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Abstract: Demand response (DR) is a vital element for a reliable and sustainable power grid.
Consumer behavior is a key factor in the success of DR programs. In this study, we focus on how
consumer reaction to Short Messaging Service (SMS) messages can disturb the demand response.
We present a new type of threat to DR programs using SMS phishing attacks. We follow a holistic
approach starting from a risk assessment focusing on DR programs’ notification message security
following the Smart Grid Information Security (SGIS) risk methodology. We identify threats,
conduct impact analysis, and estimate the likelihood of the attacks for various attacker types and
motivations. We implemented deterministic and randomized attack scenarios to demonstrate the
success of the attack using a state-of-the-art simulator on the IEEE European Low Voltage Feeder
Test System. Simulations show that the attack results in local outages, which may lead to large-scale
blackouts with the cascading effect on the power system. We conclude that this is a new type of threat
that has been overlooked, and it deserves more attention as mobile devices will continually be part of
our lives.
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1. Introduction

Demand Response (DR) is a way to manage consumer demand that allows balance to persist on
the grid. DR programs enable DR for the timely adjustment of the demand by encouraging consumers.
They comprise the planned and implemented methodologies to balance demand with the supply
by guiding consumers to alter their consumption with price-based or incentive-based programs.
Price-based methods [1] aim to balance the consumption of the peak periods by adopting hourly-basis
prices to reflect the real-time cost to the consumers while incentive-based programs guide consumers
to reduce their consumption by offering special rewards to manage excessive demand.

DR can be carried out automatically or manually. In automated DR, utility communicates with
the consumer over energy management signals when the DR event happens. Consumers do not need
to take any action. In manual DR, consumers are informed via utility using some notification methods,
e.g., SMS. The decision to react to the DR event is up to the consumer. In our study, we focused on
manual DR. DR can also be used to preserve the operational balance of the power grid. For example,
when a contingency occurs, an emergency event-driven-based DR scheme [2] or comfort-constrained
DR scheme [3] can take place to keep the balance.

While DR programs are very effective to save the peak demand (up to 20% according to “US Federal
Energy Regulatory Commission’s report” [4]), consumer involvement is key to the success of any DR
program as well as the other planning and execution parameters. According to a survey conducted
by Smart Electric Power Alliance (SEPA) together with 155 utilities, consumers desire more control
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over their consumption and information about DR events via mobile access [5]. One way to increase
the consumer interest to the DR programs via incentives is by using notification messages via some
end-point interaction methods. There are different types of DR notification messages. Some of them
aim just to give information about their power consumption via commercial products like Energy
Detective while some messages aim to direct users to change their usage for energy saving by giving
them monetary incentives which can be SMS-based [6] notifications or tablet-based wall displays that
are installed residents’ houses.

SMS-based messages are the most effective notifications for DR programs according to studies
conducted in [7,8]. Some of the reasons are: reaching the customer about events is fast as everyone
carries mobile phones, event participation is high, and it requires no additional cost for customers.
Additionally, from the grid operator point of view, SMS can be integrated into any kind deployment,
either legacy or smart grid. DR programs play a very important role in the stability of the smart
grid via balancing the phase loads, individual or group of customer’s loads. Therefore, any type of
malfunctioning on the DR affects the health of the power grid. Cyber-physical attacks are one of those
several reasons that might affect the functionality of DR programs. Disclosure, spoofing, tampering,
and malware injection attacks are known and studied attacks that may target the DR network [9].
On the other hand, social engineering attacks [10] with the objective of exploiting the customer have
not been considered in the literature to the best of our knowledge. Therefore, we focus on analyzing
the effects of phishing attacks that rely on SMS architecture. Taking on the holistic approach, a risk
assessment for the DR use case to understand the severeness of the attack is performed. We adopted and
enhanced the SGIS approach [11] which addresses the domain-specific risk assessment methodology
for the smart grid.

Social engineering attacks against an organization or a critical system aim to exploit people’s
natural tendency to trust others. SMiShing (short for SMS Phishing) [10] is a type of social engineering
attack that encourages users to take an action depending on the target, e.g., click on a link or
behave accordingly. SMiShing attacks make use of peoples’ confidence in their phones as they are
authentic-looking. Generally, a threat coming through an SMS message is not expected by users which
makes SMiShing attacks easy to exploit. There are technical and habitual obstacles that make SMiShing
attacks viable and more dangerous than their web-based relatives: Links included in the SMS messages
cannot be verified like in the e-mail phishing cases by the user since hovering on URL is not possible.
Shortened and aliased URL usage (e.g., tiny URL, bitly) is very common for SMS messages. Thus,
users mostly satisfy their curiosity by just clicking the link. Users easily comply with requests given by
the parties with more authority than they have. Once they commit to DR participation, they are more
willing to comply with consistent requests when they receive SMS messages from the utility-looking
sender. In addition, prevention methods provided for web-based phishing attempts like spam filters
are not applicable for SMiShing attacks and current proposals are not practical.

In this study, we aim to show how the grid could be affected by the outsider attacks which do not
stem from the well-known sources. We introduce a new type of attack surface using SMS phishing
messages that were not receiving attention beforehand and name them Disturbing DR via SMiShing
(DDRS) attacks.

The main contributions of the study are as follows,

• We determined that SMiShing attacks can damage the power grid through customer behavior by
victimizing customers even if the attacker has no access to the power grid communication domain.
We show the effects of DDRS attacks on the LV grid which is the first evaluation of this kind.

• We performed the risk assessment and enhanced the methodology as it is needed: The SGIS
risk assessment methodology does not provide any likelihood analysis method; rather, it refers
to the HM/IS1 standard’s [12] method. It gives suggestions on the threat factors in [9] without
considering vulnerability. To improve this deficiency, both the SGIS methodology and OWASP
(Open Web Application Security Project) [13] methodology are combined and adopted into a
five-scale approach that considers the likelihood analysis in a broader sense.
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• Risk assessment of the DR use case for the SMiShing attack is performed: In order to understand
how a SMiShing attack would affect the grid asset, what the probability of a specific threat scenario
to happen is, and how to react if that attack occurs, we carried out a risk assessment on the DR
use case for SMiShing attacks, shown in the background section.

• SMiShing attacks for SMS notification-based DR programs are modeled: We reveal that DDRS
attacks are geared toward outages on the power grid. Attacks are simulated on a test system to
analyze the reaction of the system under attack. The European Low Voltage Feeder Test System
provided by IEEE [14] is utilized for deterministic and randomized attack models.

• We provide possible countermeasures for the identified risk, for both the utility and customer
perspective: we provide some solutions on how the utilities should handle the attack, how they
should interact with the customer to prevent DDRS attacks, what kind of preventive actions they
can take on the power grid to mitigate the DDRS attacks, and what the customer should do to
protect themselves from SMiShing attacks.

The most important feature of our attack is that the attacker does not need to reach any smart grid
device physically or remotely, nor compromise connected devices [15], nor gather an IoT botnet [16];
rather, he just needs a way to send SMS messages to customers. Knowing how widely used mobile
phones are and the increase of phishing attacks, this type of attack is viable and may become reality.

The paper continues with the related works undertaken in the field shown in Section 2. Section 3
provides background on DR use case and SMiShing attacks. In Section 4, the risk assessment of the
DDRS attacks is presented. Section 5 presents the simulation and the impact of the attack on the power
grid using an open-source power flow solver. Section 6 discusses the mitigations, and we conclude the
study in Section 7.

2. Related Work

Related works are discussed in three categories; load altering attacks, false injection attacks,
and IoT-based attacks, all aiming to create an imbalance on the grid. There are also several works
focusing on cyber-security aspects [17,18] proposing the use of blockchain technologies or efficient
authentication schemes on the grid; readers are referred to related studies.

In [19], Mohsenian-Rad et al. studied different internet-based attack surfaces that lead to
load-altering attacks (LAA), which damage the grid via circuit overflow or creating an imbalance
between demand and supply. They identified different threat sources, e.g., data centers can be an attack
target since their power consumption is high. Another threat may stem from direct and indirect load
control functionalities of the grid when load control command control by the attacker. They propose an
optimization framework for cost-efficient load protection. Mainly, they aimed to identify the significant
loads that can cause major harm to the grid with a given topology. In [20], Sajjad et al. enhanced
the static attacks given in [19] by addressing dynamic changes and trajectory over time on the loads.
They tested their Dynamic LAA proposal on six bus cases and presented the impact. Later, in [21],
they investigated the protection schemes for the attack.

In [22], Liu et al. presented a new type of attack which they refer to as false data injection attacks,
which target the state estimation in the power system. The attacker can inject malevolent values,
namely the phasor measurement unit (PMU) readings, that could misguide the state estimation process
so that misbehavior cannot be detected. The attacker must know the power system configuration to
issue an attack. They simulated their findings on the DC system with a power flow solver, using random
and targeted injections. This work was later improved by [23] Rahman et al. for nonlinear state
estimations, on the AC system, but the idea remains the same. Reference [24] extends the work done
in [25], adding security indices to quantify the difficulty of an attack against measurements.

In [26], Dvorkin et al. studied the effect of cyber-attacks via compromised IoT-controlled loads,
more specifically modifying their consumption to yield failures, in the worst-case triggering a cascading
effect. They modeled the attacker to maximize the effect of the attack both taking the transmission
and distribution grid into account by varying the level of adversary impacts between the transmission
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and distribution grids. To simulate the effects, they described an optimization model that outputs the
attacker’s modification of the net active/reactive power injection of IoT-controlled loads.

In [16], Soltan et al. presented a new type of attack based on compromising high wattage IoT
devices and using them to manipulate demand, leading to disruptions on the transmission grid.
They remotely turn on/off devices to launch their attack. In [26], the same authors proposed two
optimization algorithms, Safe and Immune, to find optimum operating points for generators for the
same type of attacks as a protection mechanism. They performed power flow simulations on the
DC grid.

In [15], they presented how IoT devices, computers, and even display screens can be used to build
a connected zombie network targeting to push the grid an unstable state mainly by modifying their
power consumption remotely. They showed the frequency effects of the attack on the EU synchronous
grid. Like in [16,26], the adversary does not need any relation between the zombie network and the
power grid.

The distinctive character of our work is that it is neither needed to build an IoT botnet nor a
zombie device network. We exploit the SMS functionality that is provided to every mobile phone and
the interdependency between the SMS network and the power grid which are two separate networks
by means of connectivity. Moreover, the impact is evaluated both using risk assessment methodology
and power flow analysis. To the best of our knowledge, the work presented in our study will be the
first to examine SMS-based phishing attacks and the human effect on the distribution grid.

3. Background

3.1. SMS Usage for DR

Balancing power generation and consumption to provide high availability in power service is a
challenging task, where DR comes into play. DR models elaborate on the mechanisms to manage the
demand from consumers in response to directions or incentives.

DR models have two categories, namely, price and incentive-based models. Price-based methods
comprise real-time pricing, time of use and critical peak pricing programs and aim to balance the
consumption of the peak periods by adopting hourly basis prices to reflect the real-time cost to the
consumers. Incentive-based programs direct consumers to reduce their consumption by offering
special rewards to manage excessive demand. One of these programs, which is called behavioral
demand–response, aims to reduce consumption by encouraging customers to use less energy during
peak-demand events.

Australian renewable energy agency (ARENA) has started a behavioral demand response program
integrating SMS-based notification messages [8]. The program is based on the behavioral response
from customers in Victoria. When there is a peak demand event, participant customers are notified
and asked to voluntarily reduce their energy consumption for a set period. If participants reduce their
usage, they are rewarded with a power credit. The program not only aims to lower the load during
peak periods but also helps to understand how and to what extent communication technology can
play a role in the residential demand response.

Incentive-based programs require communication with the customer to convey the events. The use
case, given in Figure 1, aims to balance the load by sending a DR notification message via SMS to
the consumer. The SMS message can be a simple one, like; “Reduce your consumption during
7–9 a.m. tomorrow”, or it can be more specific, like, “Reduce your consumption to 5 kWh during
7–9 a.m. tomorrow by switching off the TV and avoid using your air-conditioner”. In the Australian
case, customers receive three different types of SMS notification messages: Heads-up SMS to remind
the event, Event start SMS, Event stop SMS. These messages just indicate the timing of the events.
Incentives and ways of participation are agreed with the customer during DR program enrollment.
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3.1.1. Use Case Information Flow

In this section, DR use case actors and information flow are explained. Actors and related
interfaces are listed below.

Customer Information System (CIS): Utility’s back-end system that stores long term information
for energy customers such as contacts, meter ID, bills.

Data Concentrator (DC): A device working as an intermediary gateway between Smart Meters
(SM) and the central Head End System (HES) to communicate with SM and collect meter data.

Distribution Management System (DMS): A system that provides services to monitor and control
the distribution grid.

Head End System (HES): Utility’s central data system collecting consumption data from smart
meters in its service area.

Meter Data Management System (MDMS): Utility’s system for managing the metering data,
coming from the HES.

Utility: As stated in [27], “a natural or legal person responsible for operating, ensuring
the maintenance of and, if necessary, developing the distribution system in a given area and,
where applicable, its interconnections with other systems and for ensuring the long-term ability
of the system to meet reasonable demands for the distribution of electricity”.

Appliances: Power consuming home devices.
Smart Meter (SM): Utility’s metering end device at customer’s premises that has bidirectional

communication functionality.
Short Messaging Service (SMS) Gateway: Provides SMS application interface to the utility’s

corporate server and communicates with a mobile network to deliver the message to the
recipient customer.

Use case interactions are depicted in Figure 1, with the communication order given in numbered
lines. The use case is triggered when the DMS detects the need for lower power consumption in a
certain area. DMS then asks for information from the CIS regarding which customers have enrolled
in the DR program, resulting in a reply from CIS with a list of customers. DMS checks customer’s
consumption from HES, selects customers and then informs CIS which customers will be receiving
SMS messages together with the content of the message. CIS prepares the SMS message content and
identifies the customers’ phone numbers. Then, SMS gateway delivers the message to the customer
through the mobile telecom infrastructure. When the customer receives the message, he/she decides
whether to participate in the event by saving power. Note that the customer is a registered user of
the utility and has already enrolled in the utility’s DR program. It is also assumed that CIS possesses
required customer data.
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3.1.2. SMiShing Attacks

The human element is becoming prevalent to define the security level of a network, system,
or device. As they are prone to social engineering attacks, the unforeseeable low hanging fruit is the
human element for the attacker’s best interest.

Phishing attacks, considering the mobile phone possession extent SMS phishing attacks,
namely SMiShing attacks, are perfect instruments since they are more severe than their competitor,
e-mail phishing, in terms of market availability and human behavior. To launch a SMiShing attack,
attacker presence is not needed. Attackers can sit wherever they want and send fraudulent SMS
messages to victims to influence them. The success of the SMiShing attacks comes from the fact that
victims can carry their cellphones always and they do not have any mechanism to check the authenticity
of the SMS.

In order to provide an analytic view of SMiShing victimization, we benefited from the framework
provided by Cohen and Felson’s [28] Routine Activity Theory (RAT) which explains changes in crime
fueled by technological developments, including the behavior of victims not just focusing solely on
the offender. Hutchings et al. [29] applied RAT for phishing victimization. These studies show that
RAT is a practical theoretical framework to evaluate SMiShing attacks. Consequently, the SMiShing
scenario suitable to Felson’s definition of a “predatory crime” as “at least one person takes or damages
the person or property of others.” Property in SMiShing case refers to the property of others, which is
the distribution grid in our case. Therefore, according to RAT framework, SMiShing happens when
a possible offender (attacker) is present, an appropriate target (power grid or customer) is present,
and capable guardian (an actor that has the potential to discourage offenders) is absent. In order to
examine RAT on SMiShing, hypotheses should be defined and then be tested.

Hypothesis 1 (H1): The lower the level of mobile phone experience, the lower the level of SMS messaging
experience, and the higher the use of the DR program, the higher the risk for victimization.

Hypothesis 2 (H2): The lower the level of mobile phone experience, the lower the level of SMS messaging
experience, and the higher the use of the DR program, the higher the risk for SMiShing attack.

Hypothesis 3 (H3): The use of mobile security or SMS filtering software reduces the risk of SMiShing attack.

Hypothesis 1 tests the relationship of three independent behavioral variables, namely mobile
phone experience, SMS messaging experience and the use of the DR program, with the dependent
variable, SMiShing victimization. Hypothesis 2 tests the relationship of the same three independent
behavioral variables, with the dependent variable, SMiShing attack status. Hypothesis 3 is that those
who use mobile security software are less likely to receive a SMiShing attack. These three hypotheses
should be tested by conducting case studies with participants to see whether an individual’s mobile
phone and DR experience affect how they process and comply with SMiShing attacks. This knowledge
helps to target the prevention efforts to reduce the incidence of SMiShing. We limited our perspective,
defining hypotheses and leaving the testing phase to further research since it requires a detailed study
on its own.

There are several studies conducted periodically by security companies [30] to show how SMiShing
attacks have evolved over the years. According to the reports, mobile is the new frontier for cybercrime.
A total of 48% of phishing attacks are on mobile and the number of mobile phishing attacks is doubling
every year. Additionally, 42% of the users click on malicious URLs from a mobile device, reported by
Stanford University [31].

The extent and the impact of the attacks vary with the motivation of the attacker. Reportedly,
financial benefits highly attract attackers. One of the focuses of interest is the banking sector.
For example, in March 2017, three Santander customers lost a combined total of EUR 41,345.31 to a
SMiShing scam [32] due to the victims’ fraud claims being refuted by their banks. The range of the
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attacks depends on the creativity of attackers, even confusion about a disease can be spotlighted by the
attackers as studied in [33]. Recently, the health sector has faced similar attacks using the COVID-19
pandemic via several phishing means, including SMiShing. They send coronavirus-related phishing
messages masquerading as trusted entities. COVID-19 SMiShing messages also follow the financial
themes, especially on governments’ employment and financial support packages. For example, an SMS
message masks the UK government, saying that all residents will be paid 458 GBP by the government.
The attack aims to harvest the email, address, name, and banking information. They can reach large
audiences by abusing people’s sensitivity towards COVID-19. Unfortunately, the impact of attacks
cannot be analyzed easily since target and theme changes. Hence, we focused on this point in our
work via simulating the effect with different scenarios.

What makes SMiShing attacks more dangerous than other phishing methods is human behavior
and low realization effort. It is easier to trick individuals into falling for phishing attacks on mobile
than it is on desktop. The reason is about trust and awareness. People are somehow aware of e-mail
phishing or web-based phishing but not about SMiShing. The simulated attacks show that people are
less wary when they are on their phones. Many assume that their smartphones are more secure than
computers. However, smartphones have their limitations and cannot directly protect against SMiShing.
There are some studies regarding SMiShing and SMS scam detection which fall into two groups.
In the first one, users need to download a mobile application on their phones, this application runs a
learning-based model to detect if SMS is legitimate or SMiShing via [34–36]. In the second approach,
a whitelist or blacklist is stored on the phone to filter the sender’s caller ids [37]. Considering the
usability aspect, the first approach is not practical, and it requires high awareness. The second approach
is vulnerable to Caller id spoofing attacks. Additionally, SMiShing attacks require very low effort to
perform. There are some free products that attackers can take advantage of. The only requirement
for placing the attack is a mobile phone number list of the victims. Therefore, from the customer
perspective, still, a viable solution is missing. Hence, people need to be vigilant and must pay attention
to directions and information from their utilities, banks, and government agencies.

4. Risk Assessment

Risk assessment comprises the overall process of impact, likelihood analysis and risk evaluation
of the identified threat to estimate the level of risk by means of the magnitude of the impact and
probability of occurrence. Threats stem from weaknesses in the system leading to the circumstances
that adversely impact organizational assets, individuals, and others. The impact value of the threat
component is determined by evaluating how each threat source would affect the identified assets.
The probability of occurrence for a specific threat in terms of attacker capabilities gives the likelihood
level. The function of the impact and likelihood level gives the risk level.

There are different risk management methodologies based on the ISO27005 framework [38] such
as HMG IA [12], ISO/IEC 31000 [39] and frameworks for organizational information security risk
assessment. Although they are not specified for smart grid use cases, they can be used as a baseline.
The Smart Grid Information Security (SGIS) risk methodology [11] was issued by the standardization
bodies CEN, CENELEC and ETSI to address cybersecurity and risk assessment in smart grids regarding
the M/490 Smart Grid Mandate by the European Commission. The approach is adopted by several
EU funded projects, such as SPARK and SOES for smart grid use cases. Although there are some
deficiencies (see Annex C of [11]) it is still the most appropriate methodology for our case. Hence,
in this study, SGIS methodology is embraced for the demand response use case and the identified
shortcoming in the Likelihood analysis method is fixed. In the following sections, assets are identified,
then, for each asset, impact and likelihood are estimated. Using impact and likelihood levels, the risk
level is evaluated. As for the scoring, we follow [11] for the sake of compliance. There are four levels
and a 4 to 1 rating for the Impact and Likelihood scoring: Very High (4), High (3), Medium (2) and
Low (1).
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4.1. Identifying Assets

To identify the assets, all the components given in Section 3.1.1 are grouped according to the
network area they belong as such:

• CIS and MDMS are grouped as Utility Corporate Network (UCN),
• DMS and HES are grouped as Utility Operational Network (UON),
• SM and Appliances are grouped as Customer Network (CN),
• SMS Gateway, Mobile Network, and Mobile Phone are grouped as SMS Network,
• DC is considered as a separate component.

The identified threat has an impact on the UON, DC, CN. Therefore, these three components are
selected as the assets for the risk assessment.

4.2. Impact Analysis

Risk impact is derived from different measurement categories and presented in five Risk
Impact Levels. SGIS Impact Analysis methodology identifies five different categories: Operational
(Energy, Population Infrastructure), Legal, Human, Reputational and Financial. Each category is
investigated for its impacts. The financial category is neglected due to evaluation complexity. The Legal
category is out of our scope since we do not focus on information leakage attacks.

EPRI provided the NESCOR study [40] which identifies the failure scenarios and impacts from
smart grid domains. The possible threats sources for DR use case are excerpted as follows;

• Publicly disclosing the private information (consumer’s power signature) on the communication
channel by eavesdropping on the network.

• Modifying or spoofing messages (e.g., smart meter last gasp message) on the communication link
which may cause power loss.

• Preventing legitimate DR messages from being retrieved and transmitted by tampering with the
communication or bursting channel by other messages.

• Compromising one or more DR system devices causing inappropriate DR messages at undesired
times to be sent to unintended devices/customers.

• Malware injection to the one or more DR system device causing malicious use of system resources
(slowing down the system, sending unwanted DR messages, etc.), and unauthorized access to
customer data.

These threats focus on and stem from the DR network. The NESCOR study points out social
engineering attacks as well, specifically spear-phishing attacks, targeting the utility employee; however,
customer-oriented attacks and their effects are not considered. In this study, the overlooked external
threat source, SMiShing attacks, is identified which can be used to trigger inappropriate DR events
aiming to manipulate demand and may eventually cause power loss.

The impact caused by the SMiShing attack is assessed in different aspects; energy, population,
infrastructure, human, and reputation. In the energy aspect, the impact level is determined based
on the loss of energy supply caused by the attack. The larger area loss impacts in a larger manner.
In the population category, the scale of the people affected in the area defines the level. The size of the
damages on the critical infrastructure due to power loss gives the impact level in the infrastructure
category. Human category measures how power loss impacts directly or indirectly on people’s health.
Utilities’ reputation is another dimension of interest that is affected by the attack. Considering all these
dimensions, the impact levels are determined as in Table 1, (N/A stands for Not Applicable).
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Table 1. Impact Levels for SMiShing Attack.

Assets
Impact Categories

Energy Population Infrastructure Human Reputation

UON Very High High High N/A Low
DC Medium Low Medium N/A Low
CN Low Low Medium Low Low

4.3. Likelihood Analysis

The SGIS methodology does not offer its own likelihood analysis method; rather, it refers to the
HM/IS1 standard’s [12] method. It gives suggestions on the threat factors in [11] without considering
vulnerability factors. In this study, we integrate the OWASP [13] methodology to the SGIS methodology
aiming to complete the methodology so that we can handle the likelihood analysis in a broader sense.
To combine the two methodologies, OWASP’s ratings are converted into a five-scale approach and
calculate the likelihood with the following formula given in (1):

Likelihood Level = (Rating (Threat Capability + Threat Interest (1) + Opportunity
+Ease o f Discovery + Ease o f Expl))/5

(1)

Considering the attacker’s capabilities and their motivations to perform an attack, the four attacker
types are identified, which are Customer, Hacker, Dishonest Employee, and Terrorist actors. They differ
in motivation (money, grudge, political aspects, etc.), tools used, capabilities and access privileges to
the asset. Customer type is more focused on CN level assets and is unaware of the utility site, hence the
likelihood level is only applicable for CN level. Contrary to this, Terrorist and Dishonest Employee
types aim to attack Utility’s site. These types of attackers may know the transmission and distribution
topology so that they can launch more targeted attacks. Hacker type could have penetrated in each
level. Taking attacker features into account, the likelihood levels, computed according to likelihood
formula, are shown in Table 2.

Table 2. Likelihood Levels for SMiShing Attack.

Assets
Attacker Types

Customer Hacker Dishonest Employee Terrorist

UON N/A High Very High Very High
DC N/A High Very High Very High
CN Very High High N/A N/A

4.4. Risk Level

To determine the Risk Levels, we take the highest level from Tables 1 and 2 for each asset and
obtain the Impact and Likelihood Level columns in Table 3. Risk Levels are determined by multiplying
the Impact and the Likelihood levels, then the result is mapped to the appropriate level as given in
Table 3. We refer to [11] for the mapping. The mitigation and preventive actions should be decided by
the Utilities according to the resulting Risk Levels.

Table 3. Risk Levels for SMiShing Attack.

Assets Impact Level Likelihood Level Risk Level

UON 4 (Critical) 4 (Very High) 4 × 4 (Critical)
DC 2 (Medium) 4 (Very High) 2 × 4 (Medium)
CN 2 (Medium) 4 (Very High) 2 × 4 (Medium)
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5. Attack Scenario and Simulation Results

5.1. Simulation Environment

We simulated DDRS attacks to investigate their effects on the distribution grid via power flow
analysis using Gridlab-D [41] which is an open-source power system simulation and analysis tool.
IEEE European Low Voltage Test Feeder is employed to run our simulations which serves as a
benchmark for researchers working on behavioral analysis of low voltage grid.

We implemented the test system on Gridlab-D and ran with its default parameters. We compared
our power flow results with the results given by the test system to check if our implementation is correct.
Then we amended the test case’s nominal voltage values to 230 Volt on each load and 19,918 Volt on
Source Bus so that they align with the EU system as the current test cases [42] represent the North
American system. The radial 0.4 kV feeder is connected to the 34.5 kV medium voltage distribution
system by a transformer at a distribution substation with a base frequency of 50 Hz. The system
is a typical European three-phase low voltage feeder that comprises 55 single-phase loads with its
time-series load profiles based on a one-minute resolution over 24-h.

5.2. Threat Model and Attack Variations

In the threat model, the attack is formulated to created power grid disruption. Due to the nature
of the SMiShing attacks, the attacker does not need to access any component of the power grid
(neither power network nor IT network) that is depicted in Figure 1. An attacker, having just mobile
phone numbers of customers, can benefit from a phishing software and can send fake SMS messages to
start the attack. The communication medium is SMS messages and the attacker has unidirectional
communication with customers means that the attacker only sends the fake SMS and no reply is
required. The attacker can be any type of those given in the likelihood section providing they have a
list of mobile phone numbers of the customers to conduct the attack.

The success of the attack depends on the behavior of the customers. Hence, we simulated customer
behavior by running different cases. We run two cases to realize our attack simulations. The first case
includes two different deterministic attack scenarios and the second case includes several randomized
runs. We facilitated these cases by modifying the load profile on the simulation. For deterministic
attacks, modifications are performed manually while modified loads are selected by a probabilistic
distribution function for the randomized cases. Modified loads mean that the selected customers
received a fake SMS message and reacted accordingly.

In the deterministic attacks, the selection of the targeted customer loads is made considering the
peak times of the normal operation over 24-h simulation. We simulated the system without attacking
to identify the most loaded phase and most loaded time interval. Using these, two scenarios are
described. The first, Scenario 1, just attacks one customer on the system between 08:20–10:00 a.m.
The second, Scenario 2, is to attack all of the customers fed on phase B which is the most loaded phase
in the same interval.

In the randomized case, Scenario 3, the number of loads that will be under attack is determined
according to Poisson distribution. Then, loads will be assigned randomly from 55 loads. The simulation
runs several times until each load is attacked but not more than once.

5.3. Simulation of the System without Attacking

The simulation ran on normal circumstances, without attacking, is depicted in Figure 2 as time
series solution of the voltage magnitude (Volt) for the Loads 1, 32, and 53. These loads are connected to
different phases. Load 53 causes the biggest change, so it points the load to be attacked and the critical
time interval.
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5.4. Simulation of the System under Attack

In Scenario 1, the attack is launched on the selected load, Load 53, the most loaded bus on-peak
time according to the outcome of the without attack run. In Scenario 2, the attack is launched on all
customer loads in Phase B which is the most loaded Phase to perceive the effect of the attack scale.
In Scenario 3, the loads are selected randomly according to Poisson distribution which gives the
probability of a given number of events happening in a fixed interval of time. Random selection of
loads represents the cases where the attacker has no prior knowledge of the consumption.

Each simulation uses load profiles that reflect the consumption for a one-day period for each
customer load. The simulation is initialized so that it takes values at 00:01 a.m. then runs until
24:00 p.m. We defined the attack time interval as 100 min around the on-peak moment which is
09:28 a.m. We control the load increase or decrease with a “multiplier” parameter. The multiplier
can be adjusted according to the attack target. If multiplier <1, then attack targets decrease the load,
if multiplier >1, then attack targets increase the load. In our case, we set the multiplier to 2 to double
the load during the attack. The pseudocode of the attack flow is given in Algorithm 1 below.

Algorithm 1: DDRS attack simulation

1: function: simulate_DDRS_attack()
2: load_count = 1, multiplier = 2
3: load_profile [1..55]=read(load_profile_files)
4: while (load_count ! = 55)
5: number_of_loads_to_be_attacked = poisson_rnd()
6: for (1: number_of_loads_to_be_attacked)
7: pick_load = rnd (1..55)
8: for (attack_start_time: attack_end_time)
9: new_load_profile[pick_load] =

multiplier*load_profile[pick_load]
10: end for
11: end for
12: write (new_load_profile [1..55])
13: load_count = load_count + 1
14: end while
15: run_GridLab-D(new_load_profiles[1..55])
16: plot_results()
17: end function

Results are analysed by means of voltage stability, line failures and phase balance as follow.
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5.4.1. Voltage Stability

Figure 3 shows that the magnitude of the voltage at Load 1, Load 32, and Load 53 over the one-day
period for the case we attacked on Load 53. When we compare these results with the result from that
without an attack case in Figure 2, we can see that the voltage levels of Load 1 and Load 32 stay similar
with normal operation values, on the other hand, voltage values on Load 53 descend as it is subjected
to attack.Energies 2020, 13, x FOR PEER REVIEW 12 of 17 
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Figure 4 shows the magnitude of the voltage at Load 1, Load 32, and Load 53 over the one-day
period for Scenario 2 that attacked all Loads on phase B. When we compare these curves with the
normal operation case in Figure 2, we can see that the voltage levels of Load 1 and Load 32 stay similar
because they are on different phases. On the other hand, voltage values on Load 53 descend even more
comparing the first attack case which performed only one load which may cause stability problems if
the voltage drop tolerance is exceeded.
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Voltage stability is the capability to keep acceptable voltages in all buses in normal conditions and
after disturbances. The system becomes unstable if there is an uncontrollable voltage decrease by some
reason like load increment or production decrement. If the drop does not stay within the permissible
range and the utility cannot stop it, voltage collapse might occur. The voltage decrease that the system
can tolerate is defined as 6%. Therefore, based on the nominal voltage of our system which is 230 V,
the minimum tolerable voltage is 216 V. In Scenario 1, the maximum voltage drop caused by the DDRS
attack is 3% which is below 6% and within the limit. On the other hand, the maximum voltage drop
in Scenario 2 is 10% which is not acceptable and may cause unwanted effects if no preventive action
is applied. In different runs in Scenario 3, voltage drop changes according to which load is selected
randomly; some runs preserve the healthy state while some are under 216 V.

We evaluated how the system behaves for the increasing number of customers affected by the attack
in Figure 5 together with voltage drop and phase imbalance. The customers to be attacked are randomly
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selected. They are assumed to take the bait and increase the load accordingly. The measurements are
taken at the specific bus having the most loaded customer. We set the drop threshold to 6%, indicated
in the green dashed line in the figure. When the number of customers is zero, it indicates no attack case.
The figure shows that voltage drop is not linear with the number of customers, such that 10 customers
can cause the drop beyond the limit while 20 to 30 customers stay at the limit. The reason is that the
load profile of the customers and their location on the topology directly affect the level of disruption on
the system. If the customers’ load change is not major, then the attack may not cause failure and vice
versa. The length of the distribution line to which the customer is connected and the number of other
customers on that line affect the severeness of attack result. Voltage drop increases both as distance
increases due to resistivity of the line and the number of customers increases due to feeder current.
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5.4.2. Line Failures

The current values increase as the loads increase due to customer behavior under attack since the
DDRS attack generates unpredicted demand on the power system that may result in overload on some
of the lines. This overload might cause line failures if the current carrying capacity that is maximal
loading rate given in [42] is exceeded leading to energy break-outs. The power system should react to
protect overloading lines.

The current change carried on the lines can be seen in Figure 6. In the without-attack case,
located at the far left, maximum current magnitudes are about 170 A. In Scenario 1, located in the
middle, current values slightly increase as the DDRS attack affects only one load. On the other hand,
in Scenario 2 at the far right, where all phase B loads are under attack, maximum current magnitudes
double which may cause line failures.
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5.4.3. Phase Balance

Unbalanced loading causes phase imbalance on distribution systems which shortens the life of
the appliances, damages the reliability of the equipment especially three-phase motors and controllers
due to overheating.

In a three-phase system, the unbalanced phase voltages mean that voltage differences higher
than allowed values. Voltages in three-phases may not be equal but the inequality should be limited.
The magnitude of phase imbalance can be calculated as the ratio of the maximum deviation from the
average of the voltages over average voltages as in Equation (2).

Voltage imbalance =
Max Deviation from Average Voltage

Average Voltage
(2)

Using (2), the evaluated voltage imbalance is 10.27% for Scenario 2 on-peak time which exceeds
the tolerable threshold and can cause inevitable consequences. Figure 5 shows how the attack scale
relates to phase imbalance. Like voltage drop, phase imbalance is not linear with customer size. On the
other hand, changes in voltage drop and phase imbalance are not parallel such that even if voltage
drop stays at the limit, phase imbalance exceeds the limit in 25 and 30 customers attack cases. Thus,
if the customer is connected to one phase, the utility should pay more attention to voltage drop.

6. Discussion on Countermeasures

Some preventive actions are described here to protect utilities and customers from any harm
stemming from DDRS attacks. The best—and in fact—the only way to protect the customer against
SMiShing attacks is to build an awareness plan and act upon it. To increase awareness for SMiShing
attacks, customers should regularly be informed regarding

• The way of communicating,
• Structure of legitimate messages as well as possible SMiShing messages,
• When and how to respond to the messages,
• What to do if a suspicious message is received.

Utilities should provide a communication channel to the customer so that they can confirm the
received SMS notification is sent by the utility. There can be several ways to conduct this, for example,
the utility can serve a web or mobile application that customers can log-in to and monitor demand
response notification activities.

Utilities should cooperate with the SMS service providers for a reporting service, so that customers
can report suspicious messages and get a response if it is a legitimate message before taking any action
accordingly. From the customer perspective, people need to be vigilant and must pay attention to
directions and information from their utilities and operators.

For the operational reliability of the grid, utilities recommended conducting pre-analysis on
different levels such as substation or feeder level on the DR participation of the customer. Utilities can
evaluate the effect of the DDRS attack to see whether critical feeders are affected. In order to detect
the DDRS attack, utilities can analyze historical load data, taking the installed capacity and diversity
(simultaneity) factor of the customers into account using statistical or machine learning modeling
techniques. Depending on the assessment, they can apply the following preventive actions against
DDRS attacks:

• Defining the optimum DR participation-level thresholds and limiting the participation based on
the threshold so that even if the attack is launched, the balance of the grid cannot be disrupted,
and keep the grid robust

• Continuously monitoring the behavior of the grid, and if an anomaly is detected, then the
sheddable loads should be isolated if necessary,
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• Balancing the grid through energy storage devices. Depending on the behavior of the grid,
utilities may install energy storage solutions as a source to balance the load since batteries can
both take in and supply energy.

From the customer point of view, customers should be careful when receiving SMS messages
from unrecognized senders, or the message content does not seem trustworthy. Some of the mobile
operating systems offer SMS filtering features that customers can enable to block senders that are not
included in the customer phone list.

We observed that interworking environments may cause unforeseen vulnerabilities like, in our
case, the integration of SMS infrastructure with the power grid introducing a new attack surface.
For this kind of architecture, the risk assessment should be explicitly carried out, and a detailed analysis
should be conducted to identify assets, threats and possible countermeasures.

7. Conclusions

In this study, we demonstrated the effect of phishing attacks on the power grid, targeting
the customer via fake SMS messages. We define the DDRS attack as a new type of threat to
the incentive-based DR use case using SMiShing attacks. Based on the use case, we evaluated
the risks related to DDRS attacks. The risk assessment approach followed in this study is built
on SGIS and OWASP approaches. We combined and tailored them to obtain a more mature
domain-specific methodology.

We simulated the DDRS attack on the demand response system to show the consequences of
the attack. We performed the attack with deterministic and randomized scenarios then analyzed the
outcomes. The analyses show us that DDRS attacks are significant and can cause critical issues on the
operation of the grid as the voltage and current values go beyond tolerable values. Figure 5 shows that
attacks can lead to around 9% voltage drop and 11% phase imbalance while the threshold 6% and
affects the utility by means of the delivery of power, the business, and the reputation and the customer
through service quality and reliability.

DDRS attacks can be performed for customers even if they are not enrolled in any DR program
since anyone with a cell phone can be a victim of SMiShing attacks. This makes DDRS attacks more
dangerous. Another important point here is that the security vulnerability originates from neither the
power grid nor grid components. The consumer is the attack target and takes action unintentionally
which leads anomalies on the grid. In this case, the utility may not sense the source of the anomalies.

We conclude the study by pointing out countermeasures to protect both consumer and utility.
If proper mitigations are not applied, the consequences, like voltage collapse and line failures,
may scale to larger areas leading to a more severe impact on the wealth of the population and the
grid. DDRS-attack detection techniques based on statistical or machine learning techniques should be
studied in the future.
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