of that day (day 28), because only deviations of PV generations
were corrected by means of DR (see also Figure 9).

Table 10. Values for net energy consumption.

Day
Energy

24-h
(MWh)

Energy
w/o DR
(MWh)

Energy
w/DR

(MWh)

CAE 24
h-w/o DR

(MWh)

CAE 24
h-w/DR
(MWh)

Error
w/o DR

(%)

Error
w/DR

(%)

Max. ∆P
w/o DR

(kW)

Max. ∆P
w/DR
(kW)

1 44.84 43.41 43.09 3.09 3.04 6.90 6.78 629.51 558.59
2 32.52 30.93 31.22 2.39 2.00 7.37 6.14 732.47 449.26
4 27.06 25.19 26.42 3.24 1.71 11.99 6.32 581.92 411.86
5 22.34 22.07 21.86 1.32 1.44 5.94 6.48 419.74 380.21
14 50.13 47.23 49.43 4.13 1.79 8.25 3.58 805.45 451.54
16 29.70 38.64 30.09 9.39 1.99 31.63 6.70 1622.69 472.04
17 47.15 41.59 45.25 6.40 2.85 13.58 6.05 1108.13 538.99
20 48.31 47.04 48.74 2.89 1.68 5.99 3.49 622.92 342.69
21 27.59 23.97 25.27 3.86 2.59 13.99 9.40 776.20 534.47
23 42.16 45.96 40.37 6.02 2.96 14.27 7.02 1256.93 579.32
26 41.01 42.38 42.08 2.01 1.90 4.92 4.63 487.96 572.66
28 41.97 41.25 39.32 2.75 4.19 6.55 9.99 792.76 1124.70
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Figure 19. Net consumption profiles: 24-h forecasts, after DR and without DR: (a) day 16; (b) day 28.

Finally, Figure 20 presents the cumulative absolute error for the 31 days in Cluster 1 when
comparing the target (the 24-h-ahead forecast) with the final net consumption in two different scenarios
(without DR and after DR actions). It can be seen that, in general, errors were reduced after DR, except
in some particular days where they increased slightly. Notice that the set of days selected in Tables 10
and 11 (among the 31 days belonging to Cluster 1) represent different scenarios (low, medium, and
high reduction of the errors as well as increasing of them after DR policies).

Figure 20. Cumulative absolute error (CAE) between the final net consumption (without DR and after
DR actions) and the target (the 24 h-ahead forecast of the net consumption).

Table 11. DR performance and flexibility indicators.

Day Balance Mileage
(MWh)

Demand Mileage
(MWh)

Mileage
Ratio (%)

Symmetry
Equation (12)

Performance
Equation (13)

1 2.64 5.54 47.5 0.95 0.27
2 2.62 4.52 57.5 1.59 0.34
4 2.86 4.06 70.17 4.24 0.05
5 1.52 3.92 38.89 0.83 1.89

14 3.12 5.72 54.50 7.06 0.047
16 3.06 4.12 74.20 0.008 0.036
17 4.32 5.34 80.9 17.92 0.064
20 1.66 5.54 28.9 5.24 0.268
23 4.14 5.28 78.13 0.038 0.073
26 1.88 5.16 36 0.953 0.467
28 2.08 5.22 39.8 0.224 2.34

3.4.3. Analysis of DR Flexibility

As mentioned in Section 2.1, a quantitative analysis for demand-side flexibility has been performed
thorough some indicators defined and calculated at an aggregated level.
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The first indicator of flexibility refers to signals’ dynamic. This is done through an indicator that
gives an idea about the variation of a signal and it is very close to the “mileage” score used for the
verification of assets in Ancillary Services. In this way, the “signal_mileage” is the absolute sum of
movement of the analyzed signal in a given time period with respect to the average value of the signal,
in our case daily:

signal_mileage =

∑end
kk=ini+1 abs(signal(kk) − signal(kk− 1))∑end

kk=ini+1 signal(kk)
(10)

where signal refers to the target foreseen for balancing PV generation through load (variable “balance”)
or the load demand (with DR or without DR, i.e., the variable “baseline” of demand or the new demand
with DR, in this case the variable “demand_DR”). These indicators give, respectively, an idea of
the variability of demand (hourly, daily,...) for the segment under study and the “amount of work”
involved through “balance” signals to match PV/demand forecast errors.

A second indicator is the “mileage_ratio”, which measures the relation of the value of mileage of
the balance signal sent to flexible demand versus the value of changes in demand in the steady state
(without DR). This indicator gives the aggregator a first insight with respect the effort that demand is
forced to yield to match PV generation in the short-term:

mileage_ratio =
balance_mileage
baseline_mileage

(11)

The third indicator represents the symmetry of the effort required from demand to follow the
energy balance signal (i.e., the overall increase of flexible demand versus the reduction of demand).
As has been discussed in previous paragraphs, in some cases, it is more difficult for the load to increase
in demand than achieve a reduction in demand (for instance, electric heating in winter). For these
reasons, the positive changes in demand were evaluated with respect to negative changes of demand.
Mathematically:

symmetry =

∑end
kk=ini abs((demand_DR(kk) − baseline(kk)) > 0)∑end
kk=ini abs((demand_DR(kk) − baseline(kk)) < 0)

(12)

Finally, the aggregator calculated a daily performance score that reflects the load resource’s
accuracy in increasing or decreasing its demand to provide balance in response to balance dispatch
signal. The performance score calculation evaluates each resource’s accuracy in following the balance
signal, that is to say:

performance = abs

1−

∑end
kk=ini abs(demand_DR(kk) − baseline(kk))∑end

kk=ini abs(balance(kk) − baseline(kk))

 (13)

These indicators have been evaluated through and Table 11 presents the main results.
A brief explanation of the results can help the reader to better understand the physical meaning

of these indicators. It is also interesting to consider the results of Section 3.4.2 for days 14 and 23.
Table 11 shows that the days 14 and 23 require a noticeable effort from flexible demand (3.12 and 4.14
for “balance_mileage” values that are above the average effort). Steady state fluctuations of demand
are similar for both days (5.72 and 5.28, see demand mileage column). This index (mileage_demand) is
of interest to reflect unusual changes of demand pattern.

Column five in Table 11 presents the symmetry of the effort. Day 14 requires a net increase of
demand (symmetry = 7.06), whereas day 23 basically requires a strong shaving of demand (symmetry
= 0.038). The score for the performance of flexible demand depicts that flexible loads follow with
enough accuracy their targets (performance indicator is around zero). Moreover, from Table 11,
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the aggregator can deduce that flexible demand fails in days 5 and 28 (performance has the greatest
values and over 1), but these days do not represent a big problem, because the effort required from
demand (balance_mileage) is low (1.52 and 2.08). These results and the results previously discussed in
Section 3.4.2 help both the customer and the aggregator to familiarize themselves with the demand
response and the usefulness of short-term predictions to manage their new role as prosumers or
energy aggregators.

4. Conclusions

Energy issues are a main concern for the sustainability of our society. This sustainability is based
on the integration of renewable sources and in the development of new energy markets, which should
be more customer-centered than in the past. These objectives need the development and validation of
additional tools to facilitate this change and to contribute to the effective engagement of customers
in these markets, as has happened in telecommunications markets. Technological aspects, such as
the forecast of demand and renewable sources or the management of energy, appeared as significant
barriers to the effective deployment of new markets in small and medium customer segments, i.e.,
benefits usually do not balance the complexity for new responsibilities and tasks in these scenarios.
Moreover, forecasts get more complex when the level of assets’ aggregation decreases, and this makes
the above-mentioned objectives more difficult. For these reasons, this work developed and validated
both demand and renewable generation forecasting methods at low aggregation levels (in the order of
some MW) of the power system (distribution), but focused the methodological effort on the application
of these methods to demonstrate the possibility of participation of “prosumers” in markets rather
than in the achievement of small improvements in forecasts accuracy (MAPE, RMSE, CAE) through
exponential complexity.

The interaction of demand, generation and management models demonstrated that this feedback
or linkage among models can balance errors through a “closed control loop” that drove the net demand
of “prosumers”. In the analyzed scenarios, results showed that 50% of prediction errors can be
balanced with naïf correction models (very short term) and a “reduced” portfolio of loads (HVAC and
WH) and policies. The paper also demonstrated the ability of these small and medium customers,
through demand aggregators, to exhibit in the market the necessary flexibility in demand (up and
down) to manage the volatility of renewables and build new power systems and new markets in the
horizon 2030–2050.

Further developments are necessary to advance in this approach, for instance: the consideration
of the participation of customers in new markets and more complex services (mixed participation
in two or more markets or services), the refinement of very short-term models (both in demand and
generation), the introduction and synthesis of new end-use PBLM and their further aggregation, the
integration and deployment of ICTs in the models and the validation, the hybridization of ESS and
demand models, both following PBLM philosophy, to provide more capabilities for flexibility, and the
adjustment and improvement of these models in actual customers through pilots. In the medium term,
and with these tools, the potential flexibility of these small and medium customer segments could be
exploited and used to balance the integration of renewable both in Smart Grids and in conventional
Power Systems.
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