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Abstract: In this work, the possibilistic fuzzy C-means clustering artificial bee colony support vector
machine (PFCM-ABC-SVM) method is proposed and applied for the fault diagnosis of a polymer
electrolyte membrane (PEM) fuel cell system. The innovation of this method is that it can filter data
with Gaussian noise and diagnose faults under dynamic conditions, and the amplitude of characteristic
parameters is reduced to ±10%. Under dynamic conditions with Gaussian noise, the faults of the
PEM fuel cell system are simulated and the original dataset is established. The possibilistic fuzzy
C-means (PFCM) algorithm is used to filter samples with membership and typicality less than 90%
and to optimize the original dataset. The artificial bee colony (ABC) algorithm is used to optimize
the penalty factor C and kernel function parameter g. Finally, the optimized support vector machine
(SVM) model is used to diagnose the faults of the PEM fuel cell system. To illustrate the results of the
fault diagnosis, a nonlinear PEM fuel cell simulator model which has been presented in the literature
is used. In addition, the PFCM-ABC-SVM method is compared with other methods. The result shows
that the method can diagnose faults in a PEM fuel cell system effectively and the accuracy of the
testing set sample is up to 98.51%. When solving small-sized, nonlinear, high-dimensional problems,
the PFCM-ABC-SVM method can improve the accuracy of fault diagnosis.

Keywords: fault diagnosis; PEM fuel cell system; PFCM-ABC-SVM

1. Introduction

Hydrogen energy is one of the most important green energy sources. The polymer electrolyte
membrane (PEM) fuel cell system can directly convert hydrogen energy into electrical energy through
an electrochemical reaction and generate water and heat with minimal pollution [1]. The PEM fuel cell
system is a multi-input and-output nonlinear system, and there are some auxiliary elements such as
compressors, supply manifolds, return manifolds, compressors, valves, etc. For this reason, the PEM
fuel cell system is vulnerable to different sets of faults that can imply its temporal or permanent
damage [2]. Therefore, fault diagnosis methods are important to reduce this vulnerability as much
as possible.

Considering whether the model is necessary, the diagnosis methods can be classified into two general
types, i.e., model- and non-model-based methods [3,4]. The model-based method needs to develop a
model to simulate the behavior of the monitored system [4] and, generally, it is performed mostly via
residual evaluation, followed by a residual inference for possible fault occurrence detection [5]. Escobet
and Feroldi et al. [6,7] proposed a model-based fault diagnosis methodology based on the relative fault
sensitivity, and the diagnosis methodology correctly diagnosed the simulated faults in contrast with
other methodologies using binary signature matrix of analytical residuals and faults. Rosich et al. [8]
designed a subset of consistency relations and residual generators for a fuel cell system. Lira et al. [9]

Energies 2020, 13, 2531; doi:10.3390/en13102531 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/13/10/2531?type=check_update&version=1
http://dx.doi.org/10.3390/en13102531
http://www.mdpi.com/journal/energies


Energies 2020, 13, 2531 2 of 18

proposed a linear parameter varying (LPV) model-based fault diagnosis methodology based on the
relative fault sensitivity. Laghrouche et al. [10] presented an observer-based fault reconstruction
method for PEM fuel cells and the method extended the results of a class of nonlinear uncertain
systems with Lipschitz nonlinearities. Damiano et al. [11] proposed the Takagi–Sugeno (TS) interval
observers to solve the problem of robust fault diagnosis of PEM fuel cells. Kamal et al. [12] proposed a
model-based fault detection and isolation (FDI) and found that the residual was sensitive to the fault.
Steiner et al. [13] proposed the model-based diagnosis method which was based on a comparison
between measured and calculated voltages and pressure drops by an Elman neural network.

A non-model-based method can detect and identify the fault through human knowledge or
qualitative reasoning techniques based on a set of input and output data [3,4]. Three types of
non-model-based methods include the artificial intelligence method, the statistical method, and the
signal processing method. Antoni et al. [14] proposed a fault diagnosis methodology termed visual
block fuzzy inductive reasoning and applied it to a fuel cell system. Shao et al. [15] proposed the artificial
neural network (ANN) ensemble method based on back-propagating ANN and the Lagrange multiplier
method to improve the stability and reliability of the PEM fuel cell systems. Damour et al. [16] proposed
a signal-based diagnosis method, based on empirical mode decomposition (EMD). The method did
not require any excitation signal or stabilization period as compared with the EIS-based method.
Zheng et al. [17] used the electrochemical impedance spectroscopy (EIS) as a basis tool and proposed
the double fuzzy method consisting of fuzzy clustering and fuzzy logic to mine diagnostic rules
from the experimental data automatically. Ibrahim et al. [18] proposed a diagnosis method using
signal-based pattern recognition. All information needed to locate the faults was drawn from the
recorded fuel cell output voltage, since certain phenomena leave characteristic patterns in the voltage
signal. Pahon et al. [19] used the wavelet transform to identify different patterns or fault signatures
and proposed the signal-based pattern recognition approach. Mohammadi et al. [20] used a two-layer
feed-forward artificial neural network and developed a reliable fault identification and localization
tool for a proton exchange membrane fuel cell. Silva et al. [21] proposed a methodology based on
adaptive neuro-fuzzy inference systems (ANFIS) which used, as input, the measures of the fuel
cell output voltage during operation. Li et al. [22] proposed a nonlinear multivariable model of
a PEM fuel cell system based on support vector regression (SVR) and used an effective informed
adaptive particle swarm optimization algorithm to tune the hyper-parameters of the support vector
regression (SVR) model. Pei P. et al. [23] reviewed the effect variables of pressure drop and the
diagnosis method based on pressure drop was considered to be an online water fault diagnosis.
Zhao, [24] proposed a fault diagnosis method based on multi-sensor signals and principle component
analysis to improve the fuel cell system performance. Huang, [25] proposed a diagnostic method
combining C4.5-based decision tree with a fault diagnosis expert system to solve the fault diagnosis of
a fuel cell engine. Liu, [26] proposed a fault diagnosis method which combined an extreme learning
machine and the Dempster–Shafer evidence theory to diagnose the faults in a PEM fuel cell system.
Bougatef [27] designed the unknown input observer for a delayed LPV model to deal with the fault
estimation of actuator fault for a PEM fuel cell. In addition, Wang [28,29] developed a composite
support material which possessed intrinsic protonic conductivity and improved electronic conductivity
together with the optimization of the microstructure structures. Wilberforce [30–33] researched the
effect of humidification of reactive gases and bipolar plate geometry design on the performance of a
proton exchange membrane fuel cell.

The PEM fuel cell system is a multi-input and multi-output nonlinear system. The fuel cell stack
needs to be integrated with several auxiliary components to form a complete PEM fuel cell system.
Therefore, the PEM fuel cell system contains the fuel cell stack, the reactant flow subsystem, heat
and temperature subsystem, water management subsystem, power management system and the fuel
processor subsystem. The reactant flow subsystem contains the hydrogen supply subsystem and the
air supply subsystem. When the source of actual noise is multiplex, Gaussian noise can simulate
actual noise well. The probability density of Gaussian noise follows the standard normal distribution.
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In this paper, Gaussian noise is used to simulate the interference in the PEM fuel cell model, and the
fault diagnosis effect of the method can also be verified. In this paper, when the variance of Gaussian
noise is 1.0, 0.5, 0.2, 0.1 respectively, the amplitude of characteristic parameters is reduced to ±10%.
By simulating the fault scenarios of the PEM fuel cell system, the original dataset is established with
eight diagnosis variables. The possibilistic fuzzy C-means clustering artificial bee colony support
vector machine (PFCM-ABC-SVM) method is used to diagnose the faults in the PEM fuel cell system.

2. The Relevant Theory of the PFCM-ABC-SVM Method

2.1. PFCM Algorithm

In the fuzzy C-means clustering (FCM) algorithm, the membership value of each sample point
must be 1.0, therefore, it is sensitive to noise points and the classification result is not accurate. The PCM
algorithm is sensitive to the initial cluster center, and only when the cluster centers are the same can
the global optimal solution be obtained, which causes cluster consistency problems [34]. To solve the
shortcomings of the above algorithm, Pal proposed the possibilistic fuzzy C-means (PFCM) algorithm
based on the above algorithm [35,36]. The PFCM algorithm overcomes the sensitivity of the FCM
algorithm to noise and the sensitivity of the PCM algorithm to initial clustering centers. Additionally,
the PFCM algorithm improves the accuracy of classification results. The objective function of the
PFCM algorithm is as follows:

J(U, T, V; X) =
c∑

i = 1

n∑
j = 1

(aum
ij + btp

ij)d
2
i j +

c∑
i = 1

ηi

n∑
j = 1

(1− ti j)

p

(1)

where 1 ≤ i ≤ c, 1 ≤ j ≤ n;
c∑

i = 1
ui j = 1; a and b define the relative importance of fuzzy membership and

typicality values in the objective function, a > 0, b > 0; m and p are the fuzzy parameters; di j = ‖x j − vi‖

is the Euclidean distance from sample point x j to vi; c is the number of cluster centers; and n is the
number of sample points.

The penalty coefficient of the PFCM algorithm is as follows:

ηi = K

n∑
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(aum
ij + btp

ij)d
2
i j
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(aum
ij + btp

ij)

, K > 0 (2)

where ηi is the penalty coefficient; generally, K = 1, from the optimal solution of Equation (1), get the
following Equations (3)–(5):

ui j =
1

c∑
k = 1

(
di j
dkj

)
2/(m−1)

(3)
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1 + (
bd2

i j
ηi
)

1/(p−1)
(4)

vi =
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j = 1

(aum
ij + btp

ij)x j

n∑
j = 1

(aum
ij + btp

ij)

(5)

The steps of the PFCM algorithm are as follows:
Step 1 Set the fuzzy parameters, set the terminating threshold ε, set the maximum number

of iterations L, set the number of initial iterations l, initialize the cluster center V(0), initialize the
membership matrix U(0), and initialize the typicality matrix T(0);



Energies 2020, 13, 2531 4 of 18

Step 2 According to Formula (2), calculate the penalty coefficient ηi;
Step 3 According to Formula (3), calculate and update the membership matrix u(l+1)

i j ;

u(l+1)
i j =

1

c∑
k = 1

(
d(l+1)

i j

d(l+1)
kj

)

2/(m−1)
(6)

Step 4 According to Formula (4), calculate and update the typicality matrix t(l+1)
i j ;

t(l+1)
i j =

1

1 + (
b(d(l+1)

i j )
2

ηi
)

1/(p−1)
(7)

Step 5 According to Formula (5), calculate and update the cluster center matrix v(l+1)
i ;

v(l+1)
i =

n∑
j = 1

(a(u(l+1)
i j )

m
+ (bt(l+1)

i j )
p
)x j

n∑
j = 1

[a(u(l+1)
i j )

m
+ b(t(l+1)

i j )
p
]

(8)

Step 6 If ‖V(l+1)
−Vl
‖ < ε or L < l, output the cluster center, the membership matrix and the

typicality matrix; if not, make l = l + 1, skip to Step 2. The flow chart of the PFCM algorithm is shown
in Figure 1.Energies 2020, 13, x FOR PEER REVIEW 5 of 20 
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2.2. Multi-Parameter Optimization of Support Vector Machine(SVM)

Support Vector Machine (SVM) is a new general machine learning method presented by Vapnik [37].
Traditional statistical research is in the case of sufficient samples or assuming an infinite number of
samples, but in actual problems, there are few samples. According to the principle of structural risk
minimization and the Vapnik-Chervonenkis(VC) dimension theory, SVM can combine the complexity
of the model with the learning ability, find the optimal solution, and obtain better generalization ability.
The classification theory of SVM is developed from the problem of linear separable binary classification.
In the process of classification, the optimal classification hyperplane is constructed. The training
samples are classified correctly according to the principle of least empirical risk, and the maximum
classification interval is required to ensure the minimum confidence range. It has advantages in
solving small-sized, nonlinear, high-dimensional problems [38–40]. The objective function of the SVM
optimization problem is as follows:

max L(α) =
n∑

i = 1
αi −

1
2

n∑
i, j = n

αiα jyiy jK(xi, x j)

N∑
i = 1

αiyi = 0 0 ≤ αi ≤ Ci = 1, 2 · · ·N
(9)

where ∀xi, x j ∈ Rn; αi is the Lagrange multiplier; C is the penalty factor; and K(xi, x j) is the kernel
function which can transform a low-dimensional vector into a high-dimensional inner product.

The corresponding optimal classification function is as follows:

f (x) = sgn[
n∑

i = 1

α∗i yiK(xi, x j) + b∗] (10)

where α∗ is the optimal solution; b∗ = yi −
N∑

i = 1
α∗i yiK(xi, x j).

In the above optimization problem, it is necessary to determine the kernel function K(xi, x j).
There are four kinds of kernel functions commonly used in SVM as follows: linear kernel function
K(xi, yi) = xi · yi; polynomial kernel function K(xi, yi) = [(xi · yi) + b]d; hyperbolic tangent kernels
function K(xi, yi) = tanh[v(xi · yi) + c]; and radial basis kernel function K(xi, yi) = exp(−g‖xi − yi‖

2),
where g is the kernel parameter.

Many studies show that radial basis kernel function is a better choice when there is not enough
prior knowledge [41]. The radial basis kernel function is used as the kernel function in SVM. After that,
the kernel function parameter g and the penalty factor C should be selected which are significant to
establish the optimized SVM model.

The artificial bee colony (ABC) algorithm is an intelligent optimization algorithm inspired by
biological behaviors proposed by Karaboga [42,43]. It mainly solves practical problems by simulating
bees collecting honey. The ABC algorithm finds the global optimal solution through the local optimization
behavior of bees. It is often used to solve multi-parameter optimization problems [44]. In the paper,
the ABC algorithm is used to obtain the optimal penalty factor C and kernel parameter g. Compared
with the genetic algorithm (GA), and particle swarm optimization algorithm (PSO), the ABC algorithm
has the advantages of strong global optimization ability and few control parameters.

The multi-parameter optimization of SVM is as follows:
Step 1 Initialize the parameters in the ABC algorithm and SVM, i.e., the number of bee colonies,

the number of honey sources, the maximum search number of honey sources (Limit), the current search
number of honey sources, the maximum number of iterations (MaxIter), the search range of penalty
factors C, and the search range of kernel function parameter g.
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Step 2 Select the fitness function in the ABC algorithm. The purpose of optimizing the SVM
parameters is to improve the accuracy of fault classification. The solution of the optimization problem
can be regarded as a process for the bee to find the honey source. The fitness function is as follows:

f itnessi =

 1
1+ fi

( fi ≥ 0)

1 +
∣∣∣ fi∣∣∣ ( fi < 0)

(11)

where, f itnessi is the fitness value of the i-th parameter, and fi is the objective function value of the i-th
honey source.

Step 3 Employed bees search for the neighborhood of the current honey source according to
Formula (12) and calculate the fitness of the new honey source according to Formula (11). If the
fitness value of the new honey source is better than that of the original honey source, the new honey
source position replaces the original honey source position, otherwise the original honey source
remains unchanged.

new_xid = xid + Ri j(xid − xkd) (12)

where, new_xid is the value of the d-th dimension in the i-th new honey source; xid is the value of the
d-th dimension in the i-th original honey source; R is a random number in [–1, 1]; and k is any honey
source except the i-th honey source.

Step 4 After the employed bees complete the global search, onlooker bees select the honey source
according to Formula (13), and then search for the neighborhood to get the new honey source according
to Formula (12). If the fitness value of the new honey source is better than that of the original honey
source, the new honey source position replaces the original honey source position, otherwise the
original honey source remains unchanged.

Pi =
f itnessi

N∑
n = 1

f itnessn

(13)

where, Pi is the probability that the i-th honey source is selected, f itnessi is the fitness value of the i-th
honey source, and N is the total number of honey sources.

Step 5 Judge whether the current search number of honey sources is bigger than the maximum
search number of honey sources. If it is bigger, generate a new honey source according to Formula (14).

xi j = minxi j + Ri j(maxxi j −minxi j) (14)

where, xi j is the value of the j-th dimension of the i-th honey source, j ∈ {1, 2}.
Step 6 Record the current optimal honey source and judge whether the termination condition is

met. If the termination condition is met, skip to Step 7, otherwise skip to Step 3.
Step 7 Get the global optimal honey sources, which are the penalty factor C and kernel parameter

g, to establish the optimized SVM model.

3. Fault Simulation of the PEM Fuel Cell System

The PEM fuel cell system can directly convert chemical energy into electricity through
electrochemical reaction and produce water and heat at the same time. The PEM fuel cell simulator
model uses controller strategies and nonlinear models presented by Pukrushpan et al. [1]. It is assumed
that the system is in a constant temperature state, ignoring the influence of the double charge layer,
and it is regarded as a rapid dynamic behavior near the electrode/electrolyte. Parameters commonly
used in the PEM fuel cell simulator model are described in Table 1.
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Table 1. Parameters commonly used in the polymer electrolyte membrane (PEM) fuel cell simulator model.

Symbol Parameter Value

n Number of cells in stack 381
A f c Fuel cell active area 280 cm2

dc Compressor diameter 0.2286 m
Jcp Compressor and motor inertia 5 × 10−5 kgm2

Vca Cathode volume 0.01 m3

Vsm Supply manifold volume 0.02 m3

Vrm Return manifold volume 0.005 m3

ksm,out Supply manifold outlet orifice constant 0.36293 × 10−5 kg/(s·Pa)
kca,out Cathode outlet orifice constant 0.21773 × 10−5 kg/(s·Pa)

kv Motor electric constant 0.0153 V/(rad/s)
kt Motor torque constant 0.0225 N·m/A

Rcm Compressor motor resistance 1.2 Ω

The PEM fuel cell simulator model was established by Pukrushpan, J.T. in [1] and some parameters
of the PEM fuel cell simulator model are from [45–47] based on actual product parameters. The PEM
fuel cell simulator model is widely used for the fault diagnosis of the PEM fuel cell system [7,8,12,14],
and represents the75kW fuel cell system with 381 cells. The PEM fuel cell simulator model includes
the fuel cell stack model, the compressor model, the supply manifold model, the return manifold
model, the air cooler model, and the humidifier model. The PEM fuel cell system block diagram is
shown in Figure 2. The five faults are partially quoted from the literature [1,14] and the amplitude
of characteristic parameters is reduced to ±10%. The faults in the PEM fuel cell simulator model are
described in Table 2.Energies 2020, 13, x FOR PEER REVIEW 9 of 20 
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Figure 2. The PEM fuel cell system block diagram [1].

Table 2. Faults in the PEM fuel cell simulator model.

Fault ID Fault Description Type Magnitude

Fault0 Normal state Parametric unchanged 0

Fault1 There is suddenly an increase of friction in the
mechanical component part of the compressor Parametric abrupt 10% of increment

Fault2 The compressor motor suffers an overheating Parametric abrupt 10% of increment

Fault3
The fluid resistance increases due to water

blocking the channels or flooding in the
diffusion layer

Parametric abrupt 10% of reduction of the water flow

Fault4 Air leak in the air supply manifold Parametric abrupt 10% of reduction of the air flow
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The characteristic parameters remain unchanged and Fault0 is in normal state. Equations (15)–(21) [1]
are used to simulate Fault1–Fault4. According to the thermodynamic formula, the compressor torque
τcp is expressed as:

τcp =
Cp

ωcp

Tatm

ηcp


(

psm

patm

) γ−1
γ

− 1

Wcp (15)

where, τcp is the torque needed to drive the compressor, Cp is the specific heat capacity of air, ωcp is
the compressor speed, ηcp is the compressor efficiency, psm is the supply manifold pressure, patm is
the pressure of the air, Tatm is the temperature of the air, γ is the ratio of the specific heats of the air,
and Wcp is the air mass flow of compressor.

A lumped rotational parameter model with inertia is used to represent the compressor speed:

Jcp
dωcp

dt
= (τcm − τcp) (16)

where Jcp is the combined inertia of the compressor and the motor, and τcm is the compressor motor
torque input.

The Fault1 state is simulated with the increment ∆kv in the compressor constant kv. The Fault2
state is simulated with the increment ∆Rcm in the compressor motor resistance Rcm:

τcm =
ηcmkt

(Rcm + ∆Rcm)

[
vcm − (kv + ∆kv)ωcp

]
(17)

where, ηcm is the motor mechanical efficiency, kt is the motor torque constant, Rcm is the compressor
motor resistance, ∆Rcm is the increment in the compressor motor resistance, kv is the motor electric
constant, and ∆kv is the increment in the motor electric constant.

The maximum mass of the vapor that the gas can hold is calculated from the vapor
saturation pressure:

mv,max,ca =
psatVca

RvTst
(18)

where, mv,max,ca is the maximum mass of the vapor, psat is the saturation pressure of the vapor, Rv is the
gas constant of the vapor, and Tst is the temperature of the stack. If mw,ca ≤ mv,max,ca, so mv,ca = mw,ca,
ml,ca = 0; if mw,ca > mv,max,ca,so mv,ca = mv,max,ca,ml,ca = mw,ca −mv,max,ca.

The total cathode pressure is the sum of oxygen, nitrogen, and vapor partial pressure:

Pca = PO2,ca + PN2,ca + Pv,ca =
mO2,caRO2Tst

Vca
+

mN2,caRN2Tst

Vca
+

mv,caRvTst

Vca
(19)

where Pca is the cathode pressure; Vca is the cathode volume; PO2,ca, PN2,ca and Pv,ca are the partial
pressure of oxygen, nitrogen, and vapor; RO2 , RN2 and Rv are the gas constants of oxygen, nitrogen,
and vapor.

Fault3 is simulated with the increment ∆kca,out in the cathode outlet orifice constant kca,out:

Wca,out = (kca,out + ∆kca,out)(pca − prm) (20)

where, ∆kca,out is the increment in the cathode outlet orifice constant, kca,out is the cathode outlet orifice
constant, Wca,out is the air flow in the cathode outlet, pca is the cathode pressure, and prm is the return
manifold pressure.

Fault 4 is simulated with the increment ∆ksm,out in the supply manifold outlet orifice constant ksm,out:

Wsm,out = (ksm,out + ∆ksm,out)(psm − pca) (21)



Energies 2020, 13, 2531 9 of 18

where, Wsm,out is the outlet mass flow, ∆ksm,out is the increment in the supply manifold outlet orifice
constant, and ksm,out is the supply manifold outlet orifice constant.

4. Fault Diagnosis of the PEM Fuel Cell System

In this work, the Gaussian noise with variance of 0.1, 0.2, 0.5, and 1.0 are added to the PEM fuel
cell simulator model, respectively. It is difficult to distinguish the Fault 0 to Fault 4 states in Table 2.
Signals in a fault state are coupled with signals in other faults. Therefore, the traditional methods
cannot diagnose the fault of the PEM fuel cell system effectively.

The Fault 0–4 states are simulated using the PEM fuel cell simulator model in the dynamic
condition. Eight diagnostic variables are selected from the PEM fuel cell simulator model, and the
eight diagnostic variables are fuel cell current (I f c), fuel cell voltage (V f c), compressor speed (ωcm),
compressor outlet pressure (Pcm,out), compressor motor voltage (Vcm), compressor motor current (Icm),
hydrogen inlet pressure (PH2,in), and air inlet pressure (Pair,in). Taking the Fault4 state as an example,
Gaussian noise with variance of 1.0 is added to the PEM fuel cell simulator model. The fuel cell current,
fuel cell voltage, compressor speed, compressor outlet pressure, compressor motor voltage, compressor
motor current, hydrogen inlet pressure, and air inlet pressure change with time, respectively, are shown
in Figures 3–10.

In this paper, the Gaussian noise with variance of 0.1, 0.2, 0.5, and 1.0 are added to the PEM fuel
cell simulator model, respectively. The PFCM algorithm is used to filter samples with membership
and typicality less than 90% and optimize the original dataset. The filtered data is used as the sample
dataset. The sample dataset are divided into two groups, one is the training set sample and the other is
the testing set sample. The training set sample number is 670, and the testing set sample number is
335. The penalty parameter C and kernel function parameter g of SVM are optimized using the ABC
algorithm, and then establish the optimized SVM model. The testing set sample is used to test the
accuracy of the fault diagnosis method.
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The fault diagnosis steps of the fuel cell system based on the PFCM-ABC-SVM method are as follows:
Step 1 Initialize the parameters in the PFCM-ABC-SVM method as follows: set the fuzzy

parameters, m = 2, p = 2; set the terminating threshold ε = 10−6; set the maximum number of iterations
L = 100; set the number of initial iterations l = 0; initialize the cluster center V(0), initialize the
membership matrix U(0), and initialize the typicality matrix T(0); set the number of bee colonies n = 20;
set the maximum search number of honey sources Limit = 100; set the current search number of honey
sources d = 0; set the maximum number of iterations maxIter = 10; set the search range of penalty factor
C: [0.01, 100]; and set the search range of kernel function parameter g: [0.01, 100].

Step 2 Get the original data of the PEM fuel cell system and select eight diagnostic variables.
The eight diagnostic variables are fuel cell current, fuel cell voltage, compressor speed, compressor
outlet pressure, compressor motor voltage, compressor motor current, hydrogen inlet pressure, and air
inlet pressure.

Step 3 Establish the original dataset with eight diagnostic variables and normalize the original
dataset using mapminmax Function in Matlab(R2018b).

Step 4 Adapt the PFCM algorithm to eliminate samples with membership and typicality less than
90%, filter the original dataset, and establish the sample dataset.

Step 5 Divide the sample dataset into the training set sample and the testing set sample.
Step 6 Optimize the penalty parameter C and kernel function parameter g of SVM using the ABC

algorithm and establish the optimized SVM model.
Step 7 Diagnose faults by the optimized SVM model and obtain the diagnostic result. The fault

diagnosis flow chart of the fuel cell system based on PFCM-ABC-SVM method is shown in Figure 11.
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When the Gaussian noise variance is 1.0, the PFCM-ABC-SVM method is compared with the
GA-SVM, PSO-SVM and ABC-SVM methods. The comparison between the PFCM-ABC-SVM method
and the other methods is shown in Table 3. The classification results of the PEMFC-ABC-SVM method
when the Gaussian noise variance is 1.0 are shown in Figure 12. For the Fault 0–4 states, the accuracy
of the training set sample is 95.67%, and the accuracy of the testing set sample is 92.84% using the
PSO-SVM method; the accuracy of the training set sample is 95.82%, and the accuracy of the testing
set sample is 94.03% using the ABC-SVM method; the accuracy of the training set sample is 97.46%,
and the accuracy of the testing set sample is 97.31% using the PFCM-ABC-SVM method. Therefore,
the PFCM-ABC-SVM method can effectively improve the accuracy of fault diagnosis of the PEM
fuel cell system. The category label in Figure 12, “0” represents Fault0, “1” represents Fault1, “2”
represents Fault2, “3” represents Fault3, and “4” represents Fault4. There are 335 samples in the testing
set samples.

Table 3. The comparison between the PFCM-ABC-SVM method and the other methods.

Method. C g Accuracy of the Training
Set Sample

Accuracy of the Testing
Set Sample

GA-SVM 90.64 41.27 95.97% 92.84%
PSO-SVM 96.84 129.19 95.67% 92.84%
ABC-SVM 82.53 23.31 95.82% 94.03%

PFCM-ABC-SVM 84.28 5.99 97.46% 97.31%
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Figure 12. The classification results of the PFCM-ABC-SVM method when the Gaussian noise
variance is 1.0.

When the Gaussian noise variance is 0.5, the PFCM-ABC-SVM method is compared with the
GA-SVM, PSO-SVM and ABC-SVM methods. The comparison between the PFCM-ABC-SVM method
and the other methods is shown in Table 4. The classification results of the PEMFC-ABC-SVM method
when the Gaussian noise variance is 0.5 are shown in Figure 13. The accuracy of the training set sample
is 98.81% and the accuracy of the testing set sample is 97.91% using the PFCM-ABC-SVM method.

Table 4. The comparison between the PFCM-ABC-SVM method and the other methods.

Method C g Accuracy of the Training
Set Sample

Accuracy of the Testing
Set Sample

GA-SVM 81.77 39.93 95.67% 92.84%
PSO-SVM 100 128.77 95.52% 93.43%
ABC-SVM 73.02 28.34 95.37% 94.63%

PFCM-ABC-SVM 80.88 15.76 98.81% 97.91%
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Figure 13. The classification results of the PFCM-ABC-SVM method when the Gaussian noise
variance is 0.5.

When the Gaussian noise variance is 0.2, the PFCM-ABC-SVM method is compared with the
GA-SVM, PSO-SVM and ABC-SVM methods. The comparison between the PFCM-ABC-SVM method
and the other methods is shown in Table 5. The classification results of the PEMFC-ABC-SVM method
when the Gaussian noise variance is 0.2 are shown in Figure 14. The accuracy of the training set sample
is 98.81%, and the accuracy of the testing set sample is 98.21% using the PFCM-ABC-SVM method.
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Table 5. The comparison between the PFCM-ABC-SVM method and the other methods.

Method C g Accuracy of the Training
Set Sample

Accuracy of the Testing
Set Sample

GA-SVM 85.50 64.40 96.27% 93.73%
PSO-SVM 100 166.67 96.27% 94.03%
ABC-SVM 92.46 63.77 96.57% 94.33%

PFCM-ABC-SVM 80.14 19.88 98.81% 98.21%
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variance is 0.2.

When the Gaussian noise variance is 0.1, the PFCM-ABC-SVM method is compared with the
GA-SVM, PSO-SVM and ABC-SVM methods. The comparison between the PFCM-ABC-SVM method
and the other methods is shown in Table 6. The classification results of the PEMFC-ABC-SVM method
when the Gaussian noise variance is 0.1 are shown in Figure 15. The accuracy of the training set sample
is 98.66%, and the accuracy of the testing set sample is 98.51% using the PFCM-ABC-SVM method.

Table 6. The comparison between the PFCM-ABC-SVM method and the other methods.

Method C g Accuracy of the Training
Set Sample

Accuracy of the Testing
Set Sample

GA-SVM 89.03 45.49 95.82% 94.03%
PSO-SVM 100 220.38 96.57% 94.03%
ABC-SVM 99.97 19.36 95.37% 94.63%

PFCM-ABC-SVM 75.18 17.67 98.66% 98.51%
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In order to illustrate the advantages of the PFCM-ABC-SVM method, the GA-SVM, PSO-SVM
and ABC-SVM methods are compared with it, in this work. The results of fault diagnosis are shown in
Tables 3–6. Under the dynamic conditions with the variance of the Gaussian noise decreasing from 1.0
to 0.1, the accuracy of the testing set sample is as high as 98.51%. Comparing with the other methods,
the PFCM-ABC-SVM method has a better effect in fault diagnosis of the PEM fuel cell system.

5. Conclusions

In this work, the PFCM-ABC-SVM method is proposed and verified by the PEM fuel cell simulator
model. The Gaussian noise with variance of 0.1, 0.2, 0.5, and 1.0 are added to the PEM fuel cell
simulator model, respectively, for fault diagnosis. The PFCM algorithm is used to filter samples with
membership and typicality less than 90% and optimize the original dataset. The ABC algorithm is
used to optimize the penalty factor C and kernel function parameter g, and the optimized SVM model
is used to diagnose the faults of the PEM fuel cell system. The results show that under the dynamic
conditions with the variance of the Gaussian noise decreasing from 1 to 0.1, the accuracy of the training
set sample increases from 97.46% to 98.81%, and the accuracy of the testing set sample increases from
97.31% to 98.51%. The PFCM-ABC-SVM method is effective to diagnose the faults in the PEM fuel cell
system, and it is better than other commonly used methods. The PFCM-ABC-SVM method has an
advantage in solving the small-sized, nonlinear, and high-dimensional problems and furthermore,
provides references for on-line fault diagnosis of a fuel cell system.
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Nomenclature

PFCM possibilistic fuzzy C-means clustering ABC artificial bee colony
SVM support vector machine PEM polymer electrolyte membrane
LPV linear parameter varying TS Takagi–Sugeno
FDI fault detection and isolation ANN artificial neural network
EMD empirical mode decomposition EIS electrochemical impedance spectroscopy
SVR support vector regression ANFIS adaptive neuro-fuzzy inference systems
GS grid search algorithm GA genetic algorithm
PSO particle swarm optimization algorithm FCM fuzzy C-means clustering
PCM possibilistic C-means clustering C penalty factor
g kernel function parameter ε terminating threshold
L maximum number of iterations l the number of initial iterations
ηi penalty coefficient αi Lagrange multiplier
Limit maximum search number of honey sources MaxIter maximum number of iterations
τcm compressor torque(N·m) ηcm motor mechanical efficiency
∆Rcm the increment in the compressor motor

resistance(Ω)
∆kv the increment in the motor electric

constant(V/(rad/s))
t time(s) ∆kca,out the increment in the cathode outlet orifice

constant(kg/(s·Pa))
Wca,out air flow in the cathode outlet(g/s) pca cathode pressure(pa)
prm return manifold pressure(pa) Wsm,out outlet mass flow(g/s)
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∆ksm,out the increment in the supply manifold outlet
orifice constant

psm supply manifold pressure(pa)

I f c fuel cell current(A) V f c fuel cell voltage(V)
ωcm compressor speed(rad/s) Pcm,out compressor outlet pressure(pa)
Vcm compressor motor voltage(V) Icm compressor motor current(A)
PH2,in hydrogen inlet pressure(pa) Pair,in air inlet pressure(pa)
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