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Abstract: Pollution-induced flashover is one of the most serious power accidents, and the pollution
degree of insulators depends on atmospheric environmental parameters. The pollution models used
in the power system research are usually static, but the environmental parameters are dynamic.
Therefore, the study on the dynamic pollution prediction model is of great importance. In this
paper, the dynamic pollution prediction model of insulators based on atmospheric environmental
parameters was built, and insulators’ structure coefficients were proposed based on the model.
Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP
(total suspended particulate), and wind speed) was proposed, and natural pollution tests were also
conducted as verification tests. Furthermore, insulator structure coefficients c1, c2 (c1: pollution
ratio of U210BP/170 to XP-160; c2: calculated pollution ratio of U210BP/170T to XP-160) were then
obtained, and their influence factors were discussed. At last, insulator structure coefficients were
calculated, and it can be seen that the calculated error of insulator structure coefficients was acceptable,
with the average re (relative errors) at 9.0% (c1) and 13.5% (c2), which verifies the feasibility of the
model. Based on the results in this paper, the NSDD (non-soluble deposit density) of insulators with
different structures can be obtained using the insulators’ structure coefficient and the reference XP-160
insulator’s NSDD.

Keywords: dynamic pollution model; reference insulators; insulator structure coefficient; natural
pollution tests; finite element method

1. Introduction

Pollution-induced flashover is among the most serious power accidents, which seriously threatens
the safety and stability of the power system [1–5]. In the past three decades, China has suffered from
air pollution due to rapid economic growth, industry-led urbanization, and a lack of environmental
protection [6]. Severe air pollution aggravates the possibility of pollution flashover [7]. Therefore,
much literature has focused on the issue of insulator contamination [8–21].

It will cost a lot of workforces and material resources to test the pollution degree of insulators
operating in transmission lines. Therefore, some scholars have first studied insulator contamination in
a wind tunnel and other pollution accumulation systems [8–12]. For example, insulator contamination
characteristics were studied by wind tunnel simulation in the literature [8], and the results suggest that
insulator structures, wind speed and RH (relative humidity) have obvious impacts on the contamination
degree of insulators. Research on the contamination characteristics in the winter environment [9,10] also
show that the wind speed has a greater effect on insulator contamination and NSDD. Y. Liu et al. [11]
set up a natural pollution accumulation system and uses it to analyze the contamination characteristics
and the micro-shape features of the insulator surface. The results show that the DC electric field has a
significant effect on agglomeration characteristics.
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In addition, the analysis methods based on finite element, grey theory, etc. are also applied
to the insulator pollution model [13–18]. For example, the coupling physics model of a three-unit
XP-160 insulator string was established in the literature [13]. Moreover, the contamination deposition
process was simulated using the multiphysics simulation software Comsol. Based on the grey theory,
X. Qiao et al. [14] established the insulator pollution model, but the result shows that there are still
some errors. The error is the error between the calculated ESDD (equivalent salt deposit density) and
the actual ESDD. The error mainly comes from the defect of the algorithm and the calculation accuracy
fluctuates with the sample selection. Z. Zhang et al. [15] presented the contamination results using
a volume fraction which was obtained by a Eulerian two-phase flow model and further proved the
feasibility of this method. What is more, little literature has studied insulator contamination in the
natural environment [19–21]. However, Z. Zhang et al. [19] pointed out that it will take long time and
high expense to get reliable results.

In addition, the pollution model used in the power system is usually static, but the environmental
parameters are dynamic. There is less study on the quantitative relationship between the pollution
degree and the dynamic environmental parameters. Moreover, now in the power system, the actual
insulator’s NSDD (non-soluble deposit density) is usually determined by measuring the reference
XP-160 insulator’s NSDD. However, even in the same pollution condition, the pollution levels of
insulators with different structures are various.

Therefore, the dynamic pollution prediction model of insulators based on atmospheric
environmental parameters was built, and insulator structure coefficients were proposed based on the
model in this paper.

2. Dynamic Pollution Prediction Model of Insulators

2.1. Numerical Simulation Based on Eulerian Two-Phase Model

The practicability of the method based on the Eulerian two-phase model in engineering has been
verified in the literature [15,22–24]. In the Eulerian simulation model, the different phases are treated
mathematically as interpenetrating continua. In the simulation model, the standard k-εmodel is used
to describe the effects of turbulent fluctuations of velocities. The basic equations of the k-εmodel have
been given in our previous research [15]. Ti (turbulence intensity) can be calculated according to Re
(Reynolds number). More specifically, Ti = 0.16Re−1/8.

In this paper, seven-unit 3D insulator string models are established by the Solidworks.
The insulators’ structure and structural parameters are shown in Table 1. The seven-unit 3D insulator
string models are imported into Ansys, and a wind tunnel computational domain (9 m × 2.5 m × 7 m)
is created according to the studies [13,25,26], as is shown in Figure 1a. One side of the computational
domain is the air and particles inlet, and the other side is the flow outlet.

Table 1. Profile parameters of insulators.

Samples
Parameters

Structure
H (mm) D (mm) L (mm)

U210BP/170 155 300 450
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Table 1. Cont.

Samples
Parameters

Structure
H (mm) D (mm) L (mm)
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and particle size (dp) have a great influence on the pollution performance, but the influence on each 
insulator are not the same. Besides, the Euler two-phase flow simulation led to steady-state results; 
therefore, it is necessary to establish a connection between the simulated accumulation results and 
the actual accumulated pollution results. Thus, the simulation results with the same environmental 
parameters are compared with the wind tunnel experiments. Finally, the NSDDs of each insulator 
string are obtained by simulation and comparison. 

Figure 1. Calculation model and simulation results: (a) the calculation model in Ansys; (b) the
simulation results of U210BP/170, U210BP/170 and XP-160.

Furthermore, a size function is attached to the four regions around the insulator to control the
size of the grid cells, and these regions mesh with tetrahedral cells. The outer regions are meshed
with hexahedron and prism cells to reduce the number of grids. Practical experience shows [15] that
this grid meshing technique improves the calculation accuracy and reduces the cost of calculation
time. Then, the boundary condition setting of the calculation domain is processed. The inlet of the
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domain is set to the “velocity-inlet” boundary type, and the outlet of the domain is set to the “out-flow”
boundary type.

The calculated results in this paper are shown in Figure 1b. When the initial concentration settings
are the same (0.06), the pollution performance of the insulator was mainly affected by the particle
diameter and wind speeds. Specifically, when the initial concentration is 0.06, the simulation results
relationship between the volume fraction of the three insulators and the different particle diameters
and different wind speeds are shown in Figure 2. It can be seen that the wind speed (Wi) and particle
size (dp) have a great influence on the pollution performance, but the influence on each insulator
are not the same. Besides, the Euler two-phase flow simulation led to steady-state results; therefore,
it is necessary to establish a connection between the simulated accumulation results and the actual
accumulated pollution results. Thus, the simulation results with the same environmental parameters
are compared with the wind tunnel experiments. Finally, the NSDDs of each insulator string are
obtained by simulation and comparison.
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Figure 2. Simulation results: (a) the volume fraction with a different particle diameter; and (b) the
volume fraction with a different wind speed.

2.2. Dynamic XP-160 Pollution Model Based on Meteorological Data

The pollution accumulation degree depends on meteorological conditions. For example, the number of
pollution particles adhered to the surface of insulator increases with the increase in pollution concentration.
According to the corresponding meteorological data, the pollution amount of the insulator surface area
under the condition of the pollution concentration can be obtained. In consideration of the time-varying
dynamic change of atmospheric environmental parameters, the pollution amount of insulator surface
area should be superposed by the accumulated pollution amount of each period, namely:

∆φmi =
∫ dpM

0
cpi(dp)

cp0
· ti · ρm

(
Vi, dp

)
ddp

φm(H) =
N∑

i=1
∆φmi, H =

N∑
i=1

ti

(1)

where, cp0 is the reference concentration, 15 mg/m3. cpi(dp) is the concentration corresponding to the
polluted particles with the particle size of dp in the i time period, mg/m3. Vi is the wind speed in this
time period, m/s; ti is the time length in the i time period. ρm(Vi,dp) is the pollution accumulation per
unit time on the insulator surface. dpM is the maximum particle size of the atmospheric particles in the
i time period, µm. ∆Φmi is the pollution increment of the insulator surface area in the i time period,
mg/cm2. H is the total time in each time period. Φm(H) is the final accumulated pollution amount of
the polluted particles on the insulator surface, mg/cm2.
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The cpi(dp) cannot be directly measured, but it needs to be obtained through the relationship
between the particle size and its mass concentration, but the relationship is difficult to measure and
obtain. Therefore, the approximate method is adopted, and it is considered that the mass fraction and
particle size of the polluted particles meet the rosin rammer distribution:

λi
(
dp

)
= 1− exp

(
−n2 · dp

n1
)

(2)

where λi(dp) is the mass fraction of the polluted particles, whose particle size is less than dp in the i
time period. n1 is the distribution characteristic index. n2 is the distribution characteristic coefficient.

The meteorological department usually classifies the polluted particles according to the air quality
index standard of real-time monitoring: PM2.5 (dp < 2.5 µm), PM10 (dp < 10 µm), TSP (total suspended
particulate) (dp < 100 µm). The units of these three parameters are µg/m3. According to the data
measured in the i time period, the PM2.5, PM10 and TSP can be obtained:

PM2.5/TSP =1− exp(−n2 · 2.5n1)

PM10/TSP =1− exp(−n2 · 10n1)

1 = 1− exp(−n2 · 100n1)

(3)

By fitting Equation (3), n1, n2 can be obtained, and then the mass fraction particle size distribution
function of the i time period can be obtained. Taking the air pollution monitoring data of an area as an
example, the TSP, PM10 and PM2.5 measured in the period i are about 200 µg/m3, 120 µg/m3, 24 µg/m3,
then the values of n1, n2 are 1.42 and 0.03, respectively:

λi
(
dp

)
= 1− exp

(
−0.03 · dp

1.42
)

(4)

The fitting degree R2 is 0.99, which shows that the fitting result is reasonable. After the mass
fraction-particle size relationship is obtained, Equation (2) can be discretized to approximate the mass
fraction size corresponding to each particle size, and then the concentration cpi(dp) can be obtained:

cpi
(
dp

)
≈ TSP ·

[
λ
(
dp

)
− λ

(
dp − ∆dp

)]
(5)

In order to improve the calculation efficiency and take into account the accuracy, setting ∆dp as
1 µm. In general, the probability of an air pollution particle size less than 50 µm is 99%. Therefore,
only the influence of a pollution particle size less than 50 µm needs to be considered in the prediction of
pollution accumulation. Based on the discretization of Equation (5), the following results are obtained:

cpi(1)= TSP · [1− exp(−n2 · 1n1)]

cpi(2) = TSP · [− exp(−n2 · 2n1) + exp(−n2 · 1n1)]

. . .
cpi(50) = TSP · [− exp(−n2 · 50n1) + exp(−n2 · 49n1)]

(6)

Taking the particle mass fraction–particle size distribution function obtained in Equation (4) as an
example, and using the method of Equation (6) to discretize, the pollution particle concentration cpi(dp)
corresponding to each dp value can be obtained, as shown in Figure 3:

Taking Equation (6) into Equation (1) to get the final amount of air pollution particles on the
insulator surface after H time of pollution accumulation:

φm(H) =
N∑

i=1

∆φmi =
N∑

i=1

 50∑
n=1

cpi
(
dp

)
cp0

· ti · ρm
(
Vi, dp

) (7)

As mentioned before, ρm(Vi,dp) is the pollution accumulation per unit time on the insulator surface,
which can be obtained through several ways, such as the numerical simulation of pollution deposition,
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wind tunnel tests and nature tests. Furthermore, the pollution degree and insulator structure pollution
coefficients (the coefficients will be discussed in the discussion section) can be calculated according to
the flow chart based on the proposed model in this paper, as is shown in Figure 4:
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2.3. Model Validation

2.3.1. The Experiment Procedures

The contamination samples were three types of insulators arranged in different towers. The test
samples arrangement are shown in Figure 5. Firstly, seven units of three types of insulator strings
(U210BP/170, U210BP/170T and XP-160) were suspended in the test towers. When the tests were
completed, the samples were carefully taken out of the towers. The measuring method of contamination
in our previous research [8] is shown in Figure 6. The measuring process is referred to as the IEC
Standard 60,507 [8]. It should be noted that the experimental results were the average values of
insulator pieces results. When one experiment ended, the next experiment cycle continued.Energies 2020, 13, x FOR PEER REVIEW 7 of 12 
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2.3.2. The Experiment Results and Calculated re

The experimental results are shown in Table 2 (corresponding meteorological parameters of the
first period are shown in Figure 7). Since the meteorological parameters are constantly changing,
it is necessary to process the meteorological data before applying the model calculation. In this
paper, 50% cumulative probability density is used to express the meteorological parameters in the H
period. The cumulative probability distribution, also known as the cumulative distribution function,
the distribution function and so on, is used to describe the probability of random variables falling on
any interval, which is often regarded as the characteristics of the data. If the variable is continuous,
the cumulative probability distribution is the function obtained by integrating the probability density
function; if the variable is discrete, the cumulative probability distribution is a function obtained by
adding the distribution law.

Table 2. Tests result and calculated re.

Samples U210BP/170 U210BP/170T XP-160

(×10−3 mg/cm2) NSDD re NSDD re NSDD re

T1 4.3 12.6% 6.2 9.8% 9.8 13.5%
T2 3.1 10.6% 3.4 11.3% 5.6 14.0%
T3 3.5 12.6% 4.1 12.4% 6.5 7.5%
T4 2 8.5% 2.7 11.8% 4.2 10.9%
T5 3.5 7.5% 4.2 9.6% 7.6 7.9%
T6 6.8 15.9% 6.9 17.5% 10.2 14.9%
T7 5.1 20.5% 5.5 18.9% 7.3 21.5%
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Figure 7. Thirty sets of meteorological data.

According to the results in Table 2, the relative errors between the predicted outcome and the
measured results are basically within 20%. Therefore, a new method was proposed to predict insulator
contamination by using meteorological monitoring data, which provides a new idea for insulator
contamination in a natural environment prediction. At present, the prediction method in this paper
can only be used for predicting NSDD. There are complex chemical reactions involved in the ESDD
(formation of salt density) and the calculation is more complicated, since ESDD is closely related to the
composition of sulfur-containing and nitrogen-containing gases in the atmosphere.

3. Discussion

3.1. Model Error Analysis

According to the above calculation results, this section further discusses the causes of errors.
Figure 8 is obtained from the calculation results. It can be seen from Figure 8 that the error of the
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dynamic pollution model based on atmospheric parameters is different. The re of T1–T5 are relatively
small, with its value varying from 7.5% to 14%. However, the re of T6–T7 are relatively larger, with its
value standing at about 20%.
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According to the differences between the different re, the characteristics of meteorological
parameters are further investigated. It was found that, there are five days of rainfall in the sixth stage;
while in the seventh stage, there are eight days of rainfall, and the rainfalls are heavy. Therefore, it can
be concluded that rainfall mainly causes the errors in the dynamic accumulation model [27].

3.2. Insulator Structure Coefficients

Now in the power system, the actual insulator’s NSDD is usually determined by measuring
the NSDD of the reference insulator XP-160. However, even under the same pollution condition,
the pollution degrees of insulators with different structures varies. Therefore, insulator structure
coefficients c1 and c2 are further calculated. Table 3 and Figure 9 can be obtained.

Table 3. Insulator structure coefficients.

T1 T2 T3 T4 T5 T6 T7

c1 0.439 0.554 0.538 0.476 0.461 0.667 0.699
c2 0.633 0.607 0.631 0.643 0.553 0.676 0.753
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As shown in Figure 9, the value of c1 (c2) witnessed fluctuation, and the change was evident with
its figure varying between 0.439 and 0.699 (0.553 and 0.753). In addition, rainfall had a significant
influence on the insulators’ structure coefficients, since c1 and c2 increased to a certain extent during
the rainfall period. It can be discovered by further calculation that insulator structure coefficient varies
due to the change of wind speed, particle size and other factors, with no obvious changing patterns.
Hence, this indicates that insulator structure coefficients are dynamic.

Therefore, the original method for obtaining the pollution level of transmission line insulators
only by reference insulator is unreasonable. Insulator structure coefficients should be taken into
consideration to get the pollution degree. However, it is time consuming and labor consuming to
obtain insulator structure coefficients from natural experiments. Therefore, the insulator structure
pollution coefficients can be calculated according to the flow chart based on the proposed model in this
paper. And the calculated results are show in Table 4:

Table 4. Calculated insulator structure coefficients.

T1 T2 T3 T4 T5 T6 T7 Average re

c1′ 0.523 0.612 0.596 0.651 0.423 0.536 0.642
c2′ 0.694 0.745 0.712 0.731 0.501 0.545 0.684
re1 0.192 0.106 0.107 0.077 0.081 0.021 0.081 9.0%
re2 0.097 0.227 0.129 0.137 0.093 0.125 0.092 13.5%

It can be seen that the calculated error of insulator structure coefficients is acceptable, with the
maximum value at 19.2% (re1) and 22.7% (re2), and the average value at 9.0% (re1) and 13.5% (re2),
which verifies the feasibility of the model.

4. Conclusions

In this paper, the dynamic pollution prediction model of insulators based on atmospheric
environmental parameters was built, and insulator structure coefficients were proposed based on
the model.

Firstly, the insulator dynamic pollution model based on meteorological data (PM2.5, PM10, TSP,
and wind speed) was proposed, and natural pollution tests were also conducted as a verification test.
Furthermore, insulator structure coefficients c1 and c2 were then obtained, and its influence factors
were discussed. Rainfall has a significant influence on the insulator structure coefficient; plus, c1 and
c2 increase to a certain extent during the rainfall period. Further calculation of insulator structure
coefficients show that it varied with the change of wind speed, particle size and other factors, and there
is no obvious changing rule. This result indicates that insulator structure coefficients are dynamic.

At last, insulator structure coefficients c1′, c2′ were calculated; besides, it can be seen that the
calculated error of insulator structure coefficients is acceptable, with the average re at 9.0% (re1) and
13.5% (re2), which verifies the feasibility of the model.
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