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Abstract: This paper provides the result of a techno-economic study of potential energy storage
technologies deployable at wind farms to provide short-term ancillary services such as inertia
response and frequency support. Two different scenarios are considered including a single energy
storage system for the whole wind farm and individual energy storage for each wind turbine (located
at either the dc or the ac side of its grid-side converter). Simulations are introduced to check the
technical viability of the proposal with different control strategies. Power and energy capability
requirements demanded by both specific services are defined for each studied case based on present
and future grid code needs. Based on these requirements, the study compares a wide range of
energy storage technologies in terms of present-day technical readiness and properties and identifies
potential candidate solutions. These are flywheels, supercapacitors, and three chemistries out of the
Li-ion battery family. Finally, the results of a techno-economic assessment (mainly based on weight,
volume, lifetime, and industry-confirmed costings) detail the advantages and disadvantages of the
proposed solutions for the different scenarios under consideration. The main conclusion is that none
of the candidates are found to be clearly superior to the others over the whole range of scenarios.
Commercially available solutions have to be tailored to the different requirements depending on the
amount of inertia, maximum Rate of Change of Frequency and maximum frequency deviation to
be allowed.

Keywords: energy storage; wind power; ancillary services; inertia emulation, frequency support

1. Introduction

In recent years, the amount of converter-based power generation has increased steadily [1], while
at the same time conventional synchronous-based power stations are being decommissioned [2]. In this
context, wind power is one of the most successful generation technologies in the coming low-carbon
power generation mix. In Europe, the total amount of installed wind capacity grew from 65 GW in
2008 to 205 GW in 2019, yielding 417 TWh of production that year, and supporting 15% of the EU’s
electricity demand [1].

A high degree of penetration of converter-based power generation changes the standard power
system operation, control, and protection [2,3]. One of the main consequences of this new scenario
is the reduction of the total system inertia [4]. Clear examples of this tendency are small electrical
systems like Ireland [5] or Great Britain [3] that have experienced a steady reduction of their systems’
inertia, a trend expected to continue during the following years. It is important to recall that inertia in
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power systems comes from the rotating mass of its synchronous machines, turbines, and generators.
This rotating mass releases or absorbs energy in the case of a power imbalance event and slows the
frequency change [6]. Some system operators believe that this reduction in system inertia will endanger
their grid operation capability and, therefore, future converter-based systems are likely to be required
to provide inertia response (IR) [7]. Some calculations have already been published on the minimum
inertia requirements to cope with the union for the co-ordination of transmission of electricity (UCTE)
limits and also the minimum synchronous generation to keep connected and assure the response [8].
Alternatives such as active dispatch [3] or synchronous condensers [9] have also been considered and
in some cases combined. Ref. [10] introduces a Gaussian particle swarm optimization algorithm to
simultaneously co-optimize the dispatch of synchronous generators and their frequency services, wind
reserve, and synchronous condensers.

Another service that might need to be reshaped in a grid with high penetration of converter-based
generators is the frequency support (FS) or primary frequency control [11]. Currently, synchronous-based
power stations with a fast governor action, e.g., combined-cycle power stations, keep the power system
balance by increasing or reducing the amount of power injected by the gas or steam turbine engine in
the few seconds after a transient frequency event. As the relative capacity of synchronous machines
decreases, in the system converter-based generation is also being studied for the potential to deliver FS [12].
Renewable energy sources and energy storage systems (ESS) have been recognized for the potential to
provide a mixture of inertial and frequency support services. Ref. [13] identifies both as devices that the
Australian Electricity Market Operator should pursue to deliver fast frequency response in a study that
considered the benefits and requirements of inertial based frequency support.

The provision of IR and FS implies the converter must have access to a sufficient source of
instantaneous energy. Many control strategies assume an infinite source at the DC link, often
representing either a WT or a WT plus ESS [14-16]. This assumption is not appropriate as (1) using
WT kinetic energy has been shown to increase vibrations at structural frequencies [17], (2) an existing
converter designed for a WT could not accommodate its nominal power output plus the power required
for inertial provision from an ESS [18], and (3) the control parameters can be affected if the DC link
voltage stability is not granted [19]. It seems clear then that such a service will require the introduction
of a well-defined ESS and, potentially, increasing the size of the wind turbine’s power converters [20].
In some cases, the installation of a new power converter might be even necessary [21]. ESS are
becoming a solution for multiple grid (front-of-the-meter) and behind-the-meter applications around
the world due to technological price reduction [22]. ESS are also supporting renewable integration by
reducing the inherent production variability of technologies such as wind and solar. However, the
selection of a specific ESS for IR and grid FS in wind farms is quite a specific topic that has not been
explicitly answered in the open literature to date. This work intends to cover this gap by introducing a
techno-economic discussion of the potential ESS technologies to be deployed at wind turbine or wind
farm level to provide IR and FS. In this sense, the initial analysis on the power and energy capacity
requirements to offer these services paves the way to the ESS selection and subsequent discussion.

The paper starts with a review of the current state of renewable energy sources interfaced with ESS
and their provision of virtual inertia in Section 2 before describing the inertia response and frequency
support services in Section 3. Section 4 presents the power and energy capacity requirements to provide
these services, introduces some simulations on inertial responses provided by a WT integrating an
ESS and, then, various candidate ESS technologies are identified according to the requirements and
specifications. Section 5 focusses on the technical description of these candidates whereas in Section 6
a technical (weight, volume, and lifetime) and cost discussion and comparison among the solutions is
provided. Finally, some concluding remarks are presented in Section 7.
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2. Review of the Current State of Literature Regarding Renewable Energy Sources Interfaced
with Energy Storage and Their Provision of Virtual Inertia

Different power converter control strategies are proposed in the literature to provide IR and FS.
First approaches were suggested in [14,15]. Authors proposed the addition of two control loops to the
standard vector control of the converter, one for the IR and another for the FS. They termed this strategy
power voltage current control for inertia emulation (PVCCI) and it proved its potential to replace
the inertia previously provided by synchronous machines during frequency events. PVCCl is a grid
following approach that, despite being capable of emulating inertia, must synchronize with the grid
frequency and appears as a current source. A different proposal implements the well-known frequency-
and voltage-drooping mechanisms into the so-called virtual synchronous machine (VSM), utilizing
low order mechanical and electrical models to represent the dynamic response of a synchronous
generator [16]. VSM does not require grid synchronization after initialization and appears as a stiff
voltage source so is considered to be grid forming. Ref. [23] proposes the integration of an improved
governor in the controls to regulate the active output power of variable speed WTs during transient
events; adapting the P-f droop coefficients in real time enables enhanced IR and FS capability. A similar
approach is introduced in [24] that shifts the maximum power point tracking curve of the WT according
to the grid frequency deviation and the droop control. Ultimately the active power output relies on
the available inertial resources. The VSM converter offers an increasingly popular route for IR and
FS [25]. VSM can utilize higher order models of the swing equation to mimic synchronous machines
and provide IR while it uses a similar control scheme as traditional power converters for FS [26].
An extended VSM control strategy is proposed in [27] that adds a fast frequency response (FFR)
droop block to the VSM power control. A VSM control technology based on Hamilton approach is
introduced in [19] to support the frequency and enhance the suitability and robustness of the system.
Ref. [28] compares grid forming and grid following approaches; the transient responses of a VSM and
a PLL-based inertia emulation are analyzed showing the dependence on the synchronizing method.
Finally, the authors present a comprehensive review of virtual inertia-based inverters in modern power
systems in [29].

Beyond the inertia emulating strategies, the control must consider the specific operation of
individual energy storage components and technologies and ensure their potential to respond to
transient events. Ref. [30] discussed a comprehensive machine, storage, and grid side converter
control configuration that enabled a WT with DC connected energy storage to continue VSM operation
throughout levels of storage state-of-charge (SOC) and wind availability. Ref. [31] adopted a fuzzy
logic control approach that considered the size of ESSs to enable wind farms to take part in short term
FS. Ref. [21] introduced a focused control approach for hybrid ESS that allocated short and long term
components of the FS to the ESSs with corresponding response capabilities. Ref. [32] developed a
control strategy for batteries providing IR and FS that restricted charging to stable frequency periods
to remove the impact of SOC on the frequency signal. An up-to-date review of the control of VSGs
and appropriate ESSs is presented in [33], which highlights the need for further work to identify the
optimal size and type of ESS for specific applications.

Techno-economic analysis of energy storage has been identified as a key tool to define optimal
and grid-ready solutions for issues regarding the rising penetration of renewable energy sources.
A hybrid ESS configuration was found to be the lowest cost balancing mechanism for variation of load
profiles in otherwise low-flexibility networks in [34,35], analyzing the feasibility of storage options to
minimize the effects of wind power variability on the Australian network. Ref. [36] identifies the most
cost-effective configuration of photovoltaics and storage to supply an islanded grid. Ref. [37] optimizes
the size of ESS configurations to maximize a revenue objective function via frequency services but
does not compare an exhaustive list of technologies on the short dynamic scales that are pertinent to
virtual inertia. Although studies are being carried out that compare the cost and performance of ESSs
the benefit in their use comes when the analysis is focused for an exact application and environment
and the list of technologies spans a wide range. Accordingly, to drive useful progression towards the
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deployment of ESSs with WTs for IR and FS, techno-economic analysis needs to be carried out for that
specific application.

The analysis needs to consider a range of mature ESS technologies that are appropriate for IR
and FS. Ref. [38] provides a review of ESSs that are applicable to support the intermittent generation
of renewable energy sources. Ref. [39] delivers another review of the properties of these storage
technologies with a focus on the methods for sizing the devices according to the function specifications.
Such a comprehensive approach is necessary to enable the confident development of IR solutions.
Ref. [40] carried out a techno-economic study of ESSs to balance power for VSMs in 2009 but the
transformation of the storage industry and the virtual inertia field in the last decade demands a more
up to date analysis. More recently, Ref. [18] identified the forerunners in storage technologies for inertia
provision, while the authors of [41] covered the modelling and control of a frequency supporting energy
storage device. Ref. [42] analyzes the control and cost of a BESS used in parallel to wind generation
that is actively curtailed for frequency support. None of these studies confirmed the optimal ESS to
support the frequency response of WTs.

The remainder of this study is carried out to clearly compare a wide range of ESSs in terms of
present-day technical readiness and properties and industry-confirmed costings. The technologies are
compared for the specific function of inertial provision and frequency support in conjunction with a
wind farm and are considered at three locations relative to the farm that have rarely been considered in
the literature.

3. Inertia Response and Frequency Support

3.1. Inertia Response

Frequency is used as a balancing signal in electrical power networks. When a power deviation
occurs in a system dominated by synchronous machines, the balance between generated and consumed
power breaks, and the frequency of the system starts to divert from its nominal value. Initially, the
huge rotary masses (with high inertia) of the synchronous machines maintain the stability of the system
before the electrical governors can react in the following seconds. The rotating inertia slows down the
frequency change by delivering or absorbing transient power from the system [6]. The dynamics of a
synchronous machine are given by the Swing equation:

d25,,

] dr?

= Py =P, D)

which, according to the definition of | [7], i.e., the rotor moment of inertia:
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where M is the angular momentum, H; is the synchronous machine inertia time constant (ratio of

kinetic energy to power), measured in seconds, Sy, is the synchronous machine rated power, w; is

the synchronous speed, in rad/s, and P;, and P, are the synchronous machine mechanical and electrical
powers, respectively.

Therefore, taking into account the Swing equation, one can understand the IR as the capability of

the machine to provide active power and that it is proportional to the second derivative of the angle.

= P, -P,, 3)

3.2. Frequency Support

When a frequency event occurs, the inertia slows down the Rate of Change of Frequency (RoCoF)
and provides some time for the primary frequency control to react. This service has to be delivered by
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synchronous-based power stations with fast acting governors [6]. The FS is directly proportional to the
frequency deviation as:
Prs = Krs-Aw, 4)

where KFs is the frequency controller gain and Aw is the steady state frequency deviation.

In the UK the services available in case of an under-frequency event can be seen in Figure 1 [3].
These are the enhanced frequency, the primary response, and the secondary response. The primary
response and secondary response are classic services provided by synchronous-based power stations
that respond to frequency deviations at different response and operation time horizons, starting at 2
and 10 s, respectively. On the contrary, the recently introduced enhanced frequency response provides,
and requires, a faster response and targets mainly converter-based generation.

2
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Q

2 Secondary

o

o

& ......... ;

e 2 10 30 30 Time
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Figure 1. Frequency regulation services and markets according to the System Operability Framework
2016 from National Grid when the frequency is below nominal [3].

4. Energy Storage Requirements, Potential Placement, and Candidate Technologies

As discussed in the introduction, the presence of ESSs for different front-of-the-meter and
behind-the-meter applications is increasing as prices for the different technological solutions decrease.
However, the introduction and selection of specific ESSs for IR and FS in wind farms has not been
analyzed in depth mainly because of insufficient grid code requirements [43]. Nonetheless, this is an
increasingly important topic for an enhanced integration of wind farms and will certainly be a grid
connection requirement in the future for systems with high wind penetration.

4.1. Energy Storage System Requirements

The first step to analyze the technical and economic viability of introducing an ESS to provide the
IR and FS services at a given WT or wind farm is to determine the energy and power ratings these
require. In this sense, the present work focuses on solutions for inertia and frequency support at a
501 MW onshore wind farm with 167 wind turbines with a rated power of 3 MW. Alternatives at both
WT and farm level are analyzed. Then, the amount of power and energy required to provide an IR
during a frequency event can be obtained by manipulating the Swing equation as:

2-H-5n .
Pstomge = *Winax, )
f]
2-H-5n
Estomge = o “Dwmax. (6)
s

In this sense, both magnitudes will mainly depend on four different factors:

e  Sn—rated power of the wind turbine or wind farm where IR is to be implemented (in MW).
e H—equivalent inertia constant to be emulated (in seconds).

*  wun—maximum RoCoF defined by the grid codes (in Hz/s).

o  Awpg—maximum frequency deviation accepted by the grid operation code (in Hz).

This work considers various combinations of these four factors. Tables 1 and 2 introduce the
resulting capacity requirements of the ESS to be installed at 16 different study cases at both a single
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3-MW rated-power WT level or at a 501-MW rated-power wind farm level to provide both IR and FS.
Note how the power and energy capacities required for providing FS are based on the rated power
derived for the IR service, using the Swing equation, and on the amount of time that the generator
would be supposed to offer FS service. In this sense, this work considers 10 s as the duration for FS in
line with the enhanced frequency response requirements [44] (Figure 1). For each of the factors above
(inertia, maximum frequency deviation, and RoCoF), two extreme values are taken into consideration.
The minimum value of RoCoF and Awy,y are defined in accordance to the European grid codes [44]
while the maximum values are inspired by an ENTSO-E document describing future grid needs [45].
The minimum and maximum inertia values are taken from traditional synchronous machine values [6].

Table 1. Power and energy requirements at a wind turbine level.

S Maximum Inertia Response  Inertia Response Frequency
n RoCoF . .
(MW) H (s) (Hz/s) Fr'eqflency Required Power  Required Energy Support for
Deviation (Hz) (kW) (kWh) 10 s (kWh)
Case 1 3 1 0.5 1 60 0.03 0.17
Case 2 3 1 25 1 300 0.03 0.83
Case 3 3 8 0.5 1 480 0.27 1.33
Case 4 3 8 25 1 2400 0.27 6.67
Case 5 3 1 0.5 5 60 0.17 0.17
Case 6 3 1 25 5 300 0.17 0.83
Case 7 3 8 0.5 5 480 1.33 1.33
Case 8 3 8 25 5 2400 1.33 6.67
Table 2. Power and energy requirements at a wind farm level.
Maximum Inertia Response  Inertia Response Frequency
Sn RoCoF . .
(MW) H (s) (Hz/s) Frjeq}xency Required Power  Required Energy Support for
Deviation (Hz) (MW) (kWh) 10 s (kWh)
Case 9 501 1 0.5 1 10 5.55 27.78
Case 10 501 1 25 1 50 5.55 138.89
Case 11 501 8 0.5 1 80 44.44 222.22
Case 12 501 8 25 1 400 44.44 11111
Case 13 501 1 0.5 5 10 27.77 27.78
Case 14 501 1 25 5 50 27.77 138.89
Case 15 501 8 0.5 5 80 222.22 222.22
Case 16 501 8 25 5 400 222.22 11111

The resulting required capacities range from 60 to 2400 kW in power, and between 0.03 and
6.67 kWh in energy at the WT level. At the wind farm level, the capacity ratings are between 10 and
400 MW in power and from 5.55 to 1111 kWh in energy. Therefore, results in Tables 1 and 2 show that
both services represent high-power and low-energy demanding applications.

4.2. Potential ESS Placement

Apart from considering a generic introduction of ESS at wind farm or WT level, three potential
placements are analyzed in this work and are shown in Figure 2. Two are considered at the WT level,
i.e., at the DC link (Option 1) or at the AC side of the turbine grid converter (Option 2). From an
energy perspective, there is no difference between Option 1 and Option 2. Conversely, one location is
considered at wind farm level and refers to its point of common coupling with the grid (Option 3).
Each of these options have already been suggested in the literature for different applications. Ref. [20]
proposed a strategy to operate a DFIG for virtual inertia using a capacitor connected in the DC link of
the partially rated converter. The author notes that placement here would require the rerating of the
grid side converter. Ultimately, the grid side converter capacity is expected to constrain the operation of
DC connected ESS as a WT approaches rated output. Alternatively, the connection of a battery energy
storage system (BESS) on the AC side of the grid side converter was proposed by [19] for operation as a
virtual synchronous generator. ESSs have also been suggested on the AC side on a larger scale, serving
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entire networks, to increase wind utilization where there is high penetration of renewable energy
sources [46]. Beyond the control and inverter characteristic implications, further discussion on the
pros/cons of the different placement options to shelter the different ESS under analysis are introduced
in the coming sections.

J__ B i MV HV
1 _|'_ ESS 1 _@ '@__@

Option 1 -QE,,FL @

I T
|

ESS ESS

Option 2 Option 3

Figure 2. Considered locations for the EES at wind turbine (purple) and wind farm (green) level.

4.3. Potential Control Strategies

In order to analyze the energy response of a hybrid wind and energy storage system and confirm
the values derived from the swing equation in Section 3.1, simulations were performed using Matlab®.
These reproduce the response of the ESS converter when implemented in parallel to a grid connected
wind power system and subject to two different control methodologies, one for a grid-following and
another for a grid-forming converter configuration. These methodologies cover the two main trends
defined trough the literature.

First, the PVCCl strategy from [14] is used for the grid-following case. In this solution, the conventional
current control inner loop is unchanged, but a derivative term is added to the power channel in the
outer loop. The derivative acts on the grid frequency, measured by the PLL, altering the power set point
to include the inertial response. Since this study aims to compare the inertial response of a WT with
storage system under different control strategies, the proportional branch proposed in [14] for subsequent
frequency support is neglected. The resulting control strategy is pictured in Figure 3a.
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Figure 3. Cont.
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(b)
Figure 3. Control schemes for the (a) PVCCI strategy and (b) VSM control strategy.

Second, a VSM controller [16] is used for the grid forming case. This implements the swing
equation within the power control channel, which sets the voltage angle according to variations in
active power. A second channel sets the voltage magnitude according to changes in the grid voltage.
This strategy is pictured in Figure 3b and exhibits a different approach to control a grid converter for
inertia emulation.

Both the PVCCI and VSM strategies were tuned to provide the IR for Cases 1-3 in Table 1, which
represent a grid with low or high inertia and varying RoCoF requirements. The maximum frequency
deviation was kept at 1 Hz for this analysis. The grid was emulated by its Thevenin equivalent with
the following parameter values:

Rry = 0.0012Q), Xty = 0.012Q), and Vg = 565V 7)
The PVCCl inertial controller equation is K;;, = —kjy, ]% where k;, is the proportional inertial

gain, k; is the derivative gain, and N is the filter coefficient. The VSM power controller equation
. k +ki . . . . . .
is Kpysp = M where k,ysy is the proportional VSM gain and k;ysy is the integral gain.

The parameters for each controller in each case are shown in Table 3.

Table 3. Inertial requirements and controller parameters for Cases 1-3.

H (s) P storage (kW) kin ka N kaSM kivsm
Case 1 1 60 19,305 1 166.66  3.564-107°  5.224.107°
Case 2 1 300 20270 1 166.66 21921076  1.047-107°
Case 3 8 480 154,644 1 166.66  1.371-107°  6.547-107°

Then, the grid frequency is set to change in the system from 50 Hz at t = 4 s to 49 Hz at either
t=44sort=06s,depending on the RoCoF to be emulated (2.5 or 0.5 Hz/s, respectively).

The inertial responses provided by the two controllers are compared in Figure 4. The ESS instantaneous
power responses effectively evolve towards the power values defined in Table 1. The overall energy
delivered during the frequency events is defined in Table 4. The energy values are in agreement with the
requirements in Table 1. Finally, note that for each of the three cases simulated and represented in Figure 4
the VSM controller can be tuned to be less damped (to stabilize faster) whereas the PVCCI strategy is
unstable for low damping so exhibits a slower response. However, both present very similar responses in
terms of power and energy and agree with the expected values.
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Figure 4. Inertial responses of the two control types. (a,c and e) show the PVCCI-controlled response
and (b,d and f) show the VSM controlled responses for study Cases 1-3 respectively.

Table 4. Energy delivered for inertial response (kWh).

PVCCI VSM

Case 1 0.0331 0.0334
Case 2 0.0348 0.0334
Case 3 0.2643 0.2666

4.4. Selection of Candidate ESS Technologies

Several ESS technologies have been classified and analyzed by different authors for grid
applications [47-50]. Figure 5 overlays the previously calculated and simulated ESS power and
energy capacity requirements for IR and FS on a standard ESS “rated power vs. energy capacity”
chart [51]. From this figure note the suitability of the technologies on the left hand side of the chart
(low energy ESS), including supercapacitors (SCs), flywheels (FESS), and lithium-ion batteries (LiBs).

Other technologies could also be considered as candidates. These include the superconducting
magnetic energy storage (SMES) and the small compressed-air energy storage (CAES) technologies.
Additionally, the increasingly interesting hybrid ion capacitors (HIC), or even some very well-known
and extensively commercialized types of batteries, such as lead-acid (LA) or Sodium-Sulphur (NaS)
technologies, could be an option. Nonetheless, all of them are disregarded as candidate solutions
for IR and FS for the following reasons. For instance, both SMES and small CAES are non-mature
solutions still being tested at laboratory level [52-56]. HIC (both Li- and Na-based) face a similar
issue [57] as CAES, and their electrical characteristics, in terms of energy density, are halfway between
LiBs and SCs. Although some models have been commercialized (by companies such as LICAP,
JM Energy, or Taiyo Yuden), their technological hybridization still requires further investigation to
completely characterize them and make them competitive in terms of cost and reliability for high
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power applications. On the other hand, cheap LA battery technology has been long and widely used
for over 200 years but presents important limitations with regard to specific power, specific energy, and
cycling capability [58,59] when compared with the identified candidate technologies. Finally, although
the NaS batteries developed and commercialized by NGK Insulators together with Tokyo Electric
Power in 1987 could be considered, they require high internal temperatures to keep electrolytes in a
molten state. Thus, they are not well suited for power applications despite their high energy density
and efficiency, excellent cycle life, and low self-discharge.

1second 1minute 1hour
1GW P = ’
PHS _diday
100MW rge CAES
_~{1manth

10MW 7
o
5
e
5 1MW
E
<]
o

100kW

10kW

- 1 * -
kW o2 Pl [ ad
0.1kWh 1kWh 10kWh 100kWh 1MWh 10MWh 100MWh 1GWh 10GWh

Rated energy capacity

Figure 5. Superposition of power and energy requirements at turbine (blue) and wind farm level
(green) for IR over power and rated energy capacity for ESS technologies [51].

5. Technical Discussion on ESS Candidates

According to the sizing specifications, the following discussions focus on the three highlighted
technologies: SCs, FESSs, and LiBs.

5.1. Supercapacitors

This technology, also known as ultracapacitors (UC), is classified within the group of
electromagnetic energy storage systems, since it stores energy in the form of an electric field within a
power capacitor. The amount of energy stored by each SC depends on both its capacitance value (C, in
Farads) and the voltage (V, in Volts), as expressed by:

1
Estored = E 'C'V2 (8)

When a SC exchanges energy with the network, its voltage varies and the amount of energy
released/absorbed is determined by the value of C and the voltage change. Considering the operation
requirement of the converters connected to the SC, the usual voltage operation range varies from 50%
to nominal voltage, and thus, the amount of energy that a SC can exchange accounts for 75% of the
total energy capacity.

Three main industrial contenders can be identified worldwide (Maxwell Technologies, Skeleton
Technologies, and LS Mtron Ltd.) presenting similar SC solutions in their catalogues. In general, SCs are
well adapted to applications that require very fast high-power responses (with C-rates beyond 100 C)
but with low energy capacity requirements. They are also tolerant to frequent and rapid discharges
and have easily trackable state of charge (SOC) and state of health (SOH). Finally, they present high
round-trip efficiencies (ranging from 92% to 98%) although they register significant self-discharge ratios
(around 15% per day). Based on these characteristics they are usually implemented in applications
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such as pitch control systems in wind turbines; UPS solutions; voltage restorer systems (VRS); break
recovery systems in buses, trains, subways, lifts; bridge power for telecommunications, etc. Although
SCs can be a solution for short-term quick response applications they present two main restrictions.
Firstly, they are described as lasting for more than 500 k full cycles with a temperature operating range
of —40 °C to 65 °C but they can suffer from accelerated calendar ageing at temperatures above 40 °C.
Secondly, C values have been increasing in recent years but the voltage at the cell level is still very low
(around 3 V per unit). This implies the need to series-connect a large number of SCs in order to achieve
sufficient voltage to use in grid connected or high power applications. This decreases the operation
security as a single SC failure can risk the whole string. Modularized structures reduce the severity of
such a failure event.

5.2. Flywheels

Flywheel technology is based on transforming the electric power into kinetic energy, and vice
versa, by accelerating and decelerating a revolving cylindrical mass [60]. The relation between the
rotational energy stored, the angular mass of the flywheel (I) and its spinning speed (O) is given by:

Esotational = %'I'wz 9

Therefore, apart from the electronics and the reversible electric power motor-generator used to
interact with the grid, the core of the technology is the design of the flywheel rotor shape (providing
moment of inertia around the axis of rotation) and material (providing mass). There are three different
design concepts clearly identified within the flywheel industry [61]. These are the carbon fiber
composite rotors by Beacon Power, Stornetic, and Powerthru, solid monolithic one-piece rotors made
of steel by Canadian Temporal Power, German Piller, and Californians Amber Kinetics and Vycon
Energy, and laminated-steel rotors by Gyrotricity from London. Note the importance of the rotor
material and its associated weight since a heavier rotor implies lower rotational speed (ranging from a
few thousand RPM for monolithic steel models up to 60,000 RPM for some carbon fiber lab designs),
higher capacity bearings (taking into account that bearings are usually the life-limiting element of the
system), and a heavier housing. Hence, weight is one of the main limitations of this technology for
certain applications, i.e., a 100 kW/5 kW-h steel flywheel system measuring 1 m high and 0.5 m in
diameter can weigh around 1 tonne.

The different types of flywheels are mainly proposed for applications that require a high number
of daily cycles (e.g., over five per day), high power to energy ratios (5-200 C), high cycle and calendar
lifetimes (over 20 years or even millions of cycles), high certainty in the SOH of the system, low
maintenance and fast response. Services such as grid frequency regulation and uninterruptible power
supply are a clear market niche for them. Flywheels are also proposed for thermally challenging
applications. However, high temperatures present the need to cool the generator, usually by means of
a simple water cooling system rejecting heat to ambient air. In fact, thermal management is a key factor
in flywheel operation and, depending on the type of rotor implemented, different motor-generators are
introduced (synchronous reluctance or permanent magnet machines are the preferred options) with
varying cooling requirements. Finally, it is important to highlight that some kind of active magnetic
bearings are used in most of the high-efficiency models currently available in the market. In this sense,
round-trip efficiencies of 85-90% are typically achievable with well-designed motor-generators and
power electronics [60].

5.3. Lithium Ion Batteries

The label “Li-ion batteries” embraces a great set of different technologies, all including lithium in
the form of ionic salt (Li+ rich) as conductive electrolyte, but with different combinations of electrode
materials. Currently, up to six different Li-ion chemistries have been commercialized for various
applications, as compared in Figure 6. These families, from oldest to newest, include:
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1. Lithium Cobalt Oxide (LCO or LiCo00O,) released in 1991 and commercialized since 1994 by
companies such as Sony and Samsung;

2. Lithium Iron Phosphate (LFP or LiFePO,) commercialized since 1996 by companies such as SAFT
and BYD;

3. Lithium Nickel Cobalt Aluminum Oxide (NCA or LiNiCoAlO,) commercialized since 1999 by
companies such as Panasonic and SAFT;

4. Lithium Manganese Oxide (LMO or LiMn;0O4) commercialized since 2002 by companies such as
NEC, Samsung, and Hitachi);

5. Lithium Nickel Manganese Cobalt Oxide (NMC or LiNiMnCoO,) commercialized since 2001 by
companies such as LG Chem, Kokam, Samsung, or Panasonic;

6.  Lithium Titanate (LTO or LisTisO1,) commercialized since 2008 by Toshiba.

LMO LFP NMC NCA

I
—
| lifecycles |
| safety | |
| Stability/Performance |7 | I
N

[ Cost(¢/wh) |

Grading of the
characteristics:

Excellent Very good Good Medium Bad Very bad Awful

Figure 6. Technical comparison of the main characteristics among the six commercial lithium
ion chemistries.

Note that the main structural difference among them is the material constituting the cathode,
which gives the name to the specific family (where the first five chemistries generally have a graphite
anode [62]). Only the LTO family associates its name to the anode’s material, in this case with a
graphite cathode.

It can be seen from Figure 6 that NCA has the highest specific energy, though LFP and LTO are
superior in terms of specific power and thermal stability, making them appropriate for intensive power
demanding applications in which the weight or size of the battery system is not a big constraint.
LTO also presents the best life span although it is the most expensive technology. On the contrary, LMO
cells are cheaper and good for power applications, but present a very limited cycle life. NMC type is
the intermediate wide range technology presenting average properties. Moreover, this chemistry is
experiencing a huge evolution with successive generations of cells (NMC 111, NMC 532, NMC 622,
NMC 811) being more and more competitive in terms of specific energy and power while reducing the
presence of the limiting cobalt elements. NMC battery packs can be operated at high voltages and can
be tailored for high power or high energy applications, which makes them the most flexible and used
type of Li-ion cell.

6. Comparison among ESS Alternatives

It is not always straightforward to compare different ES technologies. In this case, the analysis
is performed taking into account certain restrictions associated with the given ESS application
(wind turbines or wind farms with IR and FS services) that could tailor the election or somehow
modify/enhance/minimize the merits of a given ESS solution. In this sense, three different parameters
are analyzed: physical constraints (volume and weight), expected lifetime, and cost. In order to reinforce
the comparison among ESS technologies in this multi-criteria assessment, Figure 7 is introduced.
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It represents on the one hand a comparative summary of the main techno-economic characteristics of
the candidate technologies. On the other hand, it compares for a given case study (Case 2 in Table 1) the
cited constraining or decision parameters/indicators that determine the ESS selection for the application
introduced in this work.

6.1. Comparing Weight and Volume

With regard to the physical constraints, an ESS installed in an onshore wind farm can be located
anywhere without volume/weight restriction. Usually, it would be placed at the medium-to-high
voltage substation where free space should be available. However, for the case of offshore wind farms,
volume and weight become an issue and both should be minimized. This is also the case for the
analysis of the ESS to be installed in a WT (both on- and off-shore), especially if the nacelle is considered
as the potential place to shelter the ESS. Taking Case 2 in Table 1 as reference for comparison, when
analyzing commercial solutions of SCs and FESSs, the volume required is similar for the SCs from
Maxwell Technologies (Electronic Shock Absorber (ESA), [63]), or FREQCOM (Ultracapacitor Grid
Stabilizer (UGS), [64]) and the FESS from Gyrotricity [65]. All of them are, or could be, distributed
within a 10-foot shipping container. Note that the FESS itself only occupies a volume of around 2 m?
but the rest of the container is required for the power electronics equipment, the protection devices,
etc. Regarding the weight, although no specific data is provided in the datasheets, the FESS would
be assumed to be much heavier than SC solutions. However, the Gyrotricity FESS model that would
meet the requirements of Case 2 could weigh around 1-1.2 tonnes, which should not be critical at the
WT nacelle where many more tonnes of equipment are already harbored. When LiBs are introduced
in the comparison, the three selected chemistries for this application (LFP, LTO, and NMC) present
quite different properties, as seen from Figure 6. While LFP and LTO present higher specific power,
making them appropriate for intensive power demanding applications, they present very poor specific
energy (around 120 and 80 Wh/kg, respectively). Conversely, NMC technology does not fit in terms of
specific power but presents specific energy up to 200 Wh/kg. This makes NMC solution much lighter
and more compact, which is an advantage if placed at the nacelle, though not so much at the wind
farm level. In summary, a NMC LiB meeting the power and energy capacity requirements of Case 2
would also weigh, including all the equipment required (power electronics, protections, etc.), between
1 and 1.5 tonnes, with the battery pack size of around 2-2.5 m? [66]. Solutions with LTO or LFP would
therefore be 50% heavier and larger.

Lifetime Lifetime
Cycling capacity 10:0 Power CAPEX
Round-trip &ff. Energy CAPEX
e Weight

Daily self-discharge

OPEX

Tech. Maturity| Specific power

hY

/ \V
Energy density Specific energy

Power density

(@) (b)

Figure 7. Spider plot comparison of the (a) potential characteristics of the candidate ESS technologies
and (b) constraining indicators that determine the ESS selection for IR and FS in Case 2 (Table 1).
Represented with [67].

Volume OPEX

—8-SCs —#-FESS Li-ion NMC —®=Li-ion LFP —®-Li-ion LTO
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6.2. Comparing Lifetime

Regarding the second parameter, similarities can be found when comparing the expected lifetime
for SCs and LiBs. For the latter, multiple models are provided in the literature to predict their life
expectancy [68,69] using different approaches devoted to the various chemistries. Most models
agree that there are temporal (calendar) ageing mechanisms and use (cycle) ageing mechanisms.
More precisely, temperature and state-of-charge (SOC) drive the calendar degradation, when the
battery is in stand-by mode. The number of cycles that the battery undergoes and the pattern these
cycles present (depth of discharge and average SOC), together with the charge to discharge current
ratio (C-rate) and temperature are the main factors driving the cycle degradation [70]. At present
time, most LiBs are meant to work at around 20 °C, losing capacity at an accelerated pace when
operated above 30 °C or below 10 °C. Most applications involving LiBs need active refrigeration type
cooling/heating systems. This is also true for SCs that present an accelerated ageing due to temperature
when operated above 35-40 °C (despite manufacturers stating an operational range of —45 °C to
60 °C) [69]. While the different types of LiBs are designed to withstand 4000-6000 full cycles (NMC
models) or even 8000-10,000 full cycles (LFP or LTO) over a 10-year period, SCs do not present any
limitation in terms of cycling. In fact, these are marketed with more than 500 k full cycles due to the
physical mechanism they store and deliver the energy with. According to all these conditions, the
estimated lifetime for LiBs is very dependent on the function and is usually defined between 5 and 15
years while it can be estimated to be around 10-15 years for SCs [71].

FESSs present a wide temperature operating range defined from —40 to 50 °C within which
the systems do not require any external or environmental heating/cooling. Since they are robust
throughout the temperature range, they do not suffer substantially from calendar ageing. Nonetheless,
the motor-generator used with the flywheel should be water-cooled when power is extracted to ambient
air at or above 45-50 °C. In any case, the power electronics are likely to be limited by temperature before
the flywheel itself. As FESSs are not limited by cycles their estimated lifetime is around 15-20 years.

6.3. Comparing Cost

Prices regarding ES technologies are difficult to obtain. However, from the different reports [22]
and reviews [72-74] published in the literature, a reference framework of prices is settled hereon.

FESS is the most difficult technology to quantify in terms of cost, given the low degree of
commercial competitors in the market. Information obtained from manufactures indicates that these
solutions present multiple expensive components that, beyond the flywheel materials themselves,
push the initial CAPEX of the systems (including the interconnection power electronics) up to around
500 €/kW and 6000 €/kWh. This would lead to a 150 k€ FESS for the Case 2 defined requirements. On the
other hand, the robustness of this technology makes it the lowest OPEX among the three alternatives.

According to manufacturers, the CAPEX for the different packs of SCs in rack configurations
depends on how optimized and accurate the design of the system is, and the number of packs used.
Hence, CAPEX can range from 57 to 200 €/kW in power and from 37 to 150 k€/kWh in energy. Thus,
it is clearly a power dedicated solution that skyrockets in price when significant energy capacity is
required. For the Case 2 under analysis, the overall cost of the SC-based solution could be around 35 k€,
according to different commercial models (only considering the SCs) from some of the manufacturers.
The OPEX of this technology is, depending on the source, slightly higher or lower than that of the
FESS but is clearly lower than that of LiBs since fewer replacements are required during the service life
of the system.

The cost of LiBs is widely monitored by different agencies and organizations [72] and has been
reviewed and analyzed by different authors. In fact, the descending trend of the LiBs’ cost is the
main driver for the increasing global interest on the ES industry. A sustained 21% reduction has been
observed every time the global production was doubled [22,75]. As the CAPEX varies significantly
among different chemistries so do the cost figures in the different reports that refer to different
technologies (Figure 6). While NMC technology may be around 180450 €/kWh, prices for LFP are
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around 350-550 €/kWh, and LTO ranges between 850 and 1200 €/kWh. However, since energy capacity
requirements are normally prevalent over power capacity requirements in battery applications, limited
information is available in terms of €/kW for the different chemistries. In this sense, a BESS mainly
limits its power exchange capability through the interconnected power converter. Hence, installation
costs range from 200 to 850 €/kW. These prices and the power requirements imply that the battery
required to provide IR and FS to the wind turbine in Case 2 would present a CAPEX ranging from
60 k€ to around 250 k€.

6.4. Final Discussion

Attending the previous considerations and the representation introduced in Figure 7 for the case
study, some conclusions are drawn. To begin with, the analysis of the physical properties returns
similar volume constraints for each of the technology solutions in Case 2. Moreover, although FESS are
heavier than SCs, LFP and LTO battery chemistries are the heaviest. Nonetheless, according to the
deduced weights, it should not prevent any of them from being installed, even in the nacelle.

The lifetime comparison results vary to those in weight. FESSs have the longest lifespan and are
robust to environmental conditions making them suitable for the application. On the contrary, both
SCs and LiBs require cooling to avoid accelerated calendar ageing if installed in a nacelle. Cycle ageing
is unlikely to affect LiBs for IR supposing this service remains rare. However, this may change in
the coming years with the reduction of grid strength and increased penetration of non-dispatchable
renewable power sources, as highlighted in [46] and Figure 8. This analysis projects the progressive
increase of extreme frequency events as the degree of wind penetration increases in a weak system
such as Ireland. Then, cycle ageing could gain importance in the coming future in this application as
a consequence of the high C-rate expected to be experienced by the LiBs during the initial response
of the system. Additionally, the very important stress factor for cycle ageing of LiBs associated with
the depth-of-discharge of the cycles experienced due to the IR service but especially for the FS and
primary frequency control services will be a factor to consider and analyze.
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Figure 8. Estimated impact of lower inertia on system frequency response for Ireland [76].

With regard to the cost of the different solutions, both CAPEX and OPEX need to be taken into
account. LiBs, excluding LTO, are cheaper than FESS. However, LiBs will need to be replaced at
regular intervals, probably two to four times in the standard 25 year expected life of a wind turbine.
The additional battery costs over the life of the project can offset the higher initial cost of FESS, which
have a significant advantage over the projected service life and offer rough parity when OPEX and
CAPEX costs are considered. SCs do not require as many replacements as LiBs and have cheaper
CAPEX but more expensive OPEX than FESSs. Thus, SCs are probably the cheapest solution if an
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optimized design can be achieved with standard commercial packs and only a small inertia (H, in
seconds) is required. Large inertia requirements and the provision of primary frequency response by
the ESS will drive the cost of SCs up meaning solutions with LiBs or FESSs should be considered.

7. Conclusions

After analyzing the power and energy capacity requirements for an ESS implemented at a wind
turbine or at a wind farm level to provide IR and FS services, this paper reviewed and discussed the
different technologies available in the industry that could comply with these requirements. As well as
identifying prospective storage technologies, two control strategies were identified that are capable of
providing the specific inertial response characteristics, but may require further adjustment depending
on the final technology choice e.g., considering state-of-charge of the storage system. Out of the
multiple ES technologies compelled in the literature and taking into account various constraints
(location-dependence, maturity, technical characteristics), three are considered as potential candidates:
flywheels, supercapacitors, and three chemistries out of the Li-ion battery family (NMC, LFP, and
LTO). The three technologies are then described and evaluated from a technological and industrial
point of view. Finally, they are compared in terms of physical constraints (volume and weight),
expected lifetime, and cost. For such a specific application, none of them are found to be clearly
superior to the others and commercial systems will have to be optimally adapted and tailored to the
different requirements dependent on the amount of inertia, maximum RoCoF, and maximum frequency
deviation to be allowed. It is also important to take into account if the energy storage system is only
used for IR service or also for FS or even primary frequency control. In the first case, the high power
intensive requirement indicates SC solutions to be the most suitable technology while, in the latter
cases, both LiBs and FESSs are superior to SCs.

8. Future Work

The authors would like to discuss future research lines related to the work presented in this paper.
In this sense, it is to point out the recent attention gained among researchers by hybrid wind and
solar PV installations [77]. Complementary behaviors between wind and solar resources have been
observed in different geographical locations, times of the day, and seasons [78]. This opens the door to
the arising of hybrid renewable power stations with extended potential capabilities mainly due to a
reduced resource intermittency and uncertainty. However, even though hybrid solutions will provide
a more constant power output, these might still require the integration of some ESS whose size will
vary from that required to complement solar PV or wind installations on their own. Additionally,
although the power and energy capacity of the ES required to provide IR and FS will still be mainly
depending on the market structure, the optimization of the operation of the hybrid power station while
providing these services represents a very interesting research line.
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Abbreviations

EU European Union

IR Inertial response

UCTE Union for the co-ordination of transmission of electricity
FS Frequency support

PVCCI Power voltage current control for inertia emulation
VSM Virtual synchronous machine

WT Wind turbine

FFR Fast frequency response

PLL Phase locked loop

ESS Energy storage system

RoCoF Rate of Change of Frequency

UK United Kingdom

ENTSO-E European Network of Transmission System Operators
DC Direct current

AC Alternating current

DFIG Doubly-fed induction generator

BESS Battery energy storage system

SC Supercapacitor

FESS Flywheel energy storage system

LiB Lithium-ion battery

SMES Superconducting magnetic energy storage
CAES Compressed-air energy storage

HIC Hybrid ion capacitors

LA Lead-acid batteries

NaS Sodium sulphur batteries

ucC Ultracapacitor

SOC State of charge

SOH State of health

UPS Uninterruptible power supply

VRS Voltage restorer systems

LCO Lithium cobalt oxide

LFP Lithium iron phosphate

NCA Lithium nickel cobalt aluminum oxide
LMO Lithium manganese oxide

NMC Lithium nickel manganese cobalt oxide
LTO Lithium titanate

CAPEX Capital expenditure

OPEX Operational expenditure
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