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Abstract: In stability studies, the response of a system enforced by external, known or unknown,
inputs is of great importance. Although such an analysis is quite easy for linear systems, it becomes a
cumbersome task when nonlinearities exist in the system model. Nevertheless, most of the real-world
systems are externally enforced nonlinear systems with nonzero equilibriums. Representative
examples in this category include power systems, where studies on stability and convergence to
equilibrium constitute crucial objectives. Driven by this need, the aim of the present work is twofold:
First, to substantially complete the theoretical infrastructure by establishing globally valid sufficient
conditions for externally enforced nonlinear systems that converge to nonzero equilibriums and,
second, to deploy an efficient method easily applicable on practical problems as it is analyzed in
detail on a typical power system example. To that end, in the theoretical first part of the paper, a
rigorous nonlinear analysis is developed. Particularly, starting from the well-established nonlinear
systems theory based on Lyapunov techniques and on the input-to-state stability (ISS) notion, it is
proven after a systematic and lengthy analysis that ISS can also guarantee convergence to nonzero
equilibrium. Two theorems and two corollaries are established to provide the sufficient conditions.
As shown in the paper, the main stability and convergence objectives for externally enforced systems
are fulfilled if simple exponential or asymptotic converging conditions can be proven for the unforced
system. Then, global or local convergence is established, respectively, while for the latter case, a
novel method based on a distance-like measure for determining the region of attraction (RoA) is
proposed. The theoretical results are examined on classic power system generation nonlinear models.
The power system examples are suitably selected in order to effectively demonstrate the proposed
method as a stability analysis tool and to validate all the particular steps, especially that of evaluating
the RoA. The examined system results clearly verify the theoretical part, indicating a rather wide
range of applications in power systems.
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1. Introduction

Dynamic analysis, stability, and convergence to equilibrium constitute challenging issues in
systems theory and applications and play a key role in evaluating system reliability and response. In
practice, most of the systems are nonlinear, and this fact creates additional difficulties on conducting
a systematic analysis on these issues. Indeed, most of the large complex systems, such as power
systems, as well as smaller electromechanical apparatus in industry, belong to the nonlinear category.
For their analysis, it has been clear that advanced methods and novel techniques are needed to be
carefully studied in order to classify the most effective and crucial tools. Methods based on small
signal analysis [1,2], or advanced Lyapunov techniques [3–5], have been extensively used. The former
methods are capable to examine the dynamic system performance and stability, but as it is well-known,
only local features can be analyzed whereas the validity of the whole analysis is straightforward
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dependent from the operation point and the system parameters. Furthermore, the small signal model
has to be exclusively constructed from the particular original nonlinear system model, and none of
the common characteristics (such as the natural energy functions) can be exploited in the analysis.
Certainly, the main advantage of the method is that it permits the simple and well-known linear system
techniques on both the time and frequency domain to be applied. In contrary, Lyapunov techniques
are deployed by manipulating general storage functions that usually represent the energy handled by
the particular system. Therefore, problems concerning the operation point or the system parameters
are eliminated, and the analysis exploits the structural characteristics of the original nonlinear model
of the system [6]. Besides the difficulties of constructing suitable Lyapunov functions, a fact relaxed
in many practical systems where the natural energy functions can be used, a main drawback arises
when external inputs enforce the system to nonzero equilibria that may vary in accordance to the
input changes. Indeed, as the Lyapunov-based techniques are very efficient for systems having their
equilibrium at the origin [7], the incremental nonlinear model or the linearized model via the Jacobian
is often needed in the case of nonzero equilibriums. But because the incremental model in nonlinear
cases has a clearly different form than the original one, the Lyapunov-based analysis becomes very
difficult. On the other hand, linearization reintroduces the previously discussed certain drawbacks.

It is worth noting that among many different applications in nonlinear systems, power system
analysis and control constitute very characteristic examples where all the aforementioned techniques
have been extensively used. In their modern version, power systems are much more complex. They
are externally enforced with a lot of locally controlled and uncontrolled inputs that act continuously in
a wide range of varying equilibria due to the unpredictable nature of the renewable energy resources
(RES) or the load demands, etc. [8]. Hence, new advanced methods of analysis are required that
take into account all of these situations. In this field of advanced nonlinear system analysis and
design, the notion of passivity was proposed for systems with external (known or unknown) inputs,
which, however, does not directly contribute to stability issues of the forced system [9]. The notion
of input-to-state stability (ISS), recently introduced by E. Sontag in 1989 in his famous paper [10],
seems to fill this gap in nonlinear system theory. The kind of stability introduced by ISS provides a
rigorous theoretical infrastructure capable of guaranteeing state boundedness for externally enforced
nonlinear systems. The method is actually a Lyapunov-based one, since it has been proven that the
existence of suitable Lyapunov functions is necessary and sufficient for the validity of the ISS property.
It is noticed that besides from the globally valid ISS notion, systems can be examined for its local-ISS
(l-ISS) property [11,12], whereas another significant feature, caused by the ISS notion, is that it implies
the basic stability feature of externally driven systems, namely the bounded-input bounded-state
(BIBS) property. Nevertheless, in most real-world systems, beyond stability (in the sense of BIBS) it is
especially important to examine state convergence to a nonzero equilibrium for systems triggered by
external bounded inputs, which are permanently acting and may converge to known or unknown
nonzero constants [13].

Unfortunately, it has been proven [14] that ISS can additionally ensure convergence only to the
zero equilibrium under the strict assumption that the bounded external input converges to zero. In this
frame, this paper aims to bridge this gap with main objectives to complete the theoretical infrastructure
by proving the sufficient conditions, which guarantee convergence to nonzero equilibriums for ISS
(or l-ISS) systems when bounded external inputs converge to nonzero values and, to establish an
effective tool for practical applications. Particularly, starting from the most difficult case of an l-ISS
generally nonlinear system and considering an external input that converges to a constant, it is proven
after lengthy manipulations that a suitable C1 class, lower-bounded, storage function always exists,
which satisfies all the conditions of the local Invariant Principle (LaSalle Theorem). As proven in the
paper, the time derivative of this function is negative semidefinite, i.e., it is actually negative definite
outside and zero inside of a compact set that involves the set of all the system equilibriums. Thus, the
system trajectories tend to this set, wherein they stay for all time thereafter and, in accordance to the
LaSalle Invariant Principle, the trajectories eventually converge to equilibrium. A simple extension of
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the above procedure provides the global version for convergence of the states in the case of purely ISS
systems. Hence, making use of the definitions and preliminaries described in Section 2, two theorems
are established in Section 3: One for local and the other for global convergence of a l-ISS and ISS
system, respectively. Further relaxed conditions are established in Corollaries 1 and 2 for the two cases
discussed, which pass beyond the need to intermediately prove the l-ISS or ISS property. Therefore,
using the Corollaries, it is sufficient to examine the unforced system for its asymptotic or exponential
stability for each case, respectively. As a result, traditional and well-known in the literature methods
for the unforced system are adequate for proving convergence to the equilibrium of the externally
enforced system. However, in Section 4, the significant issue of evaluating the region of attraction
(RoA) in the case of local convergence is confronted by introducing a suitable metric (distance-like
measure) and a systematic procedure of analysis.

The theoretical results are applied in Section 5 on the analysis of classic power system dynamic
studies. Electromechanical dynamic effects in power systems occurred by small or large disturbances
are very important for the system stability [1]. As single- or multistage- turbine driven generators
constitute the usual case, it is very convenient to exhibit the effectiveness of the proposed method
in such power system configurations, since there are represented by relatively low-order nonlinear
models where one can easily understand the implementation of the proposed procedure. The focus is
especially given to stability studies and on the evaluation of the RoA. In large-scale systems, it is not
always an easy task to directly obtain the l-ISS or ISS property. However, the situation is substantially
simplified when the problem is transferred on what is known for the asymptotic or exponential stability
(AS or ES) characteristics of the unforced system around zero. In the first case of AS, a careful procedure
is additionally needed to determine the permitted regions inside which the states and the external
inputs should be lying. In any case, the procedure needs only the state space representation of the
whole system, accompanied by some common conditions, as preliminaries. As proven in the paper,
the method is clearly accurate since it is applicable on the nonlinear system model, it is easily applied
since it can exploit the a priori known natural energy expressions as suitable Lyapunov-type storage
functions and it can provide a very satisfactory solution for the RoA determination. Simulation studies
that involve a gradual evolution of the power plant and control system into more complex schemes
fully verify the validity of the proposed analysis approach and indicate its effectiveness in real-world
power system problems. Consequently, it is apparent that this method can provide a fundamental and
general tool for the analysis and design of more complex power systems, a fact that is expected to be
exploited in the near future.

2. Notations, Definitions and Preliminaries

In this paper, finite-dimensional nonlinear systems of the form of (1), enforced by external inputs,
are considered:

.
x(t) = f (x(t), u(t)) (1)

where state x(t) ∈ D, input u(t) ∈ Du, and f : D×Du → Rn is piecewise continuous in t and at least
locally Lipschitz in x and u. The sets D and Du are defined as follows:

D =
{
x ∈ Rn : ‖x‖ ≤ r

}
, Du =

{
u ∈ Rm : supt≥0‖u‖ = ‖u‖L∞ ≤ ru

}
(2)

It is assumed that f (0, 0) = 0. Following the notations and definitions given in [11,15], we
denote the Euclidean norm as ‖x‖ in this paper. For a function of time, usually an input, the (essential)
supremum norm is denoted by (ess) supt≥0‖u‖ = ‖u‖L∞. That is, ‖u‖L∞ is the smallest number k such
that ‖u(t)‖ ≤ k for (almost) all t ≥ 0.

A continuous function a(s) is a classK function [16], if it is strictly increasing and a(0) = 0. It is
of classK∞ if additionally a(s)→∞ as s→∞ . A continuous function β(s, p) is a classKL function if
for each fixed p, it belongs to classK with respect to s, and for each fixed s, it is decreasing with respect
to p and β(s, p)→ 0 as p→∞ . Denoting the inverse of a(s) by a−1(s), then this belongs to classK or
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toK∞ if a(s) belongs to classK or toK∞, respectively. For two (or more) classK (orK∞) functions,
the composite a1 ◦ a2(s) denotes the a1(a2(s)) and belongs to classK (orK∞) functions if at least one of
them is classK (or all of them are classK∞).

Before proceeding with the basic preliminaries for ISS and convergence issues, a certain terminology,
commonly used for the system characterization, should be clarified [9].

Definition 1. A system of the general form
.
x(t) = f (x(t), t) is characterized as non-autonomous system

whereas a system
.
x(t) = f (x(t)) is characterized as autonomous system.

An example of a non-autonomous system is
.
x(t) = f (x(t), u(t)) for any u(t) to be a function of

time. Clearly, the unforced system
.
x(t) = f (x(t), 0) and, the system

.
x = f (x(t), u) for some u constant

are both autonomous systems.

Definition 2. [9,11]. The system (1) is defined to be locally input-to-state-stable (l-ISS) if there exists a class
KL function β and a classK function γ and positive constants k1 and k2 such that

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(sup0≤τ≤t‖u(τ)‖) (3)

for all t ≥ 0 and x ∈ D, u ∈ Du with ‖x(0)‖ < k1 and, (ess)supt≥0‖u‖ = ‖u‖L∞ < k2. The system is said to
be input-to-state-stable (ISS) if D = Rn, Du = Rm and (3) holds true for any initial state x(0) = x0 and any
bounded input u(t).

The following Theorem provides the necessary and sufficient conditions for suitable Lyapunov-type
storage functions [11,17] to admit l-ISS (or ISS) in accordance to Definition 2.

Theorem 1. System
.
x = f (x, u) with f as defined in (1) is l-ISS if and only if there exists a continuously

differentiable function V : D→ R with a1, a2, a3 and σ classK functions such that

a1(‖x‖) ≤ V(x) ≤ a2(‖x‖) (4)

∂V
∂x

f (x, u) ≤ −a3(‖x‖) + σ(‖u‖) (5)

for all t ≥ 0 and x ∈ D, u ∈ Du. Then function V is called an ISS Lyapunov function on D. If D = Rn,
Du = Rm and a1, a2, a3 and σ are classK∞ functions then the system (1) is ISS and, function V is called an ISS
Lyapunov function.

Alternatively, Theorem 1 holds true if Inequality (5) is replaced by:

∂V
∂x

f (x, u) ≤ −a4(‖x‖) ∀‖x‖ ≥ ρ(‖u‖) (6)

with a4, ρ class K functions for l-ISS and class K∞ functions for ISS. Where needed, parameter γ is
calculated by γ = α−1

1 ◦ α2 ◦ ρ, while bounds k1 and k2 are defined as: ·

k1 = α−1
2 ◦ α1(r) (7)

k2 = ρ−1(min
{
k1, ρ(ru)

}
) (8)

From [11,12], the following Lemma is recalled, which suggests that asymptotic stability (AS) of
the unforced system implies l-ISS. For rigorous analysis of this result, one can see the first part of the
proof of Theorem 5.2 in ([9] 3rd Ed.). It is noticed that in earlier publications, it has been proposed
and proven [18] that global-AS implies l-ISS, but the Lemma that follows [9,11] substantially relaxes
this necessity.
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Lemma 1. If the origin of the unforced autonomous system
.
x = f (x, 0) is asymptotically stable and the function

f (x, u) is continuously differentiable, then system (1) is l-ISS.

In the next Lemma [9], the ISS property is related to the exponential stability of the unforced
system, but now the requirement of globally Lipschitz property replaces the initial assumption of the
locally Lipschitz property of f in x and u, a fact that is difficult to be satisfied.

Lemma 2. Suppose that f (x, u) is continuously differentiable and globally Lipschitz in x and u. If the origin of
the unforced autonomous system

.
x = f (x, 0) is exponentially stable, then system (1) is ISS.

Another interesting result is presented via Theorem 2 [19], which makes possible to study the
convergence of a system of the form of (1) to a nonzero equilibrium as t→∞ .

Theorem 2. Suppose that for the nonautonomous system
.
x(t) = f (x(t), u(t)), the input u(t)→ u as t→∞ ,

for some u constant. Then, x(t)→ x∗ as t→∞ if this x∗ is an asymptotically stable (AS) equilibrium of the
autonomous system

.
x = f (x, u) (9)

in a domain of attraction DA with x(·) to be a K-recurrent solution of the original system (1) defined on [0, ∞),
in a set K which is a compact subset of DA.

In Theorem 2, the terminology used for K-recurrency is defined as follows [19]:

Definition 3. Given a compact subset K ⊆ X, we say that a function x(t) ∈ X is K-recurrent if for each T > 0
there is some t > T such that x(t) ∈ K.

According to Theorem 2, if one can prove that under the K-recurrency property, the (autonomous)
system enforced by a permanently constant input is AS around a nonzero equilibrium, then the
nonautonomous system enforced by a bounded, continuous, input function that tends to the
aforementioned constant also converges to the same nonzero equilibrium. Following this concept, the
basic problem of proving convergence to the equilibrium for systems that are enforced by a u(t)→ u
as t→∞ and satisfy the l-ISS or ISS property is still open with an apparent benefit that it is now
modified to an autonomous system stability problem with u(t) ≡ u. Hence, the powerful invariant set
theorems for autonomous systems, known as LaSalle invariant principles, can be used in the theoretical
analysis. These principles are recalled from [7,9] and are presented in the following.

Theorem 3. (Local Invariant Set Theorem). Consider an autonomous system, for instance, of the form (9),
with f continuous, and let W(x) be a scalar function with continuous first partial derivatives (C1 class). Assume
that for some l > 0, the region Sl defined by W(x) < l is bounded and

.
W(x) ≤ 0 for all x in Sl. Let Ω be the

set of all points within Sl where
.

W(x) = 0 and E be the largest invariant set in Ω. Then every solution x(t)
originating in Sl asymptotically tends to E as t→∞ .

Theorem 4. (Global Invariant Set Theorem). Consider an autonomous system, for instance, of the form (9),
with f continuous, and let W(x) be a scalar function with continuous first partial derivatives (C1 class). Assume
that

.
W(x) ≤ 0 over the whole state space, i.e., for all x ∈ Rn with W(x)→∞ as ‖x‖ → ∞ . Let Ω be the set of

all points where
.

W(x) = 0 and E be the largest invariant set in Ω. Then all solutions globally asymptotically
converge to E as t→∞ .

In Theorems 3 and 4, if the set Ω defined by
.

W(x) = 0 contains only a unique equilibrium, then the
state trajectories asymptotically converge to that point.

Another significant point met in the theoretical part of analysis is related with the answer on
the critical question: How one can determine the region of attraction (RoA) in the cases when local
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convergence to equilibrium has been proven. Many attempts exist in the literature, which provide a
more or less satisfying answer on this issue [20]. However, in this case, the problem of determining
the RoA is confronted by introducing a novel metric around the equilibrium, based on the notion of
Bregman distance (or divergence) [21], which is defined as follows.

Definition 4. Let function h be strictly convex in a closed convex set Ωh ⊆ Rn such that h is continuously
differentiable on relative interior of Ωh. Then, the distance measure (Bregman distance) Ωh × Ωh → R is
defined as

Mpq(p, q) = h(p) − h(q) −
〈
∇h(q), p− q

〉
(10)

where 〈·, ·〉 denotes inner product operator.

The Bregman distance has been already used in many applications, from data mining and machine
learning [22] to control innovations [23]. Nevertheless, the distance measure Mpq is not necessarily a
true distance in the sense of metric topology and it can be characterized as a distance-like metric for
convex functions. Since ∀(p, q) ∈ Ωh ×Ωh, it is:

Mpq(p, q) ≥ 0 (11)

due to the convexity property: h(p) ≥ h(q) +
〈
∇h(q), p− q

〉
of the function h(p) around point q, and

Mpq(p, q) = 0 ⇔ p = q (12)

but may not satisfy other distance properties, such as the triangle inequality and symmetry (i.e., in
general it holds true: Mpq(p, q) ,Mqp(q, p)).

It is also clear that Mpq may be interpreted as the distance measure of the h(p) function from its
value h(q) around a fixed point q, for any p ensuring convexity of h.

Now, following the notations and definitions presented, our theoretical results on the basis of the
ISS properties and Lyapunov-based techniques can be established.

3. Main Results on Converging Properties of ISS Systems

To proceed with our main results, we start with some remarkable comments on the fundamental
notion of ISS as they are pointed out in the literature.

The rigorous definition of ISS and the whole theory developed around this notion [24] mainly
aims to cover issues in nonlinear system analysis, as these are related to a system response when
permanent external inputs take the state trajectories away from the zero equilibrium at the origin.
Hence, ISS clearly examines the stability properties of an externally enforced system in contrary to
dissipative and passivity properties that simply provide input–output relations [9]. Specifically, in [25]
it is referred: ISS states the fact that if the inputs are uniformly small then the system states must be eventually
small; an alternative statement of the BIBS property. On the other hand, convergence to equilibrium for
ISS systems is proven only for the zero equilibrium when the external input tends to zero [17]. The above
descriptions indicate that stability aspects for ISS systems are still seen under the zero-equilibrium
point of view. In this paper, however, we concentrate on stability aspects and sufficient conditions
for state convergence of ISS systems to nonzero equilibria imposed by permanently nonzero external
inputs. Two different cases are considered: One is related to l-ISS systems, while the other simply
extends the results for the pure ISS systems case.

3.1. A Pass from ISS Lyapunov Functions to Suitable Storage Functions for the LaSalle Invariant Principles

As the title of this subsection briefly describes, convergence to nonzero equilibrium for l-ISS or ISS
systems will be proven via the appropriate application of the LaSalle Invariant Principles. To do this
task, it is necessary to prove that l-ISS and/or ISS lead to the construction of suitable storage functions.
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We first assume that system (1) is l-ISS. In this case, Theorem 1 holds true and a well-known [9,11],
first-pass from inequality (5) to that of (6) can be implemented with a4(‖x‖) = (1 − θ)a3(‖x‖) and
ρ(‖u‖) = a−1

3 ( σ‖u‖θ ) for any θ : 0 < θ < 1. Therefore, by considering a predefined ru and r large
enough, it is concluded from (7) and (8) that the maximum of k1, k2 occur for k2 = ru ≡ (ess)sup‖u‖L∞,
and, consequently, for k1 = ρ(ru), which is now a function of θ. This θ parametrization actually
provides a degree of freedom on determining different bounds on ‖x‖, which however cannot be
further exploited in the analysis. It is also noticed that one can consider the k1,max = ρ(ru)max where

ρ(ru)max → a−1
3 (

σ(ru)
θ ) as θ→ 1 .

Nevertheless, an alternative and more constructive pass from (5) to (6) is realized in the present
analysis by splitting the first right-hand side term of inequality (5) into:

−a3(‖x‖) = −a3(‖x‖) + a3 ◦ a−1
2 ◦ a1(‖x‖) − a3 ◦ a−1

2 ◦ a1(‖x‖)) =
−a3 ◦ a−1

2 ◦ (a2 − a1)(‖x‖) − a3 ◦ a−1
2 ◦ a1(‖x‖))

(13)

It is noticed that (4) implies
a2(s) ≥ a1(s) (14)

and, without loss of generality, even if a2(s) = a1(s), one can assume some slightly different functions
in (4) which satisfy the pure inequality a2(s) > a1(s). As a direct result, condition (6) is concluded from
(5) if (13) is taken into account, with

.
V ≤ −a3 ◦ a−1

2 ◦ [a2 − a1](‖x‖) ∀‖x‖ ≥ ρ(‖u‖)

with ρ(‖u‖) = a−1
◦ σ(‖u‖), where a(s) = a3 ◦ a−1

2 ◦ a1(s), a(s) ∈ K and a3 ◦ a−1
2 ◦ [a2 − a1](‖x‖) ∈ K .

But the most significant result of this formulation comes from the fact that since (13) and (14) hold
true, it is a3(s) ≥ a(s) and then

.
V as given by (5) can be transferred into:

.
V ≤ −a(‖x‖) + σ(‖u‖) (15)

Therefore, k1 is determined by
k1 = ρ(ru) (16)

and
r = a−1

1 ◦ a2(k1) = a−1
1 ◦ a2 ◦ ρ(ru) (17)

Note that k1 < r, since a1(s) < a2(s) is assumed.
Also, as it is easily obtained by the initial formulation of the

.
V in (5), this can also be in the

form [17],
.

V ≤ −a(V) + σ(‖u‖) with a(s) = a3 ◦ a−1
2 (s) ∈ K (18)

Now, defining the compact set (closed and bounded set):

S =
{
x ∈ D : V(x) ≤ c

}
with c ≡ a2(r) > a2(k1)

then, it holds sequentially
‖x‖ < k1 < r⇒ a2(‖x‖) < a2(k1) < c (19)

and since we have by the right-hand side of (4), V ≤ a2(‖x‖), it is implied that the open set

So =
{
x ∈ Rn : ‖x‖ < k1

}
⊂ S ⊆ D (20)

Thus, for any ‖x0‖ < k1, l-ISS holds true for all x ∈ D and u ∈ Du.
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Now, consider that the external (bounded) input u(t) is such that u(t)→ u as t→∞ with
‖u‖L∞ ∈ Du. Our purpose is to prove that also x→ x∗ as t→∞ , with x∗ ∈ D : f (x∗, u) = 0 to denote
the equilibria as t→∞ .

To proceed with our task, we recalled Theorem 2. In accordance to Theorem 2, it is now
sufficient to prove that the system

.
x = f (x, u) converges to some equilibrium x∗ ∈ E, where E ={

x∗ ∈ Rn : f (x∗, u) = 0
}

is the largest invariant set of
.
x = f (x, u).

It is worth noting that l-ISS property satisfies the assumptions of Theorem 2, i.e., the K-recurrency
property. Furthermore, since the latter system for u = u = const has now become an autonomous
system, it is sufficient to apply the LaSalle Invariance Principle (Theorem 3) in order to prove stability
and convergence to E.

Certainly, to accomplish the analysis, a suitable storage function is needed. To that end, one can
first observe that given ‖u‖ < ru there exists a constant ud : ‖u‖ < ud < ru and two different x1 , x2 ∈ Rn

such that
a(‖x1‖) = σ(‖ud‖) and a(V(x2)) = σ(‖ud‖) (21)

Since from (21), ‖x1‖ = a−1(σ(‖ud‖)) and by definition k1 = ρ(ru) ≡ a−1(σ‖ru‖), it is implied
‖x1‖ < k1.

Denoting c = σ(‖ud‖) and defining the set

Ω =
{
x ∈ Rn : V(x) ≤ a−1(c)

}
(22)

then, taking into account (21) and some other properties as previously discussed, the following can be
sequentially obtained:

a−1(c) = V(x2) = a−1
◦ a(‖x1‖) = a1(‖x1‖) < a2(‖x1‖) < a2(‖k1‖) < c (23)

Thus, from (23), it is clearly concluded that

Ω ⊂ So ⊂ S ⊆ D. (24)

A second remark can be made by considering
.

V for u = u as determined by (18):

.
V ≤ −a(V(x)) + σ(‖u‖) < −a(V(x)) + c.

Then, apparently
.

V = ∂V
∂x f (x, u) = 0 at the equilibrium x = x∗ ∈ E, which in accordance to the

latter inequality it implies a(V(x∗)) < c or V(x∗) < a−1(c), which in turn means that E ⊂ Ω. Therefore,
by considering (24), it is eventually proven

E ⊂ Ω ⊂ So ⊂ S ⊆ D. (25)

Now, after the above remarks we propose for the system
.
x = f (x, u), ∀x ∈ D the following

storage function

W(x(t)) =
{ 1

2 [a(V(x)) − c]2, for V(x) > a−1(c), (x ∈ D/Ω)

0 , for V(x) ≤ a−1(c), (x ∈ Ω)
(26)

It is worth noting that the storage function W(x) is lower bounded and C1 class on D.

3.2. Proving Convergence to Nonzero Equilibrium

As shown in the previous subsection, storage function (26) can be considered as the required
function for examining system

.
x = f (x, u) in accordance to Theorem 3 (Local Invariant Set Theorem).
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Our aim is to prove that the l-ISS system states converge to their equilibriums in E. To that end, the time
derivative of W is calculated as follows:

.
W = ∂W

∂a
∂a
∂t =

{
[a(V(x)) − c](

.
a(V))

0

=

 [a(V(x)) − c]
(
∂a
∂V

) .
V < −[a(V(x)) − c]2

(
∂a
∂V

)
< 0, for V(x) > a−1(c)

0, for V(x) ≤ a−1(c)

(27)

From (27), it is observed that since
.

W < 0 outside of Ω, every solution x(t) of
.
x = f (x, u) in D,

tends to Ω, wherein it remains all time thereafter. Since (25) holds true, it is immediately implied
that applying the LaSalle Invariance Principle in the region V(x) ≤ c it is proven that every trajectory
x(t) in D of the autonomous system

.
x = f (x, u) approaches E as t→∞ . Consequently, as Theorem 2

indicates, it is concluded that every trajectory x(t) in D of the l-ISS system
.
x = f (x, u) approaches E as

t→∞ . Furthermore, if f (x∗, u) = 0 determines a unique x∗, then every solution x(t) in D converges
asymptotically to x∗.

Therefore, from the previous analysis, the following Theorem is established for the original l-ISS
system (1).

Theorem 5. For system
.
x(t) = f (x(t), u(t)), l-ISS property implies that ∀ x(t) ∈ D, u(t) ∈ Du, the

trajectories x(t)→ x∗ ∈ E for a u(t)→ u as t→∞ , for some u constant.

Nevertheless, Theorem 5 can be further relaxed by considering Lemma 1. Hence the following
Corollary is also established.

Corollary 1. For system
.
x(t) = f (x(t), u(t)), if the origin of the unforced autonomous system

.
x = f (x, 0) is

asymptotically stable and the function f (x, u) is continuously differentiable, then ∀ x(t) ∈ D, u(t) ∈ Du the
trajectories of the enforced system converge to equilibrium: x(t)→ x∗ ∈ E for a u(t)→ u as t→∞ , for some
u constant.

For the pure ISS systems case, it becomes apparent that the aforementioned analysis holds true
∀ x(t) ∈ Rn and ∀ u(t) ∈ Rm bounded. Hence, in a similar manner, the storage function (26) can be
used ∀ x(t) ∈ Rn, u(t) ∈ Rm in Theorem 4 (Global Invariant Set Theorem), which, in combination with
Theorem 2, establishes the following result:

Theorem 6. For system
.
x(t) = f (x(t), u(t)), ISS property implies that ∀ x(t) ∈ Rn, u(t) ∈ Rm the trajectories

x(t)→ x∗ ∈ E for a u(t)→ u as t→∞ , for some u constant.

Additionally, in this case, Theorem 6 can be further relaxed in the following Corollary by
considering Lemma 2.

Corollary 2. For system
.
x(t) = f (x(t), u(t)), if the origin of the unforced autonomous system

.
x = f (x, 0) is

exponentially stable and the function f (x, u) is continuously differentiable and globally Lipschitz in x and u,
then ∀ x(t) ∈ Rn and ∀ u(t) ∈ Rm bounded, the trajectories of the enforced system converge to equilibrium:
x(t)→ x∗ ∈ E for a u(t)→ u as t→∞ , for some u constant.

At this point, it is significant to make some comments and remarks as follows.
The procedure developed for the proofs of Theorems 5 and 6 indicates that l-ISS and ISS are the

sufficient conditions for the existence of the suitable storage functions of the form of (26) for each case
respectively. Clearly, in any case, it is not needed to construct (26) and to calculate its time derivative
(27). Their existence adequately guarantees the convergence to nonzero equilibriums. Furthermore, as
Corollaries 1 and 2 indicate, the whole stability and convergence analysis to nonzero equilibriums of
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externally enforced nonlinear systems was modified to that of examining the convergence to the origin
of the unforced system. Apparently, the latter constitutes a standard and well-established problem in
Lyapunov based nonlinear system theory (see, for example, [7,9] and the references therein). Moreover,
in practical applications, such as in power system studies, the construction of suitable Lyapunov
storage functions is implemented for the unforced system by simply considering the sum of the natural
energy of the different system parts.

It is also noticed that relatively recent research works [26,27] have attempted to confront this
problem for BIBS systems and for the special case of port Hamiltonian systems under some certain and
strict conditions. In the present work, substantially generic results were proven with actually no need
for additional constraints.

Finally, it is remarkable to note that the theoretical analysis as previously deployed was based on
either the l-ISS property, which holds true in a permitted RoA, or on the pure ISS property, which is
globally valid. As for practical applications, locally converging properties to nonzero equilibriums
constitute the usual case, it is very important to determine the domain wherein these stability properties
are valid.

4. Evaluating the RoA around the Equilibrium

In the cases where local convergence to equilibrium is proven, it is immediately raised the question
of how one can determine the RoA around this equilibrium. It is obvious that if Theorem 5 is applied
and conditions (4) and (5) can be analytically obtained, then the bounds given by (7) and (8) can be also
easily obtained. However, when Corollary 1 is used, it is not easily possible for the conditions (4) and
(5) to be analytically obtained. In that case, it is needed to follow alternative ways for determining the
RoA, a fact very important for the system performance since AS of the unforced system is not adequate
to maintain stability when u(t) , 0, even if u(t) is very small [17]. Even when global AS has been
proven for the unforced system, there are counterexamples where x(t) does not converges to zero or
diverges from the initial time instant, although u(t) vanishes as t tends to infinity if, initially, the states
are lying outside from the permitted region [14]. It is also noticed that during the period when u(t)
converges to u, its deviation from u should be small enough in order to keep u(t) inside its permitted
region, a fact that has to be carefully taken into account in any practical application. For example, this
is satisfied for piecewise constant input changes when the initial value before every such a change to lie
inside the permitted region. Additionally, for any selected constant u, a system equilibrium must exist.
Violation of this condition leads to completely unstable situations as characteristic counterexamples
in previous literature has indicated, see e.g., the counterexample in [9] after Lemma 4.6 where the
constant input u = 1 results in divergences.

In accordance with Corollary 1, it is sufficient to prove AS around zero for the unforced system
that according to the well-known Lyapunov techniques is based on a suitable storage function, let H(x),
with negative definite or negative semidefinite time derivative [9]. Hence, to easily implement the task
of evaluating a nonconservative and large enough RoA for this case, the known H(x) is proposed to
be used for the RoA determination. It is, therefore, noticed that for any x close to x = 0, an estimate
of H(x): Ĥ(x) = H(0) +

〈
∇H(0), x− 0

〉
can be defined for the unforced system and then a closed

bounded region H(x) < cL (cL > 0) exists as long as the convexity property H(x) ≥ Ĥ(x) holds true.
Such a capable of guaranteeing convexity x exists in the common case where H used for proving
stability around zero is positive definite (globally or locally). Extending this aspect for any particular
nonzero equilibrium point x∗ on H(x), which may be not a pure convex function (such as, for example,
quadratic functions are) and may involve a convex domain (perhaps close to zero as discussed for
positive definite H) wherein x∗ belongs, it is introduced a generic suitable metric, capable of sharing
the maximum possible limits around the equilibrium where the stability constraints hold true. To this
end, the distance-like measure as provided in Definition 4 is recalled and applied for q = x∗ and p
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being any x around the equilibrium x∗, i.e., considering h = H(x) to be the relative Lyapunov function,
then from (10) the following distance measure is proposed:

Mxx∗(x, x∗) = H(x) −H(x∗) −
〈
∇H(x∗), x− x∗

〉
(28)

as long as Mxx∗ ≥ 0.
Then, to construct a compact RoA in the convex domain around x∗, it is necessary for Mxx∗ to

perform like a local storage function with
.

Mxx∗ ≤ 0 [9,11], and for all the permitted x to belong in a
domain of H(x) such that the lines passing through x∗ and the arbitrary x to ensure local convexity
of H(x), i.e., all the points of H between x∗ and x to lie below of the line x ∗ − x. This means that all
permitted x should satisfy:

H(x) −H(x∗) ≤
〈
∇H(x), x− x∗

〉
(29)

The maximum x under these circumstances can then be defined by the maximum region around
x∗ where the above convexity condition of H holds true, and it is actually defined as the unique
intersection points of H(x) with the lines passing through x∗ and are tangent to the function H(x).
Among all these candidate points, the one closest to x∗ is obviously selected. Thus, the xmax is obtained
when inequality (29) reaches its upper limit, i.e., when H(x∗) −H(x) −

〈
∇H(x), x ∗ −x

〉
= 0.

From the latter expression, and after taking into account the previous remarks, one can easily see
the interesting result that the maximum x is obtained by constraining the symmetric of the distance
measure (28), namely the Mx∗x(x∗, x), to be equal to zero under the following conditions:

xmax =
{
x : x , x ∗ and min|x−x∗|∞

{
Mx∗x(x∗, x) = 0

}}
(30)

and the RoA is then defined by

Mxx∗(x, x∗) ≤Mxmaxx∗(xmax, x∗) ≡ cM (31)

where cM is the maximum value of the distance measure (28) for the particular equilibrium x∗.
Note that the non-symmetry property of the proposed distance measure (28) allows us to calculate

the maximum limit via (30), which clearly is different than the one possibly calculated by setting the
initial metric (28) equal to zero. The non-symmetry property enables to determine the widest domain.
since it is based on the optimal calculation of xmax for the given H. Additionally, when xmax around a
particular x∗ cannot be calculated, then RoA is eliminated, simultaneously meaning instability of x∗.
Hence, in practice. the absence of the symmetry property becomes an advantage.

Although this metric selection may be not the best one to provide the largest stability limits, it has
the obvious advantage that H(x) is known from the beginning as the basic storage function used to
prove AS of the unforced system and it is usually constructed to express the natural energy function of
the system under consideration.

5. Demonstrating Power System Stability Issues via the Proposed ISS-based Nonlinear Analysis

Power system stability is a challenging issue of highest priority for the electricity grid operation [1].
Nowadays, the high penetration of renewable energy resources (RES), the continuously encouraged
competition in energy market, and the increased load demands have a clear impact on the power
system stability. This happens due to many different reasons [28], such as the intermittent nature of
RES production, the reduction of the spinning inertia, the need of the electricity market participants to
increase their profit by selling more energy, and the targets set by the modern fast developing economies.
This new power system technical and economic environment leads the electricity grid to operate
close to its technical limits while it is simultaneously under the stress of significant and sometimes
unpredictable changing power conditions. Therefore, dynamic secure operation and stability studies
of power systems under small or large power disturbances are essential. Small signal analysis-based
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methods have been extensively used in traditional studies [29], but as it is evidently imposed by the
new structure and operating conditions, more accurate methods which better fit with the nonlinear
nature of the system are required [30]. Thus, in the following subsections, fundamental dynamic
and stability issues in power systems analysis are studied in the frame of the massive theoretical
infrastructure developed in the previous sections. Since, in power system stability, ISS is mentioned
as a significant tool in fundamental references (see e.g., [29]), the based on the ISS notion theoretical
development as presented in this paper, provides a complete insight to this direction. Hence, it is
shown in detail how the proposed advanced ISS-based nonlinear methods can be applied on power
system examples. To demonstrate the effectiveness of the proposed methodology, the simple single
generator infinite bus (SGIB) system model is firstly analyzed [31]. In the sequel, it is indicated how
this model can be used when the dynamics of reheating cycles are inserted, and it therefore provides
the way of studying, in future research works, more complex system configurations with, for example,
the q-axis electromotive force changing [32] or with interconnections to other generators involved [33].

5.1. Stability Analysis of the Single Generator Infinite Bus (SGIB) Power System

The single generator infinite bus (SGIB) power system is a fundamental representation of a power
plant connected to a main power grid with much greater capacity than that of the particular plant. The
model, given by equations (32) and (33), has been widely used in studying and understanding the
power system dynamics and stability as a response of the mechanical power input changes and the
speed governor mechanism [31]. Also, the response after large electrical power changes, such as faults,
has been studied via the same model [34]. Denoting by δ the rotor angle, ω the rotor speed, and ω0 the
synchronous speed, where ∆ω = ω−ω0, with Hi the generator inertia time constant, D the generator
damping coefficient, X′dσ the d-axis synchronous transient reactance, E′q, Vs the generator transient
q-axis electromotive force and the infinite bus voltage, respectively, the SGIB model is described by
the equations:

.
δ = ∆ω (32)

∆
.
ω = −

D
2Hi

∆ω−
ω0

2Hi

E′qVs

X′dσ
sin δ+

ω0

2Hi
Pm (33)

where Pm is the external mechanical input which obviously is bounded by

Pm ≤ Pm,max, Pm,max =
E′qVs

X′dσ

As the SGIB model is of the general nonlinear form of (1), with state x =
[
δ ∆ω

]T
satisfying

all the initially considered properties in Section 2, it is easy to apply the proposed theoretical results
in order to study its stability properties. Indeed, in accordance to the results deployed in Section 3,
the unforced system of (32) and (33) is first considered by setting the external input Pm equal to zero
(Pm = 0). Then, simply constructing the Lyapunov storage function to be equal to the total natural
energy of the system as

Ht ≡ Hω + Hδ =
1
2

∆ω2 +
ω0

2Hi

E′qVs

X′dσ
(1− cos δ) (34)

where Hω(∆ω), Hδ(δ) represent the kinetic and potential energy of the system and are referred to the
first and the second terms of (34), respectively.

Calculating the time derivative of (34),

.
Ht = −

D
2Hi

∆ω2
≤ 0 (35)
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it is directly concluded by applying the LaSalle local invariant set Theorem that the origin of the
unforced nonlinear system (32) and (33) is AS.

Then, Corollary 1 guarantees that the complete enforced system states converge to their equilibria
as these are calculated by putting the derivatives of δ, ∆ω in (32) and (33) equal to zero, i.e.,

x∗ =
[
δ∗

∆ω∗

]
, where δ∗ = sin−1

(
Pm

Pm,max

)
, ∆ω∗ = 0 (36)

In the domain −π < δ < π, one stable and another unstable (as shown in the next) equilibria are
determined. Therefore, for the system states, it holds true that they locally asymptotically converge to
the stable equilibrium.

However, from Corollary 1, it is not easy to obtain the bound given by (7), the proposed method
in Section 4 of determining the RoA is applied and described in detail.

To proceed with the RoA, we formulate the following distance measure around the equilibrium
using (28), where it is now: H(x) = Ht(x).

Mxx∗(x, x∗) = Ht(x) −Ht(x∗) −
〈
∇Ht(x∗), x− x∗

〉
= Hδ(δ) −Hδ(δ∗) −

∂Hδ(δ∗)
∂δ (δ− δ∗) + Hω(∆ω) −

∂Hω(0)
∂∆ω ∆ω

(37)

The last two terms in (37) are summarized to Hω = 1
2 ∆ω2 whereas after some manipulations to

the three first terms, (37) becomes

Mxx∗(x, x∗) =
ω0

2Hi

E′qVs

X′dσ
[(cos δ ∗ − cos δ) − (δ− δ∗) sin δ∗] +

1
2

∆ω2 (38)

Since
.

Mxx∗ ≤ 0 and the last term in (38) is always a convex function, the convexity limits of Mxx∗

are dependent from the first term. Therefore, the RoA is evaluated by the symmetric of (38), whereas
the last term is cancelled. As determined by (30), condition Mx∗x = 0 actually provides the maximum
δmax and results in the solution of the equation:

cos δmax − cos δ ∗ −(δ ∗ −δmax) sin δmax = 0 (39)

Therefore, for any bounded Pm which approaches a constant value Pm > 0 as t→∞ , a particular
equilibrium is obtained from (36) in the range 0 < δ∗ < π/2 and another one at π− δ∗. As clarified in
the next paragraphs, for the first equilibrium, a unique value of the δmax is calculated by solving (39).
Then, the RoA is determined from (31) with

cM = ω0
2Hi

E′qVs

X′dσ
[(cos δ ∗ − cos δmax) − (δmax − δ∗) sin δ∗]

= ω0
2Hi

E′qVs

X′dσ

(
1 + sin δ∗

sin δmax

)
(cos δ ∗ − cos δmax)

(40)

where the second expression is obtained by taking into account (39).
In order to evaluate the system performance in accordance with the developed theoretical

infrastructure, a power system with parameters given in Table 1 is considered (where pu stands for
“per unit”).

Before proceeding with the system analysis, Figure 1 is used to clarify some main points with
respect to the proposed distance measure and the RoA evaluation. This measure, as given by (38),
is dependent from both the system states. However, since the second term of (38) is quadratic and
therefore convex, we focus on the first term, which, in Figure 1, represents the vertical distance of
every point δ of function Hδ(δ) from Line 1 (tangent to Hδ(δ) at equilibrium δ∗) as long as this distance
is positive.
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Table 1. Parameters of the systems under consideration.

Parameter Value Units

ω0 2π50 rad/s
E′q 1.05 pu
Vs 1 pu
D 5 pu
Hi 3 s

X′dσ 0.2 pu
cml 0.7 -
ch 0.3 -

Thσ 7 s
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Figure 1. The geometry of Hδ(δ) explaining the distance measure application on RoA evaluation.

On the other hand, in order to determine δmax, the symmetric of the aforementioned measure
of the δ-part is set equal to zero as defined in (30). This is illustrated by Line 2, which passes from δ∗
and is tangent to function Hδ(δ). Line 2 clearly determines the range of δ where Hδ(δ) is convex as is
viewed from the closest to δ∗maximum δmax (also, one can see in Figure 1 that Line 3 have the same
properties as Line 2, which however determines a wider range and therefore it is not taken into account
since violates min|δ−δ∗|∞ {Mδ∗δ = 0}). It is noticed that the particular scheme is taken for δ∗ = π/6 and
the maximum is calculated via (39): δmax ' 2π/3.

Table 2 provides the maximum δmax and the bound cM for different equilibria δ∗. One can see
that as the equilibrium δ∗ increases from 0 to π/2, the maximum limit δmax decreases. Meanwhile,
at the marginal case of δ∗ = π/2, it is calculated δmax = π/2, meaning that the RoA, as expected,
is eliminated.
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Table 2. The calculated constants δmax and cM for different δ∗.

δ* δmax cM

0 1.48 π/2 463.87
π/12 1.41 π/2 290.75
π/6 1.33 π/2 159.10
π/4 1.25 π/2 70.31
π/3 1.17 π/2 21.52

5 π/12 1.08 π/2 2.70
π/2 π/2 0

Thus, for any possible equilibrium π/2 ≤ δ∗ ≤ π, instability is verified since RoA cannot be
defined, a fact that distinguishes the stable local equilibrium from the unstable one. It is also remarkable
that the δmax = π/2, which, in practice, is the static upper limit of δ, is very conservative as a dynamic
limit, since for all other angles between 0 to π/2, the maximum angle is δmax > π/2. Additionally, it
can be easily verified that the RoA, as calculated by the proposed metric, results in a range for the
angle close to the one calculated by the equal area criterion [31,35].

Figure 2 shows the RoA for system (32) and (33) for three different equilibria: δ∗ = π/6, δ∗ = π/4,
and δ∗ = π/3. As expected, the RoA decreases as δ∗ increases.Energies 2020, 13, x FOR PEER REVIEW 16 of 24 

 

 
Figure 2. RoA of the single generator infinite bus (SGIB) power system for * / 6δ π= , * / 4δ π= , 
and * / 3δ π= . 

The response of the system is given in Figures 3 and 4 for angle equilibrium δ π=* / 6 , as 
resulted by applying a power input = ,max0.5m mP P . The selected initial conditions, 0,oδ =  

0 2.54f HzΔ =  (corresponding to 0 16 /rad sωΔ = ), are marginally inside the RoA of Figure 2 in order 
to examine a difficult case. For the aforementioned stable initial conditions, the convergence of the 
system states at the stable equilibrium (36) is fully verified. 

To validate the good evaluation of the RoA, the dotted lines in Figures 3 and 4 show the 
unstable response of the system for initial values lying marginally outside of the RoA in a place very 
close to its closure at 0 00, 3.1f Hzδ = Δ =  (corresponding to ωΔ =0 19.5 /rad s ). As indicated in 
Figure 2 and confirmed by the simulations ,the stability margins of fΔ  are much more smaller than 
the angle δ  margins around of acceptable angle equilibriums *δ . 

 
Figure 3. Angle response of the SGIB power system. 

Figure 2. RoA of the single generator infinite bus (SGIB) power system for δ∗ = π/6, δ∗ = π/4, and
δ∗ = π/3.

The response of the system is given in Figures 3 and 4 for angle equilibrium δ∗ = π/6, as resulted
by applying a power input Pm = 0.5 Pm,max. The selected initial conditions, δo = 0, ∆ f0 = 2.54 Hz
(corresponding to ∆ω0 = 16 rad/s), are marginally inside the RoA of Figure 2 in order to examine a
difficult case. For the aforementioned stable initial conditions, the convergence of the system states at
the stable equilibrium (36) is fully verified.
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Figure 4. Response of the angular speed of the SGIB power system.

To validate the good evaluation of the RoA, the dotted lines in Figures 3 and 4 show the unstable
response of the system for initial values lying marginally outside of the RoA in a place very close to its
closure at δ0 = 0, ∆ f0 = 3.1 Hz (corresponding to ∆ω0 = 19.5 rad/s). As indicated in Figure 2 and
confirmed by the simulations, the stability margins of ∆ f are much more smaller than the angle δ
margins around of acceptable angle equilibriums δ∗.

5.2. Extending SGIB Power System by Considering Reheating Dynamics

In large-capacity turbine/generator systems, the need of increasing the efficiency of the Rankine
thermodynamic cycle requires to use multistage turbines with a high-pressure turbine part, intermediate
reheating, and a medium/low-pressure turbine part. Hence, the SGIB power system model that involves
an intermediate reheater and two-stage input power dynamics [31,34] becomes:

.
δ = ∆ω (41)
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∆
.
ω = −

D
2Hi

∆ω−
ω0

2Hi

E′qVs

X′dσ
sin δ+

ω0

2Hi
(Ph + cmlPm) (42)

.
Ph = −

1
Thσ

Ph +
ch

Thσ
Pm +

ch
Thσ

v (43)

where Ph stands for the mechanical power extracted from the high pressure turbine part, whereas the
original mechanical power input Pm is now split into cmlPm and chPm at the medium/low-pressure and
at the high-pressure turbine parts, respectively. The power distribution weighting coefficients cml and
ch are related by the expression cml + ch = 1, usually with values around cml = 0.7 and ch = 0.3. The
control input of the steam valve is denoted by v, while Thσ represents the total time constant of the
high-pressure turbine part.

As can been seen from (43), in steady state, Ph = chPm for v = 0. Therefore, defining ∆Ph =

Ph − chPm, for some piecewise constant Pm, model (41)–(43) takes the form

.
δ = ∆ω (44)

∆
.
ω = −

D
2Hi

∆ω−
ω0

2Hi

E′qVs

X′dσ
sin δ+

ω0

2Hi
∆Ph +

ω0

2Hi
Pm (45)

∆
.
Ph = −

1
Thσ

∆Ph +
ch

Thσ
v (46)

System (44)–(46) appears to have many similarities in the first two equations with the one
previously discussed in (32) and (33). Obviously, the additional third term in the right-hand side of (45)
inserts the influence of state ∆Ph in the swing equation, while (46) is independent from Equations (44)
and (45). This formulation is characterized as cascaded type between (44), (45), and (46), whereas it can
be directly comparable with (32) and (33). For example, for v = 0, it results ∆Ph = 0, and then (44) and
(45) are identical to (32) and (33). Therefore, the analysis presented in Section 5.1 also holds true for
this case.

Now, to proceed with the analysis of the entire model of (44)–(46), it is initially noted that the state

vector is augmented by ∆Ph as x =
[

x1
... x2

]T
=

[
δ ∆ω

... ∆Ph

]T
and the external input vector is

u =
[

Pm v
]T

. In accordance to the previous notation, the cascaded form of the system is written as

.
x1 = f1(x1, x2, Pm)
.
x2 = f2(x2, v)

(47)

with nonzero equilibriua in the domain −π < δ < π:

x∗ =
[

x∗1
... x∗2

]T
=

[
δ∗ ∆ω ∗

... ∆Ph∗

]T
=

[
sin−1

(Pm+chv
Pm,max

)
0 chv

]T
(48)

where the power input constraint now becomes: Pm + chv ≤ Pm,max.
Since, for system (47), all the initially considered properties in Section 2 are satisfied, it is again

followed the previously used procedure where the unforced system (47) or equivalently (44)–(46) is
first considered by setting the external input vector u equal to zero (i.e., Pm = 0, v = 0).

Then, making use of the cascaded form of the system and recalling from [9] Lemma 4.7, it is
sequentially concluded that for the unforced system (47) it holds:

1. The unforced subsystem given by
.
x1 = f1(x1, x2, 0) is l-ISS by considering x2 as external input

coming from the cascade subsystem. The proof is exactly the same as in the case of Section 5.1,
where now ∆Ph is considered instead of v and, the same Lyapunov storage function Ht is used.

2. The unforced cascade subsystem given by
.
x2 = f2(x2, 0) is immediately seen to be globally AS

since it is a linear time invariant.
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Therefore, in accordance to the aforementioned Lemma 4.7 of [9], the complete unforced system is
AS. Applying Corollary 1 for the forced system (44)–(46) with Pm , 0, v , 0 and with Pm piecewise
constant and v approaching a constant value as time passes, it is directly proven that system states
asymptotically converge to the equilibrium (48).

The response of the system is taken with initially constant Pm = 0.5 Pm,max and v = 0. In the
sequel, both of them follow the external input changes as shown in Figure 5, and are presented in
Figures 6–8. For comparison reasons, the initial conditions are taken as before: δo = 0, ∆ f0 = 2.54 Hz.Energies 2020, 13, x FOR PEER REVIEW 19 of 24 
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As expected, the initial system responses are identical to those of the previous case, while when v
and Pm changed to new constant values, a clear convergence to new steady states occur. As long as the
power input constraints, as imposed by (48), are satisfied and the system initial states are inside the
RoA, which is initially the same as the discussed in Section 5.1, the system asymptotically converges to
the unique stable equilibrium in −π < δ < π.
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Then, the time derivative of cH  results in 
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5.3. Inserting Negative ∆ω-Feedback Control Law

In this subsection, the proposed method is examined as a tool that enables to us study the different
controller impacts acting on the original open-loop system. To illustrate this issue, on the system
considered in the last subsection, the well-known [1,33], negative ∆ω-feedback control law in the steam
valve input is generalized into the form

v = −kh∆ω+ vh (49)

where kh > 0, is the arbitrary gain of the controller and vh is the new valve control external input.
Incorporating (49) into (46), the latter equation (46) is substituted by the following equation (50).

∆
.
Ph = −

1
Thσ

∆Ph −
ch

Thσ
kh∆ω+

ch
Thσ

vh (50)

Now, the system model is given by (44), (45), and (50).
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Examining once again firstly the resulting unforced system by putting Pm = 0, vh = 0, it is easier
now to prove AS for the controlled externally unforced system, by considering as Lyapunov storage
function the total natural energy based function of the system

Hc ≡ Ht + Hh ≡ Hω + Hδ + Hh =
1
2

∆ω2 +
ω0

2Hi

E′qVs

X′dσ
(1− cos δ) +

ω0

4Hi

Thσ
chkh

∆P2
h (51)

Then, the time derivative of Hc results in

.
Hc = −

D
2Hi

∆ω2
−
ω0

2Hi

1
chkh

∆Ph
2
≤ 0

which can be directly used in the LaSalle local invariant set theorem to complete the proof of AS for the
unforced nonlinear system (44), (45), and (50).

Then, Corollary 1 immediately proves that the complete enforced system states asymptotically
converge to the new equilibrium

x∗ =
[
δ∗ ∆ω ∗ ∆Ph∗

]T
=

[
sin−1

(Pm+chvh
Pm,max

)
0 chvh

]T
(52)

In Figures 9–11, the system response is presented under the negative ∆ω-feedback control action
implemented with gain value kh = 30. For comparison reasons, the Pm and vh follow the profiles
shown in Figure 5. By observing Figure 3 (or Figure 6) and Figure 9, one can clearly see that during
the initial transient, the angle response amplitudes are significantly reduced. Certainly, the absorbed
energy that enhances the angle response is appeared in the ∆Ph response shown in Figure 11. The
same observations can be made by comparing Figures 6–8 with Figures 9–11, respectively, for the cases
where Pm and vh change their values after the first transient.
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To further evaluate the influence of the ∆ω-feedback loop, a case with gain kh = 60 is considered.
As shown in Figure 12, the angle amplitude reduction is greater than the previous one shown in Figure 9,
taken with kh = 30. Therefore, the effectiveness of the inserted ∆ω-feedback in the high-pressure power
loop is confirmed since the angle dynamic performance has been essentially improved.



Energies 2020, 13, 92 21 of 24

Energies 2020, 13, x FOR PEER REVIEW 21 of 24 

 

In Figures 9–11, the system response is presented under the negative  -feedback control 

action implemented with gain value = 30hk . For comparison reasons, the mP  and hv  follow the 

profiles shown in Figure 5. By observing Figures 3 (or 6) and 9, one can clearly see that during the 

initial transient, the angle response amplitudes are significantly reduced. Certainly, the absorbed 

energy that enhances the angle response is appeared in the  hP  response shown in Figure 11. The 

same observations can be made by comparing Figures 6–8 with Figures 9–11, respectively, for the 

cases where mP  and hv  change their values after the first transient.  

To further evaluate the influence of the  -feedback loop, a case with gain = 60hk  is 

considered. As shown in Figure 12, the angle amplitude reduction is greater than the previous one 

shown in Figure 9, taken with = 30hk . Therefore, the effectiveness of the inserted  -feedback in 

the high-pressure power loop is confirmed since the angle dynamic performance has been 

essentially improved. 

 

Figure 9. Angle response of the SGIB with feedback. 

 

Figure 10. Response of the angular speed of the SGIB with feedback. Figure 10. Response of the angular speed of the SGIB with feedback.Energies 2020, 13, x FOR PEER REVIEW 22 of 24 

 

 

Figure 11. Response of the high-pressure part power deviation of the SGIB with feedback. 

 

Figure 12. Angle response of the SGIB with high feedback gain. 

It is pointed out that the aforementioned procedure and the integration of the system model of 

(44)–(46) or (44), (45), and (50) on the basis of the simpler model of (32) and (33) indicate how one can 

suitably build up more complex power system models in the frame of the proposed theoretical 

infrastructure. Thus, for example, a varying electromotive force can be considered by inserting its 

dynamical loop, or even more complex systems can be examined by taking into account 

interconnected multi-machine schemes [32,36]. Also systems, with power electronic conversion, 

such as high-voltage direct current (HVDC) transmission systems [37], or with advanced observer 

based designs [38], can be easily analyzed. Such studies are proposed for future research works, 

since the present paper mainly focus on the careful and rigorous establishment of a new theoretical 

analysis approach and the evaluation of the method as an effective tool for nonlinear and practical 

systems stability applications such the one needed in power systems. 

Furthermore, from the previous analysis, it is apparent that the RoA can also be determined in 

the cases indicated in the last two subsections by following exactly the same procedure as before and 

therefore, it is not repeated here. It is remarked that for system (44)–(46), when 0v as t→ → , 

the RoA shown in Figure 2 also holds for this case. In nonzero v  situations, the RoA is represented 

in 3D diagrams for different values of v . Analogous remarks for the RoA evaluation can be 

addressed also for systems (44), (45), and (50) where hv  now substitutes v  as input. In large scale 

power systems, it is obvious that the RoA is determined only algebraically through (31). 

Figure 11. Response of the high-pressure part power deviation of the SGIB with feedback.

Energies 2020, 13, x FOR PEER REVIEW 22 of 24 

 

 

Figure 11. Response of the high-pressure part power deviation of the SGIB with feedback. 

 

Figure 12. Angle response of the SGIB with high feedback gain. 

It is pointed out that the aforementioned procedure and the integration of the system model of 

(44)–(46) or (44), (45), and (50) on the basis of the simpler model of (32) and (33) indicate how one can 

suitably build up more complex power system models in the frame of the proposed theoretical 

infrastructure. Thus, for example, a varying electromotive force can be considered by inserting its 

dynamical loop, or even more complex systems can be examined by taking into account 

interconnected multi-machine schemes [32,36]. Also systems, with power electronic conversion, 

such as high-voltage direct current (HVDC) transmission systems [37], or with advanced observer 

based designs [38], can be easily analyzed. Such studies are proposed for future research works, 

since the present paper mainly focus on the careful and rigorous establishment of a new theoretical 

analysis approach and the evaluation of the method as an effective tool for nonlinear and practical 

systems stability applications such the one needed in power systems. 

Furthermore, from the previous analysis, it is apparent that the RoA can also be determined in 

the cases indicated in the last two subsections by following exactly the same procedure as before and 

therefore, it is not repeated here. It is remarked that for system (44)–(46), when 0v as t→ → , 

the RoA shown in Figure 2 also holds for this case. In nonzero v  situations, the RoA is represented 

in 3D diagrams for different values of v . Analogous remarks for the RoA evaluation can be 

addressed also for systems (44), (45), and (50) where hv  now substitutes v  as input. In large scale 

power systems, it is obvious that the RoA is determined only algebraically through (31). 

Figure 12. Angle response of the SGIB with high feedback gain.



Energies 2020, 13, 92 22 of 24

It is pointed out that the aforementioned procedure and the integration of the system model of
(44)–(46) or (44), (45), and (50) on the basis of the simpler model of (32) and (33) indicate how one
can suitably build up more complex power system models in the frame of the proposed theoretical
infrastructure. Thus, for example, a varying electromotive force can be considered by inserting its
dynamical loop, or even more complex systems can be examined by taking into account interconnected
multi-machine schemes [32,36]. Also systems, with power electronic conversion, such as high-voltage
direct current (HVDC) transmission systems [37], or with advanced observer based designs [38], can
be easily analyzed. Such studies are proposed for future research works, since the present paper
mainly focus on the careful and rigorous establishment of a new theoretical analysis approach and the
evaluation of the method as an effective tool for nonlinear and practical systems stability applications
such the one needed in power systems.

Furthermore, from the previous analysis, it is apparent that the RoA can also be determined in
the cases indicated in the last two subsections by following exactly the same procedure as before and
therefore, it is not repeated here. It is remarked that for system (44)–(46), when v→ 0 as t→∞ , the
RoA shown in Figure 2 also holds for this case. In nonzero v situations, the RoA is represented in 3D
diagrams for different values of v. Analogous remarks for the RoA evaluation can be addressed also
for systems (44), (45), and (50) where vh now substitutes v as input. In large scale power systems, it is
obvious that the RoA is determined only algebraically through (31).

6. Conclusions

A novel advanced Lyapunov-based, nonlinear analysis was deployed in this paper, which is
suitable for stability studies of externally enforced dynamical systems. The established theorems, and
especially the corollaries, provide an effective and easily implemented tool for system analysis with
main characteristics: The possibility of considering the natural system energy as a basic Lyapunov
storage function and the substantial simplification of the analysis of enforced systems to the well-known
analysis of unforced systems. Power systems are characteristic examples of this kind of nonlinear
systems where the proposed method is applied. Hence, by conducting a detailed stability analysis
in classical nonlinear models of power systems, it was fully validated that the method is quite easy
to be applied and to provide more insights into the system behavior, its limits, and its possibility for
enhancements through for example suitable control designs. In future works, all of these features are
expected to be further exploited and extended to more complex situations.
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