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Abstract: In this study, a battery management system (BMS) is developed for reused lithium-ion battery
(RLIB). Additional enhancing functions of battery management are established, i.e., estimation of
life-sensitized parameters and life extension. Life-sensitizing parameters mainly include open-circuit
voltage (OCV) and internal resistances (IRs). They are sensitized parameters individually relative to
state of charge (SOC) and state of health (SOH). For estimating these two parameters, an adaptive
control scheme is implemented in BMS. This online adaptive control approach has been extensively
applied to nonlinear systems with uncertainties. In two experiments, OCV and IRs of reused battery
packs are accurately extracted from working voltage and discharge current. An offline numerical
model using a schematic method is applied to verify the applicability and efficiency of this proposed
online scheme. Furthermore, a solution of actively extending life by using an ultracapacitor to share
peak power of RLIB through adjusting duty ratio is also proposed. It is shown that this enhancing
battery management for RLIB can properly estimate OCV and IRs, and actively extend the life of the
RLIB in two experiments.

Keywords: reused battery; adaptive control theory; battery management system (BMS); internal
resistances; open-circuit voltage

1. Introduction

Well-known greenhouse gas (GHG) emissions, due to extensive use of diesel and gasoline,
threaten our environment [1]. A large amount of CO2 from transportation is gradually decreasing [2,3].
Meanwhile, electric vehicles (EVs) have been identified as being a key technology in reducing emissions
and energy consumption in the transport sector [4]. Most countries are stepping up the introduction of
electric vehicles, and are trying to progressively replace traditional fuel vehicles with EVs. However,
with the rapidly increasing popularity of various EVs, the demand for lithium-ion batteries (LIBs)
increases annually [5,6]. Sales of pure electric cars rose by nearly 14% in 2018 compared to 2017,
while hybrid and plug-in hybrid sales rose by more than 20%. Now, more than 1.15 million EVs
are on the roads today in the world [7]. Consequently, the quantity of wasted LIBs is also quickly
increasing [8]. However, wasted battery packs are still available for energy balancing in thermal
power plants, due to their residual electrical capacity [9]. Reuse of LIBs has become crucial in recent
years [10], since renewable energy sources such as solar energy and wind energy are intermittent in
nature. They have to keep continuous and reliable supply [11–13]. One of the best ways of stabling
these renewable resources is to be stored in batteries. Among them, LIB is widely accepted due to its
high energy density, long lifespan, and high efficiency [8,14,15]. However, the lifecycles of reused LIBs
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(RLIBs) become short, because the geometrical structure of the battery is possibly damaged by cycling
use [16]. Therefore, an effective battery management system (BMS) for RLIB is compulsory, so that
batteries can operate safely and reliably, preventing any physical damages and cell unbalancing [17].
Besides this, the state of charge (SOC) in BMS is considered as one of the critical and important
basic parameters [14,18–20], which indicates how much remaining capacity is left inside a battery.
Accurate estimation of SOC not only helps to provide information about the charge current and
remaining performance of the battery, but also gives assurance of reliable and safe operation of the
battery. However, the performance of the battery is highly affected by aging, temperature variation,
and charge/discharge cycles, which make the task of estimating accurate SOC very challenging [21].
Therefore, we apply an adaptive control algorithm [16] for online estimation of key parameters,
which are known as simple and easy to implement in BMS. For reused batteries, online estimations of
electrochemical related parameters, such as internal resistances, are capable of real-time monitoring
of the safety of reused batteries, rather than normal battery management systems for new batteries.
Besides this, for prolonging a RLIB’s life, one ultracapacitor (UC) is connected and controlled by BMS
to share peak load power. One simple pulse-width modulation (PWM) module is adopted to adjust the
duty ratio of RLIB. Verification of this battery management for RLIB is conducted by systematic testing
on bench by monitoring online results of estimation. It is expected that this study will contribute to
promoting the systematic reuse of wasted LIB in industry before the chemical method.

2. Enhancing Battery Management of Extending Life for RLIB

Generally, the states of LIB monitored by battery management systems include working
temperature, voltage and current, and safety functions to avoid any overcharge/over-discharge.
Relative functions of BMS can be categorized into hardware side and software side, as shown in
Figure 1. In the hardware side, in case of centralized circuit BMS, cell voltage and temperature are
measured by sensors in the external board, MMU (module monitoring unit), as shown in Figure 2a,b.
Total data from the slave MMU are collected in the master BCU (battery control unit) for estimating
SOC and SOH (state of health) through SPI (serial peripheral interface) protocol, as shown in Figure 2a.
The analog-to-digital converter (ADC) measures the working current of the battery. This work is
implemented based on Renesas Electronics Corporation ISL78600, as shown in Figure 2b. ISL78600 IC
supervises up to 12 series-connected cells in the MMU. For keeping the high-voltage safety of RLIB,
one insulation-resistance-measure device is attached on the BCU, as shown in Figure 2a. Besides this,
controller area network (CAN) and universal asynchronous receiver transmitter (UART) protocols are
also adopted. Through these functions of communication, the online real-time states of the battery,
such as working current, SOC, SOH, and temperature, are gathered and transferred to the display
or upper-level controller. In the software side, an algorithm embedded in the BCU is developed for
estimating SOC and SOH by using basic battery parameters. Cell balancing is conducted in the MMU.
A real-time simulator is supported to achieve automatic data acquisition and processing, to further
verify the algorithm [22].

In this study, additional enhancing battery management is studied in reusing a large-scale
automotive LIB. Functions of life estimation and life extension are highlighted for an RLIB. The schematic
hardware of life extension is listed in Figure 2a. One proper ultracapacitor (UC) is parallelly connected
with the BMS under the PWM (pulse-width modulation) control, which is used to switch the duty
ratio of the IGBT (insulated gate bipolar transistor) in unit time. The application of the ultracapacitor
achieves sharing of the RLIB’s peak power so as to decrease the depth of discharge (DOD), and hence
extends the lifecycle (i.e., SOH) of the RLIB. The duty ratio is a stationary value in every control
case. A proper duty ratio can be estimated by calculating from the demand power, sustained time,
and maximum power from the battery. The operation board of the BCU is shown in Figure 2c.
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3. Adaptive Control Scheme for Estimating OCV and IRs

Online estimation of parameters open-circuit voltage (OCV) and internal resistances (IRs) of new
battery is illustrated in [16]. These two parameters are relative to SOC and SOH [23,24]. The adaptive
control algorithm guarantees estimating error converges to zero, by applying Lyapunov stability criteria.
As a result, OCV and IRs can be precisely estimated from input parameters, i.e., working voltage and
current. The detailed mathematical modeling in Simulink/MATLAB, according to an adaptive control
scheme, is shown in Figure 3. The procedure is briefly summarized as below. First, the battery voltage
can be expressed as:
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electrical circuit model (ECM) shown in Figure 3. The projected parameters vb and RS are assumed as
functions of SOC, T, and h, and change with time. In addition, Equation (1) can be simplified with the
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(1) Small deviation of every battery’s discharge is assumed, compared to rated useful capacity,
thus ∂SoC/∂t ≈ 0.

(2) In normal operating conditions, deviation of cell temperature, T is slow by using a fan,
thus ∂T/∂t ≈ 0.
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Equation (4) can also be written as a vector form.

.
vb = θTX (5)

θT = [θ1 θ2 θ3 θ4]
T =

[
Rs

Rs + Rt

CtRt

1
CtRt

voc

CtRt

]
(6)

XT =

[
−

..
ib − ib − vb 1

]
(7)

Equation (6) is rewritten as Equation (8) with respect to every estimated state
.
v̂b

.
v̂b = θ̂

TX̂ + u (8)

where X̂T = [−
..
ib − ib − v̂b 1], u is adjustable for input parameters. θ is estimated results of

target parameters.
The adaptive control algorithm is based on tracking input signals to modify the target parameters

in control states, so that the convergent criteria are satisfied as below:

lim
t→∞

e = lim
t→∞

(vb(t) − v̂b(t)) = 0 (9)

Here, Rt and Ct represent first-order IR and capacitance, respectively, based on ECM. If the thermal
effect of temperature is not considered, ∂T/∂t ≈ 0 is obtained.

The adaptive control algorithm shown in Figure 3 is introduced to optimize the unknown target
parameters of Rs, Rt, and OCV in Equation (4). A filtering process is used to improve the measured
noise and enhance the estimation reliability. In the estimation process, IR is a sensitized parameter of
lifecycle, hence it is used to indicate the deviation of lifecycle. An OCV curve related to the battery’s
useful capacity is applied to estimate the remained capacity of SOC. The algorithm is discretized, and
embedded in BMS.

4. Setup of Test Bench

There are limitations of an electrochemical battery’s performance. The charge/discharge response
of a lithium-ion battery is much slower than a UC. Therefore, for reusing a lithium-ion battery,
a high-power UC can support sudden peak current, and extend the life of an LIB. To take a simple
parallel combination between an RLIB and a UC, the ultracapacitor is operated as a dc-side buffer for
supporting peak current. In case of using a DC-DC converter, it allows more flexible management
between an RLIB and an ultracapacitor. However, it is not competitive in reusing cost. Consequently,
a simple hybrid parallel connection is established in this study. PWM control is applied for adjusting
the duty ratio of an RLIB. A UC connected with the BMS directly is to improve the life of the LIB,
by restricting the voltage drop or DOD. RLIB packs with rated voltage of 52 V and 50.4 V are employed,
respectively, as shown in Figure 4a. The first pack of 52 V uses a commercialized BMS for reference,
and the other one of 50.4 V uses an in-house BMS. Figure 4b shows the developed circuit of the BMS
with a PWM control in this study. If the duty ratio per unit time of battery is selected as 40%, then the
UC’s load becomes 60%.
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5. Results

5.1. Life Extension Test by Using An Ultracapacitor

An ultracapacitor is a link between source and load. When used in parallel with the battery,
it smooths out the load on the battery whilst improving the source impedance seen by the load.
This may be viewed as the battery supplying the energy and the ultracapacitor supplying the short
term power. Furthermore, to use an ultracapacitor matters in a battery’s life extension, due to the
constrained voltage drop. Here, the duty ratio controls the loading between battery and ultracapacitor.
Figure 5a,b shows voltage drop of 52 V/10 Ah battery pack, versus three duty ratios. For the first
case, with a duty ratio of 20%, it presents the duty ratio of the battery’s loading as 80%, and on the
contrary, the UC’s loading is 20%. In cases of duty ratios of 20%, 60%, and 80%, the terminal voltages
were 47.4 V, 47.7 V, and 47.9 V, respectively. It shows the increased effect of constrained voltage drops
of battery when increasing the duty ratio of ultracapacitor. Similar cases of 50 V battery pack were
measured and are shown in Figure 6a,b. In Figure 6a,b, the blue line is the battery’s discharge, and the
red line is the battery in parallel connection with UC, by setting to 75% duty ratio. The UC effectively
reduces the voltage drop and decreases the DOD of the battery.
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5.2. Estimation of OCV and IRs

Two experiments in this section were carried out for confirming the achievability for developing
an adaptive control scheme on monitoring of a reused battery’s parameters, e.g., IRs and OCV
simultaneously. Here, lithium-ion batteries were selected and integrated in nominal voltages of 52 V
and 50.4 V modules to simulate reused batteries. Working voltage vb and current ib of a reused battery
were inputs required. According to the electrical circuit model (ECM), the estimated battery voltage
was formulated through estimating model parameters, θ̂i=1∼4. The target estimating parameters
were voc(OCV) and internal resistances (Rs and Rt). voc, Rs, and Rt can be extracted from online
estimation algorithms.

5.2.1. Experiment 1

The objective of this experiment was to verify the accuracy of the proposed method of estimating
IRs and OCV. One module of 12.6 V in a 50.4 V battery pack was used and composed by a random
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discharge current. Each discharge cycle was lower than 5 s so as to simulate a random load. Figure 7a
shows voltage drop, battery current, and estimating error separately in a, b, and c. The estimating
error tends to zero after 150 s.
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Figure 7. (a) Terminal voltage, discharge current, and estimating error; (b) estimating model parameters,
θ̂i, i = 1~4; (c) estimated Rs, Rt, and voc in Experiment 1.

The trajectories of estimating parameters are illustrated in Figure 7b, and the parameters, θ̂1,θ̂2, θ̂3,
and θ̂4 approach values of 0.1, 19.99, 100, and 1127, respectively. Rs, Rt, and OCV are listed in Figure 7c.
The trajectory of ohmic resistance relates the parameter, θ̂1. The polarized resistance converges to
0.03 Ω, and the OCV converges gradually from 11.27 to 11.44 V.

5.2.2. Experiment 2

To validate the compatibility of adaptive control scheme in an EV level’s voltage, a 50.4 V battery
pack was applied in Experiment 2. The working voltage, current, and estimating error are shown in
Figure 8a. The estimating error has converged to near zero in 150 s. The trajectories of the estimating
parameters are listed in Figure 8b, the steady parameters, θ̂1,θ̂2, θ̂3, and θ̂4 converge to 0.078 Ω, 7.45 F−1,
99.55 S−1, and 4950 V−1, respectively. The target parameters of Rs, Rt, and OCV are plotted in Figure 8c.
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deviation between online and offline values in the left-hand side of Figure 11b might be due to the 
heat accumulated in the battery, but the trend is identical. In this study, the algorithm of OCV and 
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as expected. 

Figure 8. (a) Terminal voltage, discharge current, and estimating error; (b) estimating model parameters,
θ̂i, i = 1~4; (c) estimated Rs, Rt, and voc in Experiment 2.

For checking online battery management for a battery, an offline numerical model based on a
schematic method [16] was established, and is shown in Figure 9. From sudden voltage drop and voltage
rise in one discharge, it is possible to roughly estimate Rs, Rt, and Ct in the figure. Then, the analytical
solution of voltage drop can be derived, as listed in Figure 9. In experiment 2, battery discharges 5 A
for 12 min and rests for 1 h, then repeats this pattern for 12 h, as shown in Figure 10a. In Figure 10b,
the red and blue lines represent the offline numerical and online estimated results, respectively. Trends
of estimating OCV and IRs estimation are close to the offline numerical model. The deviation of OCV
is roughly within 2%. Furthermore, the battery pack is composed of continuous discharging patterns,
as shown in Figure 11a. For OCV, the estimated values, in the green line, are compared with offline
numerical results, in the red line, as shown in Figure 11b. The deviation between online and offline
values in the left-hand side of Figure 11b might be due to the heat accumulated in the battery, but the
trend is identical. In this study, the algorithm of OCV and internal resistance assumes the battery
pack is well-ventilated and isothermal. Temperature is not considered in the calculation. As for Rt,
the online values are almost overlapped with offline results, as expected.
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6. Conclusions

In this study, an in-house BMS is developed for RLIB. Additional enhanced battery management
is established. Adaptive control schemes in the BMS are established for estimating a battery’s IRs and
OCV relative to key parameters of RLIB, e.g., SOC and SOH, respectively. Here, IRs and OCV of a
battery pack are accurately extracted from working voltage and discharge current in two experiments
in this study. An offline numerical model using the schematic method is applied to verify the results
of the online proposed scheme. In experiment 2, results of online estimations regarding OCV and
IRs show good agreement with offline numerical model. The deviation of OCV is roughly within 2%.
Furthermore, a hybrid battery pack using a UC is proposed to share peak power of RLIB by adjusting
the duty ratio in the BMS. It shows more constrained voltage drops of battery when increasing the
duty ratio of UC. The UC effectively reduces the voltage drop and decreases the DOD of the battery
in the life extension test. It is shown that enhancing battery management for an RLIB can properly
estimate OCV and IRs, and actively extend the life of the battery. For a new battery, offline estimation
of parameters such as OCV and IRs meet the requirement. However, enhancing online management is
indispensable on safety. This study proves the achievability of this managing solution for RLIBs. In the
next phase, an RLIB integrated with this in-house BMS will be arranged, for storage of the intermittent
renewable energies in site, in order to evaluate the performance.



Energies 2020, 13, 3306 14 of 15

Author Contributions: Conceptualization: W.-Y.S. and Y.-H.C.; methodology: Y.-H.C.; software: W.-P.Y.;
validation: W.-P.Y., W.-Y.S., and Y.-H.C.; formal analysis: W.-P.Y., W.-Y.S., and Y.-H.C.; writing—original draft
preparation: W.-P.Y.; writing—review and editing: W.-Y.S. and S.-M.J.; supervision: Y.-H.C. and S.-M.J.; project
administration: W.-Y.S.; funding acquisition: W.-Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was financially supported by the Chung Yuan Christian University (Project No: 109609432).

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

DOD depth of discharge, %
ECM electrical circuit model
IGBT insulated gate bipolar transistor
vb voltage of battery, A
voc open-circuit voltage (OCV), V
PWM pulse-width modulation
RLIB reused lithium-ion battery
Rs first-order, ohm
Rt second-order, ohm
ib battery current, A
vc voltage across RC circuit, V
IRS current across RC curcuit based on ECM, A
SoC state of charge, %
T temperature, K
h historical data
u adjustable for input parameters
UC ultracapacitor
θ estimated results of target parameters
Ct first-order capacitance based on ECM, C
Subscripts: b, c, oc, s, t: battery, capacitance, open-circuit, first-order, second-order parameter, based on ECM.
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