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Abstract: The usage of electric vehicle batteries to assist the main electric grid for the storage of energy
provided by intermittent sources should become an essential tool to increase the penetration of green
energies. However, this service induces additional usage on the cells and, therefore, could degrade
them further. Since degradation is path-dependent, it is of paramount importance to test the impact
of all the different grid applications on the batteries. In this work, we tested the additional usage
induced by using electric vehicle batteries for frequency regulation at moderate rates during rest or
charge and found no detrimental effect after around 2000 cycles on the cells.
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1. Introduction

The Hawai’i Clean Energy Initiative endeavors to gain total oil independence by 2045 [1] for both
electricity generation and ground transportation. On the grid side, the energy portfolio will likely
include many intermittent resources such as wind and solar and will thus require significant energy
storage. The electrification of ground transportation could kill two birds with one stone by providing
oil-free vehicles and offer energy storage when the vehicles are not in use. The latter is referred to as
vehicle-to-grid (V2G) and grid-to-vehicle (G2V).

With incentives in place [2,3], the number of electric vehicles (EVs) in Hawai’i and the rest of
the world continues to rise and will collectively constitute a significant distributed energy storage
reservoir for the grid. EV batteries could provide ancillary grid services such as operating reserves,
power curtailment, frequency regulation, and voltage smoothing by allowing the network to give
(G2V) and take (V2G) energy when necessary [4,5]. The benefits and drawbacks to both the vehicle
owner and the energy provider of these strategies have been well-documented [6–18], and the main
obstacle was identified to be the additional usage on the cells [19–21], among other challenges [22].
Few experimental studies [23–28] attempted to account for the change in battery degradation resulting
from the implementation of these strategies. To accurately account for the change in usage, the path
dependence of degradation needs to be considered in the estimation [29]. Each of these ancillary grid
services can affect degradation differently, and certain conditions can lead to accelerated capacity
loss [30–32]. This accelerated capacity loss, sometimes termed “rollover failure” [33], is a significant
safety concern to the battery industry. However, solutions do exist, and it was shown in a previous
work [31] that, although this second stage of degradation cannot be predicted from capacity nor
the resistance evolution, it might be predicted from the investigation of the voltage response using
electrochemical voltage spectroscopies [29,34,35].

This work is a follow-up of our previous studies [25,26,36,37], in which we purchased a batch
of commercial cells to test the impact of different aspects of EV battery usage. Part 1 was devoted to

Energies 2020, 13, 2494; doi:10.3390/en13102494 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-3228-1834
http://www.mdpi.com/1996-1073/13/10/2494?type=check_update&version=1
http://dx.doi.org/10.3390/en13102494
http://www.mdpi.com/journal/energies


Energies 2020, 13, 2494 2 of 11

the definition of the cell-to-cell variations of the full batch and the emulation of the electrochemical
behavior [36]. Part 2 focused on the capacity- and resistance-based analyses of cycle- and calendar-aging
experiments to assess the impact of bidirectional charging durability [25]. In Part 3, [26], the cycle and
calendar-aging degradation mechanisms were investigated using an incremental capacity analysis and
the features of interest (FOI) approach [38]. The analysis was used to quantify the different degradation
modes, determine the degradation path dependency, and challenge the Part 2 [25] capacity- and
resistance-based forecast. Finally, Part 4 was devoted to the study of the impact of different driving
cycles on the degradation mechanisms [37].

The next step of this EV battery degradation research, detailed here, is quantifying the consequences
of a distinct grid interaction: frequency response. This investigation elucidates the impact of frequency
regulation under several conditions, including a new approach of modulating the charge so that the
vehicle can perform grid applications without any additional battery usage.

2. Materials and Methods

In this work, a set of twelve Panasonic cylindrical 3350 mAh NCR 18650B batteries were selected
from a batch of 100. More details on these cylindrical 18650-size graphite/LiNixCo1-x-yAlyO2 (NCA)
cells, as well as the batch cell-to-cell variations analysis, can be found in previous works [25,26,36,37].
These cells are similar with the type of cells used in some EVs, such as the Tesla Model S [39,40].
The twelve cells chosen were within the outlier boundaries of the cell-to-cell variations distribution [36].
The experimental design for this study consisted of six test scenarios, with common conditioning and
reference performance tests (RPT) [41], replicated twice.

As described in previous publications [36,41], all cells were subjected to initial conditioning and
characterization tests before the beginning of the cycling experiment to verify the quality of cells.
Following the conditioning cycles at C/5 and C/2, and before the start of the duty cycle testing, an RPT
consisting of C/35, C/5, and C/3 full cycles was performed on all cells. The RPT procedure included
some remnant capacity measurements consisting of a C/50 top-off at the end of each regime, as well as
4-h rests before and after the remnant capacity measurements. The rate capability was calculated by
dividing the C/3 capacity by the C/25 capacity at each RPT. The resistance was derived from the ohmic
drop associated with the transition from a resting stage to a C/3 rate [41] 0.1 s after the application
of current.

Each duty cycle began with a C/2 full charge, as well as a constant voltage step with a 65-mA
limiting current followed by a 4-h rest step. The cells were then discharged by around 60% of their
typical initial capacity by applying the United States Advanced Battery Consortium (USABC) federal
urban driving schedule (FUDS) power profile [3] and scaled to the USABC goal of 400 W/kg. The FUDS
profile was shown to replicate driving cell degradation adequately [37]. This usage equated to about
three hours of driving per day or about 3 times the typical American roundtrip commute, according to
the U.S. Census Bureau. After the discharge, the cells were first rested for half an hour. Subsequently,
the cells were subjected to six different scenarios (Figure 1).

In the first scenario (NoFR), no frequency regulation was applied (Figure 1a,b), and the cells
rested for 4 h before being charged at a C/4 rate then by a constant-voltage step with a 65-mA limiting
current followed by a half-hour relaxation. In scenarios two to four, the cells were used for frequency
regulation for 2 h during rest (Figure 1, right column). The frequency regulation profile was extracted
from representative real usage data from a grid-scale battery energy storage system located in Hawi,
Hawai’i while in frequency regulation mode [42–44] (Figure S1). This frequency regulation profile
was normalized to three different maximum currents corresponding to C/5 (Figure 1c, frequency rest
(FRr)C/5), C/4 (Figure 1d, FRrC/4), and C/3 (Figure 1e, FRrC/3) rates, but the pulses variations and the
depth of the discharge range were kept constant to stay within cell and testing channel availability
constraints. The additional usage of the cells added 0.28 Ah (+8.6%), 0.35 Ah (+10.7%), and 0.47 Ah
(+14.3%) of exchanged capacity per cycle, respectively. After the 2-h frequency regulation, the cells
were rested for an additional one and a half hours, then charged at C/4 followed by a constant-voltage
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step with a 65-mA-limiting current and a half-hour rest step. In scenarios five and six, the cells were
subjected to the same frequency regulation profile, this time added to the C/4 charge instead of during
rest (Figure 1f,g). In these two cases, the cells rested for 4 h before being subjected to the amalgamation
of the frequency regulation profile and the C/4 charge for 2 h. The frequency regulation was only
normalized to two different maximum currents: C/5 (Figure 1f, frequency charge (FRc)C/5) and C/4
(Figure 1g, FRcC/4), so that the current never becomes negative (i.e., discharging) during charge. Since
the charge current was always positive while modulated, no additional capacity was exchanged for
scenarios five and six compared to not performing the frequency regulation at all. After the frequency
regulation, the cells were topped with a charged at C/4 followed by a constant-voltage step with a
65-mA-limiting current and a half-hour rest.
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Figure 1. (a) Full duty cycle and (b–g) charge scenarios for the six duty cycles. noFR: no frequency
regulation, FRc: frequency response during charge, and FRr: frequency regulation during rest.

These six duty cycles were typically repeated for four weeks; after which, an RPT was performed.
Cycling was interrupted when the cell exhibited a capacity loss of greater than 20% at C/35 for two
consecutive RPTs or when the total test time was approximately two years. All the tests were performed
in an Amerex IC500-R chamber set at 25 ◦C. The skin temperature of each of the cells was recorded
and was of 24.5 ± 0.5 ◦C in average. The cut-off voltages were set at 4.2 and 2.5 V. All the tests, except
the first RPTs for each cell, were performed by a 40-channel Arbin BT-5HC tester (College Station, TX,
USA). The first RPTs were performed using a Biologic BCS-815 battery cycler (Claix, France).

Computer simulations were performed using the mechanistic degradation model proposed in [45]
and the ‘alawa toolbox. The half-cell data was obtained from previous works [25,26,36,37].
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3. Results

Figure 2 plots the normalized capacity (top), normalized resistance (center), and rate capability
(bottom) versus exchanged capacity for the twelve cells used in this study. All the cells presented a
similar linear (R2 > 0.93) capacity loss for close to 5000 Ah exchanged (1500 equivalent full cycles) at a
rate of −0.0024% ± 0.0004% per Ah of exchanged capacity. All but one of the cells exchanged more than
6500 Ah (2000 equivalent full cycles), with capacity losses below 20%. This is a much smaller capacity
fade than in our previous work on full discharges [37] but comparable to the one using shallower
cycles [25,26]. The most apparent result was that the cells subjected to no frequency regulation (NoFR)
degraded slightly faster. These two cells exhibited two of the three highest capacity loss values of the
entire experiment: 35% and 17%. In addition, one of these cells (NoFR_1) experienced an accelerated
aging stage much earlier than all the others after an exchanged capacity of 4700 Ah and a normalized
capacity of 88%. In total, four cells reached a second aging stage defined with more than a 5% loss
within an exchanged capacity of 600 Ah. The other three cells that experienced accelerated aging
were the second NoFR cell and one each for the cells with the frequency regulation during charge
and rest (FRcC/4_1 and FRrC/5_2). These three cells entered the second stage after 5500 Ah of usage.
No abnormality in the testing protocol of the affected cells was noticed, and their initial cell-to-cell
variations were within the normal boundaries. It can also be observed from Figure 2 that neither
resistance nor rate capability could be used to predict the accelerated degradation. The resistance
increased linearly and doubled after around 3500 Ah exchanged. The rate capability slowly deceased,
also linearly, by less than 1%.
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Figure 2. Normalized capacity, resistance, and rate capability versus exchanged capacity.

As discussed in our previous work, capacity loss and degradation must be considered separately
as silent degradation (i.e., degradation that was not associated with capacity loss) can be present
and play a significant role in the apparition of the accelerated aging phase [29,45]. To assess cell
degradations, it was essential to quantify the degradation modes, the loss of lithium inventory,
the loss of active material, and the kinetic degradation (RDF) on the positive (PE) and negative
(NE) electrodes independently. This separation of the degradation modes can be performed using
electrochemical voltage spectroscopies [46], incremental capacity (IC) [35,47], and differential voltage
(DV) [34,48,49]. In our previous work on these cells [26,37], we used IC curves to quantify the loss of
lithium inventory (LLI,) the loss of active material on the negative electrode (LAMPE), and negative
kinetic degradation (RDFNE) directly from the FOIs but had to quantify the LAMNE manually based
on the other observations. In this analysis, the technique was refined, and the LAMNE was quantified
from the FOI on the DV curves when possible. Figure 3 presents an example of the IC and DV curves
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for a representative cell with the different FOIs noted. The response for all the cells is remarkably
similar and is presented in Figures S2 and S3.
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Just as in our previous work, and based on the degradation map in [29,45] and the evolution of the
experimental curves, the capacity loss was associated entirely to LLI because the high and low-voltage
peaks never disappeared completely. Moreover, the intensity of the minimum at 4 V is proportional to
the LAMPE, and the intensity of the minimum at 3.75 V is proportional to the RDFNE. Readers are
referred to these publications for more details. To quantify the LAMNE automatically, the distance
between two graphitic peaks was used as a proxy to the LAMNE, as proposed in [48,50]. The full
degradation map for the DV curves showing that the distance between the two peaks varies only for
the LAMNE is presented in Figure S4.

Figure 4 presents the evolution of the different FOIs upon aging. Figure 4a shows the evolution of
FOI1; the area between 4 and 4.05 V was used in lieu of the intensity at 4 V to minimize the impact of
noise on the voltage data. All the cells followed a similar deviation to the pristine behavior, with a
decrease comprised between 5% and 6%. In regards to FOI2, as already observed in our previous
work [29,45], the evolution of the intensity saturates after the local minimum completely disappeared.
This saturation prevented the tracking of further intensity rise and the position of the minimum,
(Figure 4c). The variation in the intensity of the minimum is consistent with what was observed in our
previous work, but its voltage seems to be rather constant for all cells, which is different from what
was found previously [29,45], for some of the tested conditions. Finally, FOI3 (Figure 4d) decreased
linearly by between 6% and 10% before the 4000 Ah mark. After that, the peaks disappeared on the DV
curves, and the direct estimator was not valid anymore. This change was likely induced by the RDFNE

increase (Figure S4).
The quantification of the degradation modes from the FOI variations can be done using the

mechanistic modeling approach we pioneered, along with other groups, in the mid-2000s [45,48,51,52].
The approach has been heavily used in recent years within experimental studies using electrochemical
voltage spectroscopies (EVS) [46,53], and it has been well-validated [54–56] using independent
experimental studies. In the approach, half-cell data from each electrode is matched to emulate the
electrochemical behavior of the full cells. Once the initial match is satisfactory, the electrode can
be scaled or translated individually to replicate the effect of the different degradation modes [45].
The electrode matching and the voltage changes associated with degradation for these cells have
already been heavily discussed in the literature [26,36,37] and will not be repeated here. As in
our previous work [26,37], the theoretical variations for the FOIs for each individual degradation
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mode was computed and compared to the experimental variations to decipher the extent of each
degradation mode.Energies 2020, 10, x FOR PEER REVIEW  6 of 13 
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4. Discussion

Based on Figure 4 and the proportionality between the FOI variations and the main degradation
modes, the degradation of the cell up to 3000 Ah can be automatically deciphered using the same
strategy that we employed in our previous works [29,45] and the fact that the cells had minimal
initial cell-to-cell variations [36]. The results of the analysis are presented in Figure 5. The spider
plot in Figure 5a showcases the results of the automatic quantification of the four main degradation
modes (LLI, LAMPE, LAMNE, and RDFNE). After 3000 Ah, the cells lost between 7% and 8% of their
lithium, 5% and 8% of the NE, and 3% and 4.5% of their PE and their kinetics degraded by a factor
comprised between 7 and 8. Overall, as already observable from Figure S2, all the cells degraded
in a similar fashion, and no apparent differences were observed between the cells that reached the
second stage earlier than the others. Figure 5b displays the same data on a bar plot to elucidate the
impact, if any, of the duty cycles. The plotted values are the average between the two cells tested for
each condition, and the error bars represent the spread between the individual values. Comparing the
six cells that undertook the frequency regulation at different rates during rest (3 FRr x2), the spread
of values was similar or smaller than the deviations between cells undergoing the same duty cycles.
This is true for the other duty cycles as well. Taking into account the fact that cells under the same
duty cycle are well-known to degrade at slightly different paces [57–60], the differences observed in
this work are not big enough to conclude that six duty cycles tested in this work induced different
degradation on the cells. The spider plot can also be compared to the ones in our previous work
that tested the cells under different duty cycles [29,45]. In [26], we diagnosed the cells after a 5%
capacity loss, which corresponded to 1500 Ah exchanged in our study. For the duty cycles in this
work, we observed a degradation similar to one of the cells that did not experience any constant power
(V2G). This outcome was expected, since the duty cycle resembled the NoFR duty cycle, with just a
different driving cycle (RD1 in [37]), which we showed had a similar impact as the FUDS cycle used in
this work [37]. In [37], where they cycled the cells in the full state of charge (SOC) range, the spider
plot compared the degradation at the onset of stage 2 around the same capacity loss (except for RD2
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in [37]). All degradation modes are in the same order of magnitude except LAMNE, which was much
more pronounced when the full SOC range was used.Energies 2020, 10, x FOR PEER REVIEW  7 of 13 
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Figure 5. (a) Spider plots of the four prominent degradation modes for all the cells at 3000 Ah
(~8% capacity loss) and (b) bar plot showcasing the impact of the duty cycles. The error bar represents
the spread between the two tested cells for each duty cycle, not a distribution of values. LLI: loss of
lithium inventory, LAM: loss of active material on the positive (PE) and negative (NE) electrodes,
and RDFNE: rate degradation factor on the NE.

Figure 6a presents a validation of the automatic diagnosis performed for Figure 5 for cell NoFR_1.
This is important to verify that the automatic quantification of the degradation was correct. If accurate,
the changes induced on the electrode half-cell matching by the quantified amount of LLI, LAMs,
and RDF should replicate the observed voltage changes between the initial and the aged experimental
voltage response. The simulated voltage was nearly overlapping to the experimental one, and this
suggests that our automatic quantification of the degradation mode was appropriate, as any other
combination of parameters would have led to a different voltage curve. The validation was verified
for all the other cells. Since the simulated response was analogous to the experimental one [46],
the diagnosis was validated. Hence, our automatic FOI-based methodology managed to perform the
diagnosis automatically.

The next point to tackle is the observed differences at which the second stage is appearing.
In previous works on similar cells, the second stage apparition was proved to be linked to the
LAMNE [37]. It was shown that when the LAMNE reached a threshold, decipherable from the initial
conditions and the LLI and LAMPE, lithium plating began. Since the LLI and LAMPE were quantifiable
for the entire experiment, the predicted LAMNE necessary for generalized plating to occur was
calculated to be around 20% for cell NoFR_1 when the second stage started. However, quantification
showed the LAMNE around 11%. This value was lower than the amount of LLI and in good agreement
with an extrapolation of the linear trend of LAMNE from the early cycles. The same trend was verified
for the other cells that showcased the second stage. Therefore, and unlike our previous study, the second
stage of degradation was not induced by a generalized LAMNE. It was also not induced by the LAMPE.
This rule out any electrode-wide source for the second stage. A possible explanation is that it might
still happen locally because of inhomogeneities in the electrode degradation [61]. The origin of the
apparent RDF increase is still unclear. In our approach, it was treated as a kinetic limitation, but,
in light of recent literature [62], part of it could also be associated with inhomogeneities in the electrode
degradation that could have led to localized plating. This concept is currently under investigation in
our laboratory and will be reported in future works.
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5. Conclusions

The main takeaway from our study was that some frequency regulation V2G usage at moderate
rates (from C/5 to C/3 as a maximum current) did not accelerate the cell degradation despite a close
to 15% additional usage. In addition, there was no noticeable difference between performing this
ancillary service during rest or charge or at maximum current fluctuations up to C/3 during rest
and C/4 during charge. These results are extremely positive for the possible application of V2G/G2V
strategies. However, it must be noted that our results hold for these specific cells and the duty cycle
tested. More research is necessary to generalize the results. Most notably, to test a wide variety of
frequency regulation cycles and driving cycles on different cell chemistries. We already verified the
results with the same duty cycles on a different batch of commercial cells based on graphite and a
blend of lithium cobalt oxide and nickel cobalt aluminum oxide.

Due to the lack of differences in the degradation between duty cycles, the benefits of modulating
the charge to eliminate the additional usage on the cells could not be verified. Experiments on other
chemistries with more aggressive usages will be launched to test the hypothesis further.

As for the diagnosis for the degradation, a new approach of coupling IC and DV analyses yielded
four indicators for automatic diagnosis. This methodology will allow faster diagnosis and bolsters the
value of the FOI approach for battery management system implementation. However, our study also
showed that, under some conditions—in our case, the apparent kinetic limitations—some of the FOI
may become ineffective with time. Therefore, proper validation using full fits and a sensibility analysis
to check for the range of efficacy of chosen FOIs is still essential.

Finally, some cells showcased the second stage of aging, and we were not able to predict it from
the voltage variations. This suggested that it was not induced by a widespread degradation of the
electrodes but was more likely because of localized effects. The cells that did not perform any frequency
regulations seemed to be the most affected, but those results need to be moderated by the fact that the
differences were probably within what to expect between cells performing the same duty cycles.
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