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Abstract: Many smart apartments and renovated residential buildings have installed Smart Meters
(SMs), which collect interval data to accelerate more efficient energy management in multi-family
residential buildings. SMs are widely used for electricity, but many utility companies have been
working on systems for natural gas and water monitoring to be included in SMs. In this study,
we analyze heating energy use data obtained from SMs for short-term monitoring and annual
predictions using change-point models for the coefficient checking method. It was found that
9-month periods were required to search the best short-term heating energy monitoring periods when
non-weather-related and weather-related heating loads and heating change-point temperatures are
considered. In addition, the 9-month to 11-month periods were needed for the analysis to apply
to other case study residences in the same high-rise apartment. For the accurate annual heating
prediction, 11-month periods were necessary. Finally, the results from the heating performance
analysis of this study were compared with the cooling performance analysis from a previous study.
This study found that the coefficient checking method is a simple and easy-to-interpret approach to
analyze interval heating energy use in multi-family residential buildings. It was also found that the
period of short-term energy monitoring should be carefully selected to effectively collect targeted
heating and cooling data for an energy audit or annual prediction.

Keywords: heating energy use; interval data; short-term monitoring; annual prediction

1. Introduction

In a modern society, residential buildings are the primary source of national energy consumption,
which use energy for occupants’ comfort and building system operations. Recently, the government of
South Korea has developed an ambitious plan to improve building energy efficiency protocols. Thus,
zero-energy buildings will be mandatory for all types of new constructions after 2030 [1]. In conformity
with this, smart apartments and renovated residential buildings have installed Smart Meters (SMs), also
called Advanced Metering Infrastructure (AMI), which collect interval energy use data to accelerate
more efficient energy management in multi-family residential buildings.

AMI has great potential for energy use analysis applications by collecting and monitoring energy
use data from buildings. The system combines software and hardware components, data management,
and monitoring systems using a two-way real-time communication network [2,3]. The interval data
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from AMI or SMs can provide a high-resolution dataset of energy consumption, recording at regular
intervals throughout a sub-hour, hour, or day, and is now available in many residential buildings based
on real-time measurements.

Due to its detailed and disaggregated data information, interval energy use data from SMs offers
a wide range of information about building operations and energy consumption for practitioners,
providers, and customers. Previous studies have shown that fine-grained residential building
consumption data can provide a better understanding of the lifestyle of occupants (e.g., electrical device
usage patterns and occupant presence or absence) [4–6]. Furthermore, another study demonstrated
that collecting data from buildings is useful to recognize electrical energy usage patterns, which
allows energy suppliers and distribution system operators to understand electricity market signals
and customer behavior [7]. Thus, interval energy use data can be imperative to identify occupants’
energy usage habits, to develop advanced energy performance prediction models, and to perform
energy auditing for optimal energy management and operation in buildings.

Interval energy use data are normally used to develop different types of data-driven (or inverse)
energy models (e.g., steady-state and dynamic models). According to the purpose of the analysis
(e.g., prediction, auditing, and calibration), data-driven modeling methods and tools can be different.
For example, steady-state prediction models (e.g., change-point linear regressions, multi-linear and
combined regressions) can be used if time-lagged variables are not presented [8]. The Inverse Modeling
Toolkit (IMT) (Version 1.0, ASHRAE, Atlanta, GA, USA) developed by The American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is a useful tool for steady-state
modeling development [9,10]. Dynamic models (e.g., machine learning) can be developed using
detailed information from buildings systems, which require a more complicated and time-consuming
process. Over recent years, many studies have conducted statistical analysis for machine learning
techniques using interval data to identify energy usage patterns [11] and capture non-linear and
complicated relationships [12].

In addition, the energy auditing field can make great use of interval energy use data. A home
energy audit can depict a whole picture of home energy use to show how much energy was used,
where energy was lost, and what should be fixed in homes to improve energy efficiency and the
occupants’ comfort. This type of home energy audit is typically conducted before home retrofits [13].
Thus, for pre-retrofit homes, several studies have attempted to analyze residential energy consumption
patterns using interval data.

In this study, we analyze interval heating energy use data for short-term monitoring and annual
predictions using the change-point models. Natural gas (NG) monitoring has not yet been widely
applied to SMs, so there were few studies on interval heating energy use data. In addition, few studies
compared heating and cooling building energy performance using the interval data of heating and
cooling energy consumption.

In the next section (i.e., Section 2), the previous studies are reviewed regarding analysis for interval
energy use data using the change-point regression models and an energy audit for residential buildings.
In Section 3, the overall approach of this study is described, including a description of the natural gas
use data. The heating energy performance in multi-family residential buildings was analyzed using the
coefficient checking method. The best interval data was used to search for the best monthly periods for
short-term monitoring. Then, predicted annual heating energy use was compared with the measured
one to verify the coefficient checking method. Next, a comparison between the heating and cooling
energy use data was conducted to find the best periods for short-term monitoring. These results are
presented in Section 4, and they are discussed in Section 5. The conclusion and contributions of this
study are described in Section 6.
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2. Literature Review

We found several studies conducted for the use of different energy data intervals to analyze
building operations and energy consumption. The previous studies widely used the change-point
linear regression models for their analyses.

One study [14] used hourly interval energy consumption data of 35 commercial buildings to
identify anomalies in the energy use. A three parameter (3P) change-point model was used with
two other models of neural networks and regression trees. The results from all three models showed
good agreements. While one independent variable of outside air temperature data was used for the
change-point model, four independent variables of binary work indicator, wind speed, solar radiation,
and outside air temperature data were used for the other two models.

Another study developed change-point models using daily interval energy data of 45 air-conditioning
systems located in the houses in Texas [15]. Their analysis found that the change-point model is a quick
and simple approach for diagnosing problems and performing energy audits to analyze residential energy
use. In addition, a calibrated simulation model was used to estimate the impact of energy saving measures.
Other researchers also used calibrated simulations for single-family residential dwellings in a hot and
humid climate using a 3P change-point model for monthly energy consumption data [16]. Their results
showed that the strength of the 3P coefficients was that they characterize physical and operational
characteristics of the building. Monthly energy use data was also used to develop the change-point models
along with outlier detection methods on residential energy consumption prediction [17]. The results
showed that the change-point models could outperform neural network models when monthly interval
data was used.

In previous literature, while change-point models have been widely employed for building
energy use analyses, other studies covered improved change-point models or other advanced methods.
For example, one study developed an improved 3P cooling change-point model for daily aggregate
cooling load from about 800,000 residential and commercial buildings in Abu Dhabi, United Arab
Emirates [18]. They used additional humidity and solar irradiation terms for the model to predict
cooling loads and the results were used as a predictive and planning tool.

Another study included neural network, Gaussian mixture regression, Gaussian process regression,
and change-point regression approaches using daily and hourly energy consumption data from an
office [19]. The study predicted the energy consumption based on statistical metrics. The results identified
that the differences between the four inverse models were insignificant. In addition, the researchers
developed a novel hybrid system for short-term load forecasting [20]. The hybrid system included a
data pre-processing, multi-objective Salp Swarm, and interval prediction modules. The system was
verified using half-hourly data. Another study suggested Lambda-based architecture to conduct two-level
short-term load forecasting for hourly interval data [21]. The study found that the accuracy of the two-level
forecasting approach was better than the one-level approach. Other researchers conducted big data
analysis for 2.9 million heating plants from Lombardy, Italy [22]. Using the measured data, they analyzed
the heating performance of the installed systems in the region, which could even help energy policy
makers and planners. Even though many studies proposed advanced methods for building energy use
analysis, when considering the simplicity of the inverse models, the change-point model provides the best
balance between the accuracy and effort of the analysis.

The monitoring period of interval energy use data is also important because it affects the accuracy
of the analysis results. However, long-term monitoring is costly and requires a lot of resources from
the building operators and occupants. Thus, if short-term monitoring can meet the accuracy of annual
energy performance verifications, it would save the year-long monitoring cost. Previous studies found
that energy use data collected for less than a year was sufficient to determine a baseline model for
analyzing annual energy use [23,24]. The researchers showed that two weeks of hourly interval data,
along with long-term utility data, could accurately predict annual energy use for entire buildings [23].
Their analysis found that the monitoring period was important, and the swing seasons were the
best periods to collect data. Another study proposed the dry-bulb temperature analysis (DBTA)
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ranking approach to identify the best monitoring period to achieve accurate inverse models for energy
performance in buildings [24]. The results from the DBTA method provided a simple way of ranking
different months of the year as starting points for monitoring according to the number of subsequent
months required to collect enough data to develop accurate inverse models. The study found that
short-term monitoring could generate predictive models for long-term building energy performance
within acceptable accuracy levels.

Despite the success of the previous studies using interval energy consumption data, the analyses
have not focused on effectively finding short-term monitoring periods regarding non-weather-related and
weather-related energy use. In addition, they have not compared the results between heating and cooling
energy use data. Therefore, in this paper, we used the coefficient checking method [25], which improved
the DBTA method, with a heating change-point model for heating-related short-term monitoring for
residences in an apartment. The change-point modeling approach was selected for this study because it is a
simple, intuitive, and easy-to-interpret method for analyzing heating energy use performance, particularly
for the heating energy usage in multi-family residential buildings. Short-term monitoring periods were
carefully selected to effectively collect targeted data for an energy audit or an annual prediction, which is
important for data-driven models. Furthermore, a comparison between the heating and cooling energy
performance was also conducted for short-term monitoring periods.

3. Methods

Figure 1 shows the overall approach of this paper. First, heating energy use (i.e., natural gas use) data
was obtained from a case study apartment, and the corresponding outside air temperature data was also
used [26]. Second, we used the coefficient checking method [25] to identify the best monthly periods, with
respect to the month of the year, for short-term monitoring of weather-related (i.e., weather-dependent)
and non-weather-related (i.e., weather-independent) natural gas use. Annual predictions were also
conducted for the analysis. Third, we compared the best monthly periods of short-term monitoring
between the performance of heating and cooling energy use data.
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3.1. Case Study Apartment and Weather Data

A 14-story high-rise apartment building was selected for this study. Figure 2 shows a floor plan
for one of the case study residences in the apartment building. Three bedrooms and one living room
face the south, and one kitchen and dining room and one bedroom face the north. There are the
balconies facing the north and south, respectively. 50 residences in the apartment have the same
building configuration and building characteristics. However, half of the residences have the mirrored
building configuration for the floor plan.
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Figure 2. Floor plan of the case study residence in the high-rise apartment.

A summary of the case study information is shown in Table 1. The high-rise apartment was
built in 2009. The insulation R-values of exterior walls, exterior windows, interior walls, and interior
floors were 2.13, 0.33, 2.86, and 1.23 m2-K/W, respectively. The total conditioned floor area of each
residence was 142 m2, and annual average natural gas use was 5070 kW h. Occupancy, building
system, and/or appliance types and schedules were various even though the residences had the same
building configuration, characteristics, and sizes. Thus, the different types were the major reasons for
the maximum annual heating use of 13,979 kW h to the minimum of 491 kW h.

The daily natural gas use data from the apartment building in Seoul, South Korea, was obtained
from 1 September 2009 to 31 August 2010. Natural gas was used for space heating only in the case study
residences. The units of the natural gas use data were converted from Tonnage to kW h. The coincident
outside air temperature (◦C) was also collected during this period [26]. One residence of the apartment
building was removed from the analysis because the residence did not use any natural gas. The analysis
focuses on the interval natural gas use data from the remaining 49 residences. The number of Heating
Degree Days (HDD) in South Korea was 2432 from the analysis results using data from 2001 to 2010 [27].
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Table 1. Characteristics of the 50 case study residences.

Construction
Year

Insulation R-Value
(m2-K/W)

Conditioned
Floor Area
(m2)/Unit

Occupancy/
Building

System Type

# of Excluded
Homes

Annual Average
Natural Gas Use

(kW h) of 49 Homes

2009

2.13 (Exterior wall)
0.33 (Exterior window)

2.86 (Interior wall)
1.23 (Interior floor)

142 Various 1 5070

3.2. Analysis for the Heating Performance

For this paper, the Inverse Modeling Toolkit (IMT) [28] developed by ASHRAE was used.
The three-parameter heating (3PH) change-point model is expressed in Equation (1).

Etot = Ew.i. + HS(TOA − Th.p.)
− (1)

Here, Etot is the total natural gas use, TOA is the outdoor air temperature, Ew.i. is the
non-weather-related natural gas use, HS is the heating slope, and Th.p. is the heating change-point
temperature. The notation ( )− means that if TOA is higher than Th.p., then the value is changed to zero.

The coefficient of determination (R2) of Equation (1) and the Coefficient of Variation of the
Root-Mean-Square Error (CV-RMSE) of Equation (2) were used to investigate the accuracy of the
3PH model.

R2 =

∑
i (yi − y)2

−
∑

i (yi − ŷi)
2∑

i (yi − y)2 (2)

CV−RMSE =

√∑
i (yi−ŷi)

2

(n−1)

y
× 100 (%) (3)

Here, yi is the measured heating (i.e., natural gas) use data, ŷi is heating use predicted by the 3P
model, y is the average of the measured heating use data, and n is the number of heating use data.

A higher R2 and lower CV-RMSE represent better accuracy of the 3PH model [8,29]. The statistical
thresholds were chosen as shown in Table 2, which are based on the thresholds defined in the previous
study [29]. The calculated values of R2 and CV-RMSE for the daily interval data were 0.25% and 40%
respectively, and the values of R2 and CV-RMSE for the monthly interval data were 0.70% and 20%,
respectively. The report used these statistical limits for the case study of military residences. Since we
assumed that natural gas use from normal residences could include more distributed heating energy
use due to increased variations in occupant behaviors, we used a flexibility of +10% for the CV-RMSE
thresholds of daily and monthly intervals. The values of R2 and CV-RMSE for the weekly interval data
were calculated using the daily and monthly thresholds through linear interpolation. After comparing
the heating energy use of the 49 residences between the daily, weekly, and monthly average intervals,
the best data was the weekly interval because of the 3PH models’ results—7, 19, and 18 residences
passed the daily, weekly, and monthly thresholds (see Table 2). The previous study [25] also found that
weekly interval data for cooling energy use was the best among the three intervals.

Table 2. Thresholds for heating use data.

Interval Type R2
≥ CV-RMSE (%) ≤

Daily 0.25 50

Weekly 0.475 40

Monthly 0.70 30
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In addition, thresholds of ±100%, 2%, and 2% were used in the coefficient checking method for
the weather-independent natural gas use (Ew.i.), the heating slope (HS), and the heating change-point
temperature (Th.p.) of the 3PH model, respectively. Using the weekly interval data from residence
#602 of the case-study apartment building, the three thresholds of ±100%, ±2%, and ±2% were tested.
The results showed that ±6.1% of the Normalized Mean Bias Error (NMBE) and ±0.9% of the CV-RMSE
were observed according to the ±100%, ±2%, and ±2% changes of each coefficient from the 3PH
model. The values of NMBE and CV-RMSE passed the limits from the ASHRAE Guideline 14 [30]
(see Table 3). The best monthly periods were identified when the differences (%) of each coefficient
were less than or equal to ±100%, 2%, and 2% compared to the corresponding 12-month coefficients.
Based on the number of months and the differences in the coefficients (%), the best periods were ranked.
The coefficient checking procedures for the heating energy use are summarized in Figure 3.
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Table 3. Thresholds used for the annual heating prediction.

Interval Type NMBE (%) ≤ CV-RMSE (%) ≤

Hourly ±10 Not Applicable (NA) for this paper

Daily ±8.33 50

Weekly ±6.67 40

Monthly ±5 30

Finally, the predicted annual natural gas use was compared with the measured natural gas use.
The best periods from the overall coefficient rank analysis were used for the comparison. The overall
coefficient rank approach simultaneously used all the ±100%, 2%, and 2% thresholds for the three
coefficients (Ew.i., HS, and Th.p.) to find the best overall short-term heating energy monitoring periods.
In order to check the accuracy of the predicted annual natural gas use, the NMBE and CV-RMSE were
used [30]. A lower NMBE indicates less error bias in the 3PH model. NMBE is defined according to
the following equation:

NMBE =

∑
i(yi−ŷi)
(n−1)

y
× 100 (%) (4)

Table 3 shows the statistical thresholds for the annual predictions. ASHRAE Guideline 14 suggests
hourly and monthly limits using NMBE and CV-RMSE values [30]. The thresholds of NMBE for the
daily and weekly interval data were calculated using linear interpolation from the hourly and monthly
limits [19,30]. The values for the daily and weekly thresholds of CV-RMSE from Table 2 were used in
this paper to include the flexibility of +10%.
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3.3. Comparison between Short-Term Heating and Cooling Monitoring Performance

To further analyze the short-term monitoring periods, the results from this study were compared
with the results from the previous paper [25]. The previous study published in this year developed the
coefficient checking method using change-point models for interval cooling consumption data at the
whole-building level. The same baseline period from 1 September 2009 to 31 August 2010 was used for
the previous study. The previous study concluded that the coefficient checking method was useful
to search the best periods for non-weather-related and weather-related short-term cooling energy
monitoring. While the previous study used electricity use data, this study used natural gas use data
for the coefficient checking method. Thus, in this study, the characteristics of heating consumption
data were effectively compared with cooling data.

The best time periods for short-term monitoring of the heating energy use were compared with the
best time periods for the cooling energy use. To effectively analyze the heating and cooling performance
results, a graphical approach using bar graphs was developed, as shown in the figures of the Section 4.2.
In order to compare the short-term heating and cooling monitoring performance among individual
residences, several residences (units #301, #304, #503, #601, and #602) were selected. The residences
were selected because they passed the thresholds of R2 and CV-RMSE for both the weekly heating and
cooling loads. Residence #602 was selected for the detailed coefficient checking analysis for both the
heating and cooling energy use data.

4. Results

The main results from the coefficient checking method for heating energy use were the best
short-term monitoring periods for non-weather-related and weather-related heating energy consumption.
The shortened monitoring periods were useful to save time and costs to measure non-weather-related
heating load (i.e., non-weather-related coefficient, representing the heating load affected by a range, oven,
clothes dryer, etc.) and weather-related heating load (i.e., weather-related and change-point temperature
coefficients, representing the heating load affected by a heating system, internal heat gain, heating setpoint,
etc.). The predicted annual heating energy use from the change-point model was also compared to the
measured annual usage to verify the accuracy of the coefficient checking method for residential heating
loads. Then, we give a comparison between heating and cooling performance using the best short-term
monitoring periods.

4.1. Short-Term Monitoring Analysis and Annual Prediction

4.1.1. Non-Weather-Related Heating Load

The best time periods were identified for the non-weather-related coefficient (Ew.i.) using the
weekly interval data. The results of the Ew.i. coefficient provides the best time period for data loggers
to conduct non-weather-related heating load monitoring (kW h/day), such as range, oven, clothes
dryer, etc. Compared to the non-weather-related cooling load from the previous study [25], the heating
load was almost zero. In other words, practically, non-weather-related heating load did not occur
during these monthly periods. This was because natural gas was used for space heating only (i.e.,
weather-related heating load) in the case study residences. However, if a residence has a natural
gas-powered range, oven, clothes dryer, etc., non-weather-related heating load will be high.

The annual baseline period (i.e., from September to August) was rearranged into a consecutive
12-month period, from January to December. Then, using the ±100% threshold, the original coefficient
of the non-weather-related heating load was checked by comparing it with each coefficient of the
twelve 3PH models for consecutive monthly periods (e.g., January, January to February, January to
March, etc.). Table 4 shows the results of this analysis according to the starting month, end month,
monthly periods, average difference (%), and rank. Whenever the % difference was within the ±100%
threshold, the month was noted in the end month and period columns. The longest periods were
compared to assign relative ranks to consider reliable results. When the longest periods were the
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same between two or more different periods with the same starting month, the most recent period
that passed the threshold was used in the comparison to assign a rank. If the former and the longest
periods were the same, then the average % differences were compared. We calculated the average
% difference with the % difference of each monthly period when the % difference stayed within the
±100% threshold.

Table 4. Results from the ranking analysis for the non-weather-related coefficient (Ew.i.).

Starting Month Ending Month Period
(Consecutive Months) Average Difference (%) Ranking

January June, August, or November 6, 8, or 11 months −17.6, −60.4, or 17.6 6
February June, September, or December 5, 8, or 11 months −23.6, −3.3, or 49.5 4

March June or February 4 or 12 months −45.1 or Not Applicable (NA) 10
April August, November, or February 5, 8, or 11 months −83.5, −51.6, or −16.5 5
May September or February 5 or 10 months −50.0 or −41.2 2
June October or February 5 or 9 months −70.9 or −35.2 1
July October, April, or December 4, 10, or 12 months −72.5, −63.7, or NA 9

August October, April, or June 3, 9, or 11 months −62.4, −40.7, or 20.9 3
September October, June, or August 2, 10, or 12 months −1.1, 18.7, or NA 8

October September 12 months NA 12
November June or September 8 or 11 months −36.3 or −3.3 7
December July or December 8 or 12 months −16.5 or NA 11

Figure 4 visualizes the results from Table 4. The first rank (the starting month of June, indicated
with the green cross mark) continued within the ±100% threshold (the maximum and minimum of
the y-axis) since February (9 on the x-axis). The first rank also passed the threshold in October and
November (i.e., 5 and 6 on the x-axis), but it did not pass the threshold in December and January (i.e.,
7 and 8 on the x-axis). The second rank (the starting month of May, indicated with the black line-crossed
mark) also stayed within the ±100% threshold since February (i.e., 10 on the x-axis). The second rank
also passed the threshold in September, October, November, and December (i.e., 5–8 on the x-axis),
but it did not pass the threshold in January (i.e., 9 on the x-axis). It is interesting to note that the best
short-term monitoring periods (i.e., ranks #1, #2, and #3) for the weather-independent heating energy
use included the summer months. In addition, the results show that the length of the periods was
9 months or longer, which was much longer than the periods observed for the non-weather-related
cooling load (i.e., two or four months [25]), even though the weather-independent heating energy use
was almost zero.Energies 2020, 13, x FOR PEER REVIEW 10 of 24 
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4.1.2. Heating Slope

The best time periods were identified for the coefficient of the weather-dependent natural gas
use (HS) using the weekly interval data. The results of the heating slope provide the best monthly
periods for data loggers to measure the weather-dependent heating system performance (kW h/day/◦C).
Lower heating slope values are obtained from more efficient heating systems, better duct and wall
insulation, less duct leakage, and less envelope infiltration [31,32].

Table 5 shows the ranking analysis results of the heating slope by starting month, ending month,
the length of time periods, the average difference (%), and rank. Whenever the % difference remained
within the ±2% threshold, the month was noted in the end month and period columns. When the
ranking was the same between two or more cases, the average of the % differences for passed time
periods was considered. In other words, we calculated the % average difference based on the %
difference of each monthly period when the % difference stayed within the±2% threshold. The 9-month
period starting in May and ending in January obtained the highest rank, followed by the 9-month
period starting in September and ending in May. Even though these two periods were both 9 months
long, the period from May to January received the highest rank due to a lower % difference.

Table 5. Results from the ranking analysis for the heating slope coefficient (HS).

Starting Month Ending Month Period
(Consecutive Months)

Average
Difference (%) Ranking

January November 11 months −1.17 8
February January 12 months Not Applicable (NA) 9

March January 11 months 0.82 7
April January 10 months −0.41 3
May January 9 months 0.82 1
June May 12 months NA 9
July June 12 months NA 9

August June 11 months −0.12 5
September May 9 months −1.02 2

October September 12 months NA 9
November September 11 months −0.23 6
December September 10 months −1.76 4

Figure 5 visualizes the results in Table 5. The figure indicates that the May mark for the first rank
continued within the ±2% threshold from January (i.e., 9 on the x-axis), the September dot for the
second rank continued within the±2% thresholds from May (i.e., 9 on the x-axis), and the April mark for
the third rank stayed within the ±2% thresholds from January (i.e., 10 on the x-axis). It should be noted
that more than two marks did not occur close to the upper and lower thresholds before six consecutive
months, which is similar to the trend observed with the marks of the weather-dependent cooling
energy use [25]. Such a result occurs because finding the best short-term monitoring period in terms of
weather-related heating load is difficult and requires the longest periods among the three coefficients.
In addition, it should be interesting that the high ranking (i.e., #1–#3) short-term monitoring periods
for weather-related heating load include even the summer months.
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Figure 5. Heating slope coefficient (HS) differences (%) from the baseline coefficient.

4.1.3. Heating Change-Point Temperature

We also found that the best monthly periods were found for the coefficient of the heating
change-point temperature (Th.p.) (i.e., the heating balance-point temperature) using the weekly interval
data. The results of the change-point temperature coefficient can provide the best months for data
loggers to measure the outside air temperature (◦C) when the onset of heating-related energy use
occurs. The internal heat gain, the heating load, and/or the heating setpoint may affect the heating
balance-point temperature coefficient [31,32].

The results of the starting month, ending month, length of the time periods, average difference
(%), and rank are shown in Table 6. Whenever the % difference remained within the ±2% threshold,
the month was noted in the end month and the period columns. The longest periods were compared
with each other to assign relative ranks to verify the accuracy and stability of the results. When two or
more different cases have the same length of the time periods, the average % difference was applied.
We obtained the average % difference based on the % differences from each monthly period when
the % difference stayed within the ±2% threshold. The 9-month period starting in September and
ending in May had the highest rank, followed by the 9-month period starting in January and ending in
September. Even though they both have the same 9-month period, the period that started in September
has a higher rank because it has one more month that passed the threshold.

Table 6. Results from the ranking analysis for the heating change-point coefficient (Th.p.).

Starting Month Ending Month Period
(Consecutive Months)

Average
Difference (%) Ranking

January September 9 months 0.00 2
February January 12 months Not Applicable (NA) 8

March January 11 months 0.00 5
April January 10 months 0.00 4
May April 12 months NA 8
June May 12 months NA 8
July June 12 months NA 8

August June 11 months 0.00 5
September December or May 4 or 9 months −1.55 or 1.07 1

October September 12 months NA 8
November September 11 months 0.00 5
December July or September 8 or 10 months 1.97 or 0.00 3
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Figure 6 gives a visual representation of the results from Table 6. The September mark for the
first rank stayed within the ±2% threshold from January (i.e., 9 on the x-axis). This also passed the
threshold on May (i.e., 4 on the x-axis), but it was not within the threshold between January and April
(i.e., 1–3 on the x-axis). The January mark for the second rank stayed within the ±2% threshold from
September (i.e., 9 on the x-axis). As previously mentioned, the period that was ranked #1 overcame
period #2 since it contained one more month that passed the threshold. It is noteworthy that the length
of the periods was longer or equal to 9 months from ranking #1 and ranking #2, which were much
longer than the periods observed for the cooling energy use analysis (i.e., two and three months [25]).
Therefore, this result shows that the coefficient checking method found less monitoring periods in
terms of the cooling load. This was because the CV-RMSE for the 3P cooling models were much lower
than the CV-RMSE for the 3P heating models.
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Figure 6. Heating balance-point temperature differences (%) from the baseline coefficient.

4.1.4. Overall Coefficient Rank Analysis and Annual Prediction

Overall coefficient ranks using all the ±100%, 2%, and 2% thresholds for the three coefficients
(Ew.i., HS, and Th.p.) were applied to find the best short-term heating energy use monitoring period.
This information can be used to identify the best period to install data loggers for measuring the overall
residential heating performance. The same ranking approach from the previous subsections (i.e.,
Sections 4.1.1–4.1.3) was applied, except that an overall average difference (%) was used by calculating
the overall average of the % differences from each coefficient.

Table 7 summarizes the results of the overall coefficient ranks. The best period was the 11-month
period starting in November and ending in September. The second and third rankings were also
11-month periods, however, other months did not pass all the ±100%, 2%, and 2% thresholds.
These results show that only one month can be skipped to measure the overall residential heating
performance of an apartment building. On the other hand, the results from the previous study showed
that four months can be skipped when monitoring the overall cooling performance [25].

In addition, the rankings #1–3 were applied to other residences in the case study apartment to
predict annual heating energy use (see Section 4.1.5). The results from the overall coefficient rank
analysis were very useful to analyze overall residential energy performance with reduced amounts of
data, such as 11 months rather than 12 months.



Energies 2020, 13, 3189 13 of 22

Table 7. Results from the ranking analysis for all the three coefficients.

Start Month End Month Period Overall Average
Difference (%) Ranking

January November 11 months 5.47 2
February January 12 months Not Applicable (NA) 5

March February 12 months NA 5
April February 12 months NA 5
May April 12 months NA 5
June May 12 months NA 5
July June 12 months NA 5

August June 11 months 6.92 3
September June or August (except July) 10 or 12 months 6.19 or NA 4

October September 12 months NA 5
November September 11 months −1.18 1
December November 12 months NA 5

4.1.5. Verification and Annual Prediction

In this section, we present the results from a verification process of the coefficient checking method
and an annual prediction using the weekly natural gas use data. Residences #301, #304, #503, and #601
from the apartment building were selected for the verification process and to make the annual prediction
because these units passed both the statistical indices of the goodness-of-fit thresholds. The verification
process was conducted to check if the best heating periods, found in unit #602 with the coefficient checking
method, can be applied to the other case study residences. If the best periods can be utilized for several
residences for short-term monitoring, the time and money required to install the data loggers can be
significantly reduced. As such, this test is important. The process assumes that the residences have similar
characteristics, such as residences located in a high-rise building, and change-point models have the
goodness-of-fit index for the residential interval data, such as the weekly heating energy use data.

The verification process results are shown in Table 8. The first column shows the category for
individual coefficients when they passed each threshold, or overall coefficient when they passed all three
thresholds. The highest rank to the lowest rank resulting from #602 were applied to the four residences
in turn. When the rank passed the threshold, the % differences compared to the 12-month original
coefficients were not calculated anymore, as shown in the last four columns of the table. It was found that
all the residences (#301, #304, #503, and #601) passed the ±100%, 2%, and 2% thresholds within ranking
#3 from the best periods at #602. For the heating weather-independent coefficient (Ew.i.), the 9-month
period starting in June and ending in February (i.e., ranking #1) was acceptable for #301, #304, and #601.
The 11-month period starting in August and ending in June (i.e., ranking #3) was acceptable for #503.
For the heating slope coefficient (HS), the 9-month period starting in May and ending in January (i.e.,
ranking #1) was acceptable for #301 and #601. The 11-month period between August and the end of June
(i.e., ranking #2) was acceptable for #503. For the heating change-point temperature coefficient (Th.p.),
the 9-month period starting in September and ending in May (i.e., ranking #1) was acceptable for all of the
case study units. Thus, the 9-month period between September and the end of May could be an important
period for the heating balance-point temperature heating slope coefficients.

Finally, for the overall coefficient approach, the 11-month period starting in November and ending
in September (i.e., ranking #1) was acceptable for unit #304. The 11-month period between January
and the end of November (i.e., ranking #2) was acceptable for residences #301 and #601. The 11-month
period starting in August and ending in June (i.e., ranking #3) was acceptable for #503.

Then, using the best heating periods obtained from the overall coefficient rank analysis, annual
predictions were calculated (see Table 9). In other words, the best periods that resulted from the overall
coefficient ranks in Table 8 were applied to the four residences. The category column shows the applied
periods from the passed ranks. The 12-month baseline period was also applied to compare with the
results from the best periods. Every case study unit passed the statistical indices for NMBE (±6.67%)
and CV-RMSE (40%), as shown in Table 3.
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Table 8. Results from the verification process.

Category Coefficient Ranking
from #602

Applied
Starting Month

Applied
Ending Month

Applied
Period

#301
Difference (%)

#304
Difference (%)

#503
Difference (%)

#601
Difference (%)

Individual Ew.i. 1 June February 9 months −16.4 −67.3 −111.5 −26.7
2 May February 10 months −149.2
3 August June 11 months 16.4

HS 1 May January 9 months 1.6 3.5 5.8 1.7
2 September May 9 months −1.2 −0.8

Th.p. 1 September May 9 months 0.4 −0.4 0.4 1.7

Overall Ew.i. 1 November September 11 months 46.2 −6.7 −80.5 −5.8
HS 13.3 0.1 4.6 −3.1
Th.p. −12.2 0.0 −4.1 3.4
Ew.i. 2 January November 11 months 3.5 −107.1 −40.0
HS −1.5 −8.7 1.2
Th.p. 0.0 4.1 0.0
Ew.i. 3 August June 11 months 16.4
HS −0.1
Th.p. 0.0

Table 9. Results from the annual prediction analysis.

Residence Category Applied
Starting Month

Applied
Ending Month

Difference (%)
R2 CV-RMSE

(%)
NMBE

(%)

Monitored
Annual Natural

Gas (NG)
Use (kW h)

Predicted
Annual NG Use

(kW h)

Annual Difference
(%)

Ew.i. HS Th.p.

#602 Baseline January December Not Appli-cable (NA) NA NA 0.89 31.7 0.6 3541.5 3468.2 −2.1
Best period

(Ranking #1) November September −3.3 −0.2 0.0 0.89 31.8 0.9 3541.5 3458.6 −2.3

#301 Baseline January December NA NA NA 0.92 32.6 0.2 6833.9 6873.5 0.6
Best period

(Ranking #2) January November 3.5 −1.5 0 0.92 32.7 1.7 6833.9 6775.3 −0.9

#304 Baseline January December NA NA NA 0.95 22.7 −0.2 6006.7 5988.7 −0.3
Best period

(Ranking #1) November September −6.7 0.1 0 0.95 22.8 −0.1 6006.7 5982.6 −0.4

#503 Baseline January December NA NA NA 0.92 32.9 −0.1 6859.5 6914.9 0.8
Best period

(Ranking #3) August June 16.4 −0.1 0 0.92 32.8 −0.3 6859.5 6925.8 1.0

#601 Baseline January December NA NA NA 0.93 26.1 −0.2 4496.3 4553.5 1.3
Best period

(Ranking #2) January November −40 1.2 0 0.93 26.4 −1.1 4496.3 4590.8 2.1
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In summary, the results showed that the coefficient checking method was effective for residences in
the multi-family residential building type to identify the best monthly periods for non-weather-related
and weather-related heating load, as well as heating change-point temperatures. This was very
meaningful to show how the short-term energy monitoring period ranking results from one residence
can be applied to other residences in the same apartment for non-weather-related, weather-related,
and overall residential heating energy performance. It is worth noting that the previous study [25]
found that residences should have similar change-point temperatures in order to obtain better results
when the cooling coefficient checking method was used. For this study, residences #301, #304, #503, #601,
and #602 had heating change-point temperatures of 17.6, 19.1, 17.6, 21.2, and 22.7 ◦C, respectively. Thus,
the best monthly periods from the heating coefficient checking method were properly applied to each
selected residence in the case study apartment due to the similar heating change-point temperatures.

4.2. Comparison between Short-Term Heating and Cooling Energy Monitoring Performance

A graphical approach was developed to compare the best energy monitoring periods when cooling
and heating energy performance was considered. The main findings from this comparison were
different monthly and seasonal periods between short-term heating and cooling energy monitoring.
Figures 7–9 show the results from the comparison between the heating and cooling performance for
short-term monitoring data from unit #602. The perpendicular line patterns on the bars indicate the
starting month of the monitoring period that was determined for each coefficient. The orange and
blue-colored bars represent the time periods for heating and cooling loads, respectively. The heating
and cooling periods show the significant differences on the months in Figure 7 through Figure 9.
For example, for the non-weather-related energy monitoring periods, the starting month of June
(Summer) with 9 months were required for heating while the starting month of October (Fall) with
2 months were required for cooling (see the upper two bars in Figure 7).
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Figure 7. Comparison of the best periods from ranking #1 for unit #602.
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Figure 9. Comparison of the best periods from ranking #3 for unit #602.

The discontinued spaces where the bars are not presented on the x-axis show the months when it
is not necessary to measure heating or cooling energy use performance. In other words, monitoring
costs can be saved because monitoring is not needed during these months. Unfortunately, when both
the heating and cooling loads’ interval data were considered, all 12 months were required to analyze
all the coefficients. In addition, all 12 months were required for the heating energy use data. In other
words, the orange bars do not have the common months that are not presented on the x-axis from
Figure 7 through Figure 9. However, it was observed that the time periods from March to July in
Figure 7 (i.e., ranking #1), from March to May in Figure 8 (i.e., ranking #2), and from March to April in
Figure 9 (i.e., ranking #3) do not require monitoring systems or data loggers to be installed in order to
analyze the cooling energy use data. This graphical approach is very useful to identify the months
when it is unnecessary to perform short-term monitoring in order to save time and costs. In other
words, the blue bars have the common months that are not presented on the x-axis from Figure 7
through Figure 9.

In addition, the graphical approach is useful to easily compare the length of the time periods
required to identify the weather-independent energy use, the weather-dependent energy use, and the
change-point temperatures. Typically, the length of the time period required for the cooling energy
performance was shorter than the heating energy performance. Particularly, the lengths of the periods
for the non-weather-related cooling load and cooling change-point temperature were much shorter.
For example, the highest-ranked time periods for the weather-independent cooling load and cooling
balance-point temperature were 2 months long, while the periods for the heating energy use data were
9 months long. Using the graphical approach, it was also observed that the starting months were more
distributed for the heating energy use data, while the starting months for the cooling energy use data
were not distributed. The starting months for the cooling slope, the cooling balance-point temperature,
and the overall cooling approach were the same, or within a difference of one month.

Figures 10 and 11 show the graphical approach used to compare the best short-term monitoring
periods from unit #602 to evaluate if the identified short-term periods could be applied to the
other residences (#301, #304, #503, and #601). The #1 and #2 ranked time periods from #602 were
properly applied to search the best energy monitoring periods at #301, with the exception of the
non-weather-related cooling coefficient at the ranking #7 (see the upper plot in Figure 10). The figure
shows that the cooling energy use data does not need to be collected between March and June.
The results were similar for unit #304. The #1 and #2 ranked time periods from unit #602 were properly
applied to search the short-term energy monitoring periods at #304, with the exception of the cooling
balance-point temperature and overall cooling coefficients (i.e., failed) (see the lower plot in Figure 10).
The short-term monitoring periods from #602 did not work for the cooling change-point temperature
coefficient and the overall cooling coefficient because the cooling balance-point temperature of 24.1 ◦C
at #602 was significantly different from the balance-point temperature of 7.6 ◦C at #304.
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Figure 10. Comparison of the best periods for unit #301 (upper) and unit #304 (lower).
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At #503, with the exception of the cooling balance-point coefficient, the time periods in rankings
#1 through #3 from #602 were properly applied to search the best monitoring periods, as shown
in Figure 11 in the upper plot. The figure identifies that the month of July is not necessary when
collecting heating energy use data. In residence #601, the #1 and #2 ranked time periods from #602
were able to completely describe the short-term monitoring periods (see the lower plot in Figure 11).
For this case, March to May can be excluded when collecting cooling energy use data. This graphical
approach is very useful for identifying the time periods when monitoring can be applicable and
highlighting the unnecessary months to save time and costs. Furthermore, the graphical analysis
approach from the coefficient checking method can also be useful to estimate missing heating and
cooling energy use data from other residences that have similar characteristics, such as residences
in a high-rise apartment building. In summary, the comparison analysis, including the graphical
approach, shows the effectiveness of the coefficient checking method because the best short-term
energy monitoring periods for heating and cooling loads are significantly different even though
the residences have the same building characteristics. Using the statistical coefficients along with
the physical meanings, the best short-term monitoring periods can be found by a specific category,
such as non-weather-related and weather-related heating and cooling energy use as well as estimated
occupancy, building system, and/or appliance types and schedules. Furthermore, it was observed
that the best short-term monitoring periods from unit #602 were well applied to the other residences
(#301, #304, #503, and #601) for both heating and cooling loads. This shows the applicability of the
coefficient checking method if residences have similar building characteristics, and the change-point
models provide the goodness-of-fit results for residential interval energy use data.

5. Discussion

In this paper, we presented the approaches and results from the heating coefficient checking
method using interval natural gas use data. A 3PH model was used to estimate heating loads from the
49 residences of a case study high-rise residential building. Using the goodness-of-fit indices for 3PH
models and the resultant cases from the previous study [25], the five residences were selected. Then,
the three coefficients of the 3PH models were used to search the best periods in terms of short-term
energy monitoring on non-weather-related and weather-related heating energy use. We found that
9-month periods were required to search the best short-term heating energy monitoring periods when
non-weather-related and weather-related heating loads and heating change-point temperatures are
considered. In addition, the 9-month to 11-month periods were needed for the analysis to apply to
other case study residences. In the previous study, the short-term monitoring periods for analyzing the
cooling energy performance were 2 months, 7 months, and 2 months for each cooling coefficient [25].
Between 2-month to 10-month periods of the short-term cooling energy monitoring were needed to
apply the same analysis to other case study residences.

Based on the best monthly periods, the unnecessary monitoring months (i.e., when the data
logger is not necessary to observe heating and/or cooling energy use performance) were also found.
The graphical approach (see Figure 7 through Figure 11) effectively identified the months when it
is unnecessary to perform short-term monitoring. Time and costs can be saved by not installing or
stopping the monitoring systems during the unnecessary months.

However, this study showed some limitations. The analysis approach of this study should consider
two factors: (1) the residences should have similar characteristics, as would be expected of residences
in the multi-family residential building type, and (2) goodness-of-fit indices for residential interval
energy use data, such as weekly heating energy use data, should be acceptable for the change-point
models. In addition, the impact on the location of each residence was not considered. For example,
the residence on the fourteenth floor will be more affected by heat gains from the solar radiation,
compared to the residence on the second floor. To improve the current coefficient checking method,
we will cover those limitations by developing new statistical models.
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6. Conclusions

We presented the approaches and results from the heating coefficient checking method, as well
as the comparison with the results from the cooling coefficient checking method in the previous
study [25]. Using the statistical coefficients along with the physical meanings from the change-point
models of the coefficient checking method, the best short-term monitoring periods were found by
specific categories, such as non-weather-related and weather-related heating and cooling energy use.
The physical meanings from the coefficients could be used to estimate occupancy, building system,
and/or appliance types and schedules. This will be very helpful when an energy auditor starts the
process to find specific energy-saving opportunities at residences.

In addition, we found that the best short-term monitoring periods from unit #602 were well applied
to the other residences (#301, #304, #503, and #601) for both heating and cooling loads. This shows the
applicability of the coefficient checking method. This would be very useful if monitoring equipment
met malfunctions (i.e., missing data) at some residences in the same apartment. An energy auditor can
use energy consumption data from one residence to apply to others. It was also found that the period of
short-term energy monitoring can be used to effectively collect targeted data for an annual prediction.

From the comparison analysis, it was found that the best short-term energy monitoring periods
for heating and cooling loads were significantly different. The differences can provide an energy
auditor with the useful information to reduce time and costs by avoiding unnecessary months for
installing monitoring systems for heating and/or cooling loads. Furthermore, it is noteworthy that the
short-term heating energy monitoring periods were much longer than the cooling energy monitoring
periods. Such a result can be caused because the heating energy use data had higher CV-RMSE values,
even though the R2 values of the heating energy use were actually higher than the cooling energy
use. Therefore, it was observed that CV-RMSE is a more important statistical index for the coefficient
checking method. For a future study, specific reasons for the period differences between heating and
cooling loads will be identified. The actual time and costs saved from the coefficient checking method
will also be quantified.

Even though the coefficient checking method has some limitations, the approach provides a simple
evaluation using the coefficients from change-point models. As a result, the analysis approach used in
this study will help enhance energy auditing processes to identify both the best heating and cooling
periods for short-term monitoring, which can save time and cost by avoiding unnecessary monthly
periods for collecting interval heating and/or cooling energy performance data. In addition, the detailed
comparison between the heating and cooling monitoring periods will be helpful to effectively collect
targeted data for energy audits and annual predictions in multi-family residential buildings.
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