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Abstract: This article presents the results of a three-year experiment involving a multi-criteria
evaluation (productivity, economic and energy balance) of the effectiveness of nitrogen (N) and sulfur
(S) fertilization in different cultivars of winter oilseed rape (open-pollinated, semi-dwarf hybrid,
long-stem hybrid) grown in north-eastern (NE) Poland. The yield of the semi-dwarf cultivar was
11% lower than the yield of the long-stem hybrid cultivar and 18% higher than the yield of the
open-pollinated cultivar. In all cultivars, N fertilization improved yields up to a rate of 180 kg ha−1

and up to a rate of 230 kg ha−1 in years with low precipitation in spring and summer. Seed yield
increased in all cultivars in response to S fertilization at 40 kg ha−1. Higher rates of N fertilizer
decreased the content of crude fat and glucosinolates (GLS) and increased the concentration of
total protein in all cultivars. Sulfur fertilization increased the content of total protein (in long-stem
cultivars) and GLS (in all cultivars). Production costs ranged from €542–624 ha−1 (≤130 kg N ha−1)
to €619–697 ha−1 (≥180 kg N ha−1). The demand for energy in the production of winter rapeseed
ranged from 14.5–19.3 GJ ha−1 (≤130 kg N ha−1) to 22.4–27.0 GJ ha−1 (≥180 kg N ha−1).

Keywords: Brassica napus L.; cultivar; fertilization; biomass yield and quality; profitability;
energy balance

1. Introduction

The global production of oilseed crops is estimated at 550 million Mg yr−1. The leading oilseed
crops in the world are soybeans (Glycine hispida (Moench) Maxim.) (63%), rapeseed (Brassica napus (L.)
ssp. oleifera (Metzg)) (12%) and sunflower (Helianthus annuus L.) (9%) [1]. Rapeseed became a major
oilseed crop mainly due to biological progress [2]. The discovery of genetic sources of variability in
the main seed quality traits, that is, the content of erucic acid (EA) and glucosinolates (GLS), were
the milestones that contributed to advances in rapeseed production and an increase in the area under
rapeseed. The first EA-free variety was derived from the forage spring rapeseed cultivar Liho in
1961 [3]. In the late 1950s, Dr. Krzymański discovered that spring rapeseed cv. Bronowski contained
ten-times less GLS than the remaining varieties of B. napus [4]. Owing to these breakthrough discoveries,
contemporary rapeseed cultivars grown for the food and feed processing industries contain practically
no EA in oil and are characterized by low levels of GLS in fat-free seed residues. These rapeseed
lines are referred to as double-low, double-zero or canola-quality cultivars [5]. The production and
commercialization of canola-quality rapeseed has led to a rapid increase in the demand for these
cultivars in the food and feed processing industries [6]. In the last 15 years (2003–2017), the area under
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rapeseed and global rapeseed production continued to increase at a rate of 0.75 million ha yr−1 and
2.69 million Mg yr−1, respectively [1]. The European Union, Canada, China and India are the leading
rapeseed producers. French and German farmers supply 24% and 20% of the rapeseed produced
annually in the European Union (5.20 million Mg and 4.28 million Mg, respectively) [1].

The production of rapeseed was further intensified by the discovery and development of systems
for controlling cross-pollination to utilize the heterosis effect [7]. The yields of hybrid winter oilseed
rape cultivars grown in Europe exceed those of open-pollinated cultivars by around 7–17% [8,9].
The heterosis effect is also observed in seed quality traits [9] and plant responses to agronomic [10] and
climatic factors [8].

At present, the main goals of oilseed rape breeding are to—(i) increase yields, mainly in hybrid
cultivars [11]; (ii) improve agronomic traits, mainly resistance to pre-harvest seed shattering [12],
drought [13], high/low temperature [14,15], soil salinity [16] and lodging [17]; (iii) increase resistance to
disease and pests [18,19]; (iv) decrease the content of biologically active compounds that compromise
the feed value of non-fat seed residues [20]. The introduction of winter oilseed rape cultivars
with a determinate growth habit was important from a commercial perspective [10]. The yields
of semi-dwarf cultivars are 1–7% to even 18% lower relative to long-stem cultivars [9,10,21,22].
The yields of semi-dwarf and long-stem cultivars are comparable under N-deficient conditions [23].
Semi-dwarf hybrids are more resistant to lodging and are easier to harvest, which increases their
energy efficiency [23]. They are also recommended for cool climate regions due to their higher winter
hardiness [24].

In Europe, rapeseed yields range from 1.6–1.9 Mg ha−1 (Spain, Finland, Greece) to 4.1–4.3 Mg ha−1

(Netherlands, Ireland, Denmark, Belgium) [1]. In the last 15 years, rapeseed yields in the EU continued
to increase at 10–30 kg ha−1 yr−1 (Finland, Greece, Luxembourg, Spain) to 130–140 kg ha−1 yr−1

(Bulgaria, Hungary, Lithuania, Romania) [1]. The observed increase in yields can be attributed not
only to the cultivation of high-yielding cultivars but also to higher agricultural inputs [10]. Despite
significant technological progress in agriculture, nitrogen (N) fertilization is still the key factor in
rapeseed cultivation [8]. The N demand of winter oilseed rape ranges from 5.5 kg N 100 kg−1 to 6.1 kg N
100 kg−1 seeds [8,25]. However, the high N demand of winter oilseed rape is accompanied by relatively
low nitrogen use efficiency (NUE) [26–28]. The NUE of winter oilseed rape has been estimated at 10 kg
dry matter (DM) seeds kg−1 N and it is considerably lower in comparison with spring malting barley
(21 kg DM seeds kg−1 N), winter wheat grown for forage (25 kg DM seeds kg−1 N) and sugar beets
(69 kg DM seeds kg−1 N) [29]. The optimal N rate for rapeseed production is difficult to establish
because the yield-forming effects of N are considerably influenced by agroecological conditions, crop
rotation, agricultural inputs, form of N fertilizer, fertilization technology [8] and genotype [30].

The growth and development of Brassica crops is also affected by sulfur (S) which is found in
structural compounds (amino acids, proteins, enzymes) and plays important metabolic functions in
plants (protein, carbohydrate, fat and chlorophyll synthesis, photosynthesis) [31]. The demand for S is
determined mainly by crop species and yield. Plants of the families Brassicaceae and Liliaceae have the
highest S requirements (40–80 kg ha−1). The demand for S is moderate in legumes (30–40 kg ha−1)
and lowest (15–25 kg ha−1) in cereals [32]. The availability of S in soil is affected by a combination of
factors such as S deposition in soil, mineralization of organic forms and the amount and distribution
of precipitation [33]. Lower SO2 emissions and higher proportions of S-loving plants in agricultural
ecosystems necessitate S fertilization, in particular in high-input production systems [34]. Sulfur deficit
poses a serious problem in modern agriculture and it significantly compromises crop production not
only in Europe but also in many regions of Australia, New Zealand, USA, Canada, Latin America and
Asia [35]. In S-deficient soils, S fertilization increases rapeseed yields by up to 65–74% [36,37]. In soils
moderately abundant in this nutrient, S fertilization increases yields by only several percent [34,38].

Sulfur fertilization not only exerts direct effects on the seed yield of crops in the family Brassicaceae
but also indirectly improves the agronomic effectiveness of N fertilizers [39–42]. In a study by McGrath
and Zhao [43], N rates exceeding 180 kg ha−1 increased rapeseed yields by 42–267% (0.7–1.6 Mg ha−1)
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only in combination with a soil-applied S rate of 40 kg S ha−1. Similar results were reported by
Ma et al. [42], Jankowski [44], Ahmad et al. [45], Lucas et al. [46] and Filipek-Mazur et al. [47] in
open-pollinated and hybrid oilseed rape cultivars. The combined application of N and S produced
similar effects in other Brassica crops, including camelina (Camelina sativa (L.) Crantz) [48–50], brown
mustard (Brassica juncea (L.) Czern.) [51,52], white mustard (Sinapis alba L.) [53,54] and turnip rape
(Brassica campestris L.) [41,51].

The processing suitability of rapeseed is influenced by the content of total protein and crude fat.
The seeds of winter oilseed rape contain 406–490 g kg−1 DM of crude fat [34,55–57] and 190–260 g kg−1

DM of total protein [34,57]. Oilseed crops of the families Brassicaceae and Liliaceae are also capable of
synthesizing GLS [58]. The GLS content of canola-quality winter rapeseed from the Polish National
List of Agricultural Plant Varieties ranges from 9.1 µM g−1 to 14.7 µM g−1 seeds [59] Protein and
non-protein amino acids, mostly methionine (alkenyl GLS), tryptophan (indole GLS), phenylalanine
and thyrosine (aromatic GLS), are the direct precursors of GLS [60]. Double-low cultivars of oilseed
rape contain mostly progoitrin, gluconapin (alkenyl GLS) and 4-hydroxyglucobrassicin (indole GLS),
accounting for 90% to 91% of total GLS [34].

The crude fat content of rapeseed and other Brassica crops is negatively correlated with total protein
concentration. In turn, total protein is positively correlated with N fertilizer rates [48,50,53,54,61–64].
Therefore, the N-induced increase in total protein content [65,66] can decrease the crude fat content
of rapeseed [8,61,65–67]. A similar correlation was noted in alternative Brassica crops, including
camelina [48,50,63], brown mustard [68] and white mustard [53,54]. Late application of N fertilizers
intensifies the decrease in crude fat concentration [66]. Nitrogen fertilization and the crude fat content
of rapeseed are not bound by a negative correlation only when N does not exert a yield-forming
effect [69]. Nitrogen also affects the biosynthesis of different GLS fractions [61,70–73]. High supply of
N generally decreases the biosynthesis of alkenyl GLS and increases the biosynthesis of indole GLS in
rapeseed [74].

Sulfur fertilization exerts a yield-forming effect on crops of the family Brassicaceae and it can also
considerably influence the quality of oil, fat-free seed residues and harvest residues [34,49,54,75–78].
Sulfur exerts varied effects on the crude fat content of rapeseed. Sulfur fertilization decreased the crude
fat content of rapeseed in the studies conducted by Fismes et al. [55] and Egesel et al. [56]. According
to Filipek-Mazur et al. [47], Ijaz and Honermeier [57] and Jankowski et al. [34], S had no significant
influence on crude fat concentration in rapeseed. An S-induced increase in the crude fat content of winter
and spring cultivars of oilseed rape was observed by Szulc et al. [79], Ahmad et al. [80], Bahmanyar
and Poshtmasari [81] and Sienkiewicz-Cholewa and Kieloch [82]. In a study by Jankowski et al. [83],
the influence of S fertilization on the crude fat content of oilseed rape varied depending on weather
conditions. Sulfur decreased crude fat content in years with relatively high precipitation during
ripening. In growing seasons with average precipitation, S fertilization had no significant influence on
crude fat content. Sulfur not only affects the accumulation of crude fat in seeds but it also modifies the
fatty acid (FA) profile. The availability of S during seed development inhibits the conversion of oleic
acid to EA, thus improving the quality of rapeseed oil [84]. The important role played by S in plants
results also from its presence in sulfur-containing amino acids (cystine, cysteine and methionine) [85].
In plants, more than 90% of S is accumulated in the form of sulfur-containing amino acids [86]. Sulfur
deficiency generally decreases the content and quality of total protein in the seeds of winter oilseed rape
by reducing the concentrations of nutritionally important essential amino acids [56,75,87]. However,
the correlation between S fertilization and the total protein content of Brassica crops is generally weak
and it varies across years [34,38,50,84,88–91]. Sulfur fertilization plays a key role in the biosynthesis of
GLS [34,38,58,75,92–94], mainly alkenyl GLS [34]. Long-term experiments conducted by Wielebski [95]
and Wielebski [96] revealed a significant increase in the GLS content of all double-low cultivars of
winter rapeseed (open-pollinated, composite and restored hybrids, double haploid). The GLS content
of rapeseed increases significantly in response to high S fertilization rates, in particular in S-deficient
soils [97].
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Oilseed rape, in particular winter cultivars, requires intensive farming and its yields are strongly
determined by agricultural inputs [98,99]. Production costs, yields and, consequently, the economic
performance of rapeseed are determined by the prices of seeds and agricultural inputs [100–102]
as well as the applied production technology [103]. High-input technologies are characterized by
higher input costs but also higher productivity. In Europe, rapeseed production costs in high-input
technologies range from €500 ha−1 to even €1000 ha−1. Production costs are around 12% lower in
integrated technologies [104] and up to 40% lower in low-input technologies [105]. The economic
performance of winter oilseed rape is also largely determined by genetic factors (cultivar) because the
yields of various cultivars can differ by 0.7–1.1 Mg ha−1 [21,106] to 1.8 Mg ha−1 [9].

The production of agricultural biomass is a strategic sector from the perspective of global food
security, which remains to be the main but no longer the only priority in agricultural production.
Biomaterials are also being converted to bioproducts and bioenergy to counteract the threats to global
energy security [107–115]. Environmental problems and the rising cost of fossil fuels have increased
the significance of research into the energy efficiency of agricultural crops. Efforts are being made to
improve the energy balance of biomass [116]. Energy consumption in agriculture is directly linked with
technological progress. High-input production technologies have increased the availability of food
but have also made the agricultural sector more dependent on fossil fuels [117]. Rapeseed production
in high-input systems entails higher energy consumption and lower energy efficiency but higher
energy output per unit area [108]. Therefore, production systems characterized by different levels
of agricultural inputs should be evaluated not only in terms of agricultural productivity (yield and
yield quality) and economic performance but also in terms of energy efficiency [108]. A multi-criteria
approach can be applied to evaluate the effectiveness of various technologies in the production of new
crop cultivars.

The objective of this study was to identify N and S fertilization systems characterized by the
highest agricultural productivity, economic performance and energy efficiency in the production of
various cultivars of winter oilseed rape (open-pollinated, long-stem hybrid and semi-dwarf hybrid) in
north-eastern (NE) Poland. The effect of nitrogen and sulfur fertilization on the biomass yield, harvest
index, nitrogen use efficiency, marginal nitrogen use efficiency, seed quality (crude fat content, total
protein content, fatty acid composition, lower heating value, qualitative and quantitative composition,
GLS content), production value, revenue per hectare, profitability index, energy inputs, energy output,
energy gain and the energy efficiency ratio of various winter oilseed rape cultivars was also evaluated.

2. Materials and Methods

2.1. Field Experiment

The experiment was conducted in 2011–2014 at the Agricultural Experiment Station in Bałcyny
(53◦42′ N, 19◦51′ E; NE Poland) owned by the University of Warmia and Mazury in Olsztyn.
The experimental factors were as follows—(i) winter rapeseed cultivar: long-stem open-pollinated
(cv. Adriana); long-stem hybrid (cv. Artoga); and semi-dwarf hybrid (cv. PR44 D06); (ii) N fertilizer
rate (kg ha−1): 80, 130, 180 and 230; (iii) S fertilizer rate (kg ha−1): 0, 40 and 80. A single N dose of up
to 130 kg ha−1 was applied in BBCH (Biologische Bundesanstalt, Bundessortenamt und Chemische
Industrie) stage 33–35 [118] as ammonium nitrate (34% N) or ammonium sulfate (24% S and 21% N).
Higher N rates (180 and 230 kg ha−1) were split into two doses: 130 kg N ha−1 in BBCH stage 33–35
and 50 or 100 kg N ha−1 in BBCH stage 50–52. The second N dose was applied as ammonium nitrate
(34% N). Sulfur was applied with the first N dose (BBCH 33–35), in the form of ammonium sulfate
(24% S and 21% N).

The experiment had a split-split plot design with three replications. Plot size was 15 m2 (10 m
by 1.5 m). Spring barley (Hordeum vulgare L.) was the preceding crop in all years of the experiment.
The following tillage operations were carried out—skimming, pre-sowing plowing and soil loosening
before sowing. The following fertilizers were applied before sowing—30 kg N ha−1 (ammonium
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nitrate, 34% N), 80 kg P2O5 ha−1 (enriched superphosphate, 40% P2O5) and 120 kg K2O ha−1 (potash
salt, 60% K2O). Dressed seeds (fludioxonil, metaxyl-M, thiamethoxam) of winter oilseed rape cultivars
were sown in mid (years 2 and 3) or late August (year 1) with a plot seeder at 60 (hybrid cultivars) or
80 (open-pollinated cultivar) of germinating seeds per 1 m2, at a depth of 2.0–2.5 cm. Metazachlor
(832.5 g ha−1) and quinmerac (207.5 g ha−1) were used to control weed infestation immediately after
sowing. Insecticides were applied four times during the spring growing season—(i) 288 g ha−1

chlorpyrifos and 30 g ha−1 cypermethrin (BBCH 33); (ii) 60 g ha−1 thiacloprid and 6 g ha−1 deltamethrin
(BBCH 52); (iii) 12 g alpha-cypermethrin (BBCH 63); (iv) 2.4 g ha−1 acetamiprid (BBCH 66). Rapeseed
was harvested on 7–10 July, in the stage of 89 BBCH, with a small-plot harvester.

Each year, the experiment was established on Haplic Luvisol (LV-ha) developed from boulder
clay [119]. In order to determine the chemical properties of soil, composite samples consisting of 8 to
10 cores were collected annually (before fertilization and sowing) from each plot to a depth of 0–20 cm
(Table 1).

Table 1. Chemical properties of soil.

Years pH Corg (g kg−1)
Available Macronutrients (mg kg−1)

P K Mg SO2−
4

2011/2012 5.9 9.0 21.3 59.3 52.0 9.2
2012/2013 5.7 8.9 20.4 57.9 49.0 7.8
2013/2014 6.3 9.9 26.2 82.7 68.0 12.5

Chemical analyses of soil were performed according to the methods described by Sokólski et al. [120].

2.2. Plant Materials

The biomass yield of winter rapeseed (seeds and straw) from each plot was determined by weight
after threshing and it was expressed in DM per hectare, taking into account the moisture content of the
samples after oven-drying at 105 ◦C (FD 53 Binder GmbH, Tuttlingen, Germany). The harvest index
(HI) was calculated with the following formula (Equation (1)):

HI =
Seed yield (Mg DM ha−1)

Seed and straw yield (Mg DM ha−1)
. (1)

The below formula was used to calculate nitrogen use efficiency (NUE) (Equation (2)) [8]:

NUE =
Seed yield (kg DM ha−1)

N rate (kg ha−1)
. (2)

Marginal nitrogen use efficiency was calculated with the below formula (Equation (3)) [121]

MNUE =
∆Y

∆RN
, (3)

where:
MNUE—Marginal nitrogen use efficiency (kg seeds per 1 kg N)
∆Y—increase in seed yield (kg) for the applied nitrogen rates
∆RN—increase in nitrogen rate (kg).

2.3. Seed Quality Analysis

The procedure for determining the concentrations of crude fat, total protein and GLS in winter
oilseed rape seeds and the FA profile of oil was described previously by Jankowski et al. [122].
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2.4. Economic Analysis

The analysis of rapeseed production costs included the costs associated with labor, seeds, fertilizers,
crop protection, the operation of tractors and farming machines and fuel. The costs of input materials
and the operation of tractors and agricultural machines were estimated based on actual consumption,
market prices (4Q 2019) and the technical parameters of agricultural machines (measured by the
authors, Table 2) and labor (€4.60 h−1). The economic efficiency of winter oilseed rape production
was determined based on the following indicators—production value, revenue per hectare and the
profitability index [120].

2.5. Energy Analysis

The relevant data were obtained based on direct measurements of diesel oil consumption, labor
and the field capacity of farming machines and equipment in the Agricultural Experiment Station in
Bałcyny for standard agricultural operations in large-area farms (Table 2). The energy equivalents of
the agricultural inputs were determined based on literature data [123–125].

The lower heating value (LHV), energy value of seeds (energy output), energy gain and the energy
efficiency ratio were calculated based on the methods described by Sokólski et al. [120].

2.6. Statistical Analysis

The data relating to seed and straw yield, nitrogen use efficiency, harvest index and seed quality
traits were processed by split-split-plot mixed model variance, where cultivar, N and S fertilization
were the fixed effects and experimental years and replications nested within years were the random
effects. Post-hoc multiple comparisons were performed using Tukey’s test (HSD). The results were
considered statistically significant at α = 0.05. All analyses were conducted with the use of Statistica
ver. 13.3 software (Tibco Software Inc., Palo Alto, USA) [126]. The F-values of ANOVA are presented
in Table 3.
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Table 2. Technical parameters of agricultural machines, machine performance and fuel consumption during winter oilseed rape production.

Farming
Operations

Engine Power of
Self-Propelled

Machine (kW) a

Parameters of
Accompanying

Machine

Service Life (h) Weight (kg) Performance of Self-Propelled
Machine and Accompanying

Machine (ha h−1) f

Fuel
Consumption

(l h−1) f
Self-Propelled

Machine
Accompanying

Machine
Self-Propelled

Machine
Accompanying

Machine

Tillage (5–8 cm) 130 4.25 b 10,000 1500 7105 5100 3.0 18.0
Pre-sowing

plowing
(18–20 cm)

130 5 c 10,000 1400 7105 2370 1.8 26.0

Sowing 184 4.0 b 10,000 1800 10,980 5600 3.5 29.5
Mineral

fertilization 130 24.0 b 10,000 2000 7105 685 13.5 8.7

Chemical crop
protection 94 24.0 b 10,000 3000 5166 5600 10.0 7.6

Seed harvest 370 10.5 b 2800 - 20,000 - 2.8-3.5 g 45.0–50.0 g

Seed transport 130 10 d 10,000 1400 7105 2600 - 8.0
Loading 55 2500 e 10,000 - 4920 - - 4.0
a tractor/harvester/loader; b working width (m); c number of furrows; d carrying capacity (Mg); e load capacity (kg); f average of 3 years; g differences resulting from variations in yield.
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Table 3. F-test statistics in ANOVA.

Trait Y Cv. N S Y × Cv. Y × N Y × S Cv. ×
N Cv. × S N × S Y × Cv.

× N
Y × Cv.
× S

Y × N
× S

Cv. ×
N × S

Y × Cv.
×N × S

Seed yield
(Mg ha−1 DM) 2.49 ns 226.67 ** 122.90 ** 5.47 * 122.96 ** 8.50 ** 0.46 ns 1.39 ns 1.63 ns 0.75 ns 1.32 ns 1.72 ns 0.41 ns 0.49 ns 0.39 ns

NUE
(kg seed per 1 kg N) 1.57 ns 171.31 ** 1629.93 ** 2.97 ns 89.01 ** 1.90 ns 0.40 ns 12.99 ** 0.89 ns 0.26 ns 0.44 ns 0.16 ns 0.28 ns 0.29 ns 0.51 ns

Straw yield
(Mg ha−1 DM) 111.44 ** 73.57 ** 16.65 ** 0.08 ns 7.80 ** 3.71 * 1.49 ns 0.83 ns 0.17 ns 0.17 ns 1.45 ns 0.71 ns 0.75 ns 0.78 ns 0.56 ns

Harvest index 142.64 ** 44.62 ** 22.62 ** 2.99 ns 1.28 ns 2.82 * 1.05 ns 2.20 * 0.41 ns 0.82 ns 1.26 ns 0.59 ns 1.18 ns 1.44 ns 0.82 ns
Crude fat content

(g kg−1 DM) 75.93 ** 27.97 ** 33.62 ** 1.35 ns 1.72 ns 3.16 ** 0.43 ns 3.87 ** 0.86 ns 1.38 ns 1.67 ns 0.53 ns 0.09 ns 1.32 ns 0.27 ns

C18:1 (%) 3.73 * 199.78 ** 5.69 ** 0.60 ns 0.03 ns 0.02 ns 0.05 ns 1.31 ns 1.18 ns 1.69 ns 0.04 ns 0.02 ns 0.01 ns 1.36 ns 0.07 ns
C18:2 (%) 3.41 * 244.11 ** 5.20 ** 0.11 ns 0.04 ns 0.01 ns 0.01 ns 0.97 ns 1.07 ns 1.12 ns 0.01 ns 0.01 ns 0.03 ns 1.71 ns 0.01 ns
C18:3 (%) 2.68 ns 66.66 ** 2.95 * 1.72 ns 0.07 ns 0.04 ns 0.23 ns 0.61 ns 2.24 ns 1.33 ns 0.10 ns 0.07 ns 0.05 ns 0.38 ns 0.20 ns

Total protein content
(g kg−1 DM) 18.85 ** 15.43 ** 21.86 ** 1.07 ns 0.33 ns 1.15 ns 0.06 ns 3.14 ** 3.18 ** 0.77 ns 0.84 ns 0.57 ns 0.61 ns 1.63 ns 0.47 ns

Total GLS content
(µM g−1 DM) 16.26 ** 720.66 ** 17.32 ** 378.79 ** 0.02 ns 0.03 ns 0.01 ns 8.73 ** 24.28 ** 7.94 ** 0.02 ns 0.02 ns 0.07 ns 1.47 ns 0.04 ns

Alkenyl GLS content
(µM g−1 DM) 12.77 ** 2875.77 ** 34.48 ** 1036.14 ** 0.03 ns 0.05 ns 0.02 ns 17.53 ** 71.52 ** 20.73 ** 0.03 ns 0.03 ns 0.12 ns 0.91 ns 0.06 ns

LHV (MJ kg−1) 26.48 ** 7.63 ** 0.14 ns 1.31 ns 2.14 ns 1.61 ns 1.23 ns 0.33 ns 0.67 ns 0.51 ns 0.98 ns 1.12 ns 0.96 ns 1.41 ns 1.35 ns

* significant p < 0.05; ** significant p < 0.01; ns—not significant; Y—growing season; Cv.—cultivar; N—nitrogen fertilization; S—sulfur fertilization; C18:1—oleic acid; C18:2—linoleic acid;
C18:3—linolenic acid; GLS—glucosinolate.
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3. Results

3.1. Weather Conditions

The mean daily temperature during the autumn growing season (August–November) was
somewhat higher than the long-term average (1981–2015) during the experiment (Table 4).

Table 4. Weather conditions during the experiment (2011–2014) vs. the long-term average (1981–2015)
in the Agricultural Experiment Station in Bałcyny, Poland (53◦35′46.4” N, 19◦51′19.5” E). Adapted
from [114].

Month
Year

1981–2015
2011 2012 2013 2014

Total Monthly Rainfall (mm)

January 30 88 35 44 32
February 21 25 21 11 22

March 9 21 14 56 30
April 34 45 23 26 30
May 42 43 46 35 59
June 56 107 45 72 72
July 172 112 164 20 85

August 84 26 25 59 66
September 39 41 69 31 55

October 30 58 15 21 48
November 10 49 23 21 45
December 46 15 34 57 43∑

570 628 515 454 588

Mean Daily Temperature (◦C)

January −1.5 −1.9 −4.4 −3.3 −2.4
February −6.6 −7.2 −0.8 2.0 −1.8

March 2.0 3.4 −4.0 5.4 1.9
April 9.7 8.4 6.3 9.5 7.8
May 13.5 13.8 15.0 13.1 13.3
June 17.5 15.2 17.4 14.8 15.9
July 18.0 19.0 17.9 21.0 18.3

August 18.0 17.9 18.1 18.0 17.9
September 14.6 14.0 11.5 14.5 13.1

October 8.7 8.0 9.3 9.6 8.2
November 3.1 4.9 4.9 4.4 3.0
December 2.4 −3.4 2.3 −0.5 −0.7

x 8.3 7.7 7.8 9.0 7.9

Total precipitation during the autumn growing season approximated the long-term average. Mild
winters in the first and third year of the study (2011/2012 and 2013/2014) contributed to overwintering
success. Below-zero temperatures (−1.9 ◦C to −7.2 ◦C) were noted only in January and February (year 1)
or only in January (year 3). In the second year of the experiment (2012/2013), below−zero temperatures
were observed during the entire winter dormancy period, that is, in December (−3.4 ◦C), January
(−4.4 ◦C), February (−0.8 ◦C) and March (−4.0 ◦C). The amount and distribution of precipitation was
most favorable for the spring and summer growth of winter oilseed rape in year 1 (2012). In the first
year of the study, precipitation was determined at 307 mm between April and July and it was 25%
higher than the long-term average. Precipitation exceeded the long-term average by 32–50% in April
(45 mm), June (107 mm) and July (112 mm) of 2012. In the second year of the experiment (2013), spring
precipitation exceeded the long-term average by 13% but its distribution was less favorable. Most
rainfall (approx. 59%) occurred only during ripening (July), whereas precipitation in the preceding
months (April–June) was below the long-term average (by 22–38%). In the third year of the study
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(2014), total precipitation during the spring growing season amounted to only 153 mm and it was
equivalent to 62% of the long-term average. Rainfall levels approximating the long-term average were
noted only in June. The average daily temperature in spring and summer was similar to (years 1 and 2)
or somewhat higher (year 3) than the long-term average (Table 4).

3.2. Biomass Yield and the Harvest Index

The yields of winter oilseed rape were stable and relatively high during the experiment
(6.22−6.36 Mg ha−1). The seed yield of the semi−dwarf cultivar (PR44 D06) was higher (by 0.48 Mg ha−1)
than the seed yield of the open−pollinated cultivar (Adriana) and lower (by 0.79 Mg ha−1) than the seed
yield of the long−stem hybrid cultivar (Artoga) (Table 5). The yield of the long−stem hybrid cultivar
was particularly high (7.96 Mg ha−1) in the first year of the study, when rainfall was abundant and
evenly distributed during the spring and summer growing seasons (Figure 1). In all studied cultivars,
N fertilizer rate of up to 180 kg ha−1 exerted a yield−forming effect (Table 5). The yield−forming
effect of higher N rates (up to 230 kg ha−1) was observed only in years with lower precipitation in the
growing season (years 2 and 3) (Figure 2). The application of S at 40 kg ha−1 led to a small (3%) but
significant increase in seed yield in all analyzed cultivars (Table 5). The genetic factor (cultivar) did not
affect the effectiveness of S fertilizer. No significant interaction of N × S fertilization was found for this
factor (Table 3).

Table 5. Productivity of winter oilseed rape biomass.

Parameter Seed Yield
(Mg ha−1 DM)

NUE
(kg Seeds per 1 kg N)

Straw Yield
(Mg ha−1 DM)

Harvest Index

Growing Season

2011/2013 6.36 45.68 10.91 b 0.333 b

2012/2013 6.27 46.35 9.71 c 0.362 a

2013/2014 6.22 45.44 11.86 a 0.313 c

Cultivar

Adriana 5.70 c 41.20 c 10.54 b 0.321 c

Artoga 6.97 a 50.95 a 11.80 a 0.339 b

PRD06 6.18 b 45.32 b 10.12 c 0.347 a

Nitrogen Rate (kg ha−1), across Years

80 5.55 c 69.42 a 10.11 b 0.324 b

130 6.20 b 47.66 b 10.99 a 0.330 b

180 6.63 a 36.82 c 11.00 a 0.346 a

230 6.76 a 29.39 d 11.18 a 0.346 a

Sulfur Rate (kg ha−1), across Years

0 6.21 b 45.45 10.85 0.333
40 6.40 a 46.57 10.83 0.340
80 6.25 b 45.46 10.79 0.337

Means with the same letters do not differ significantly at p ≤ 0.05 in Tukey‘s test. The absence of letters denotes the
non-significance of main effects.

Nitrogen use efficiency was 10–24% higher in long-stem (Artoga) and semi-dwarf (PR D06) hybrid
cultivars than in the open-pollinated cultivar (Adriana) and 12% higher in the long-stem hybrid
cultivar than in the semi-dwarf hybrid cultivar (Table 5). In the long-stem hybrid cultivar, NUE was
particularly high in the first year of the study, characterized by above-average precipitation in the
spring and summer growing seasons (Figure 3). The NUE of winter oilseed rape decreased with a
rise in N rate from 80 kg ha−1 to 230 kg ha−1 (69.4 kg seeds per 1 kg N vs. 29.4 kg seeds per 1 kg
N) (Table 5). The above decrease was particularly pronounced in hybrid cultivars (Artoga, PR D06),
regardless of their growth habit (indeterminate, determinate) (Figure 4).
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Regardless of cultivar, N rates higher than 180 kg ha−1 exerted a yield-forming effect only in
combination with soil-applied S. In treatments supplied with high rates of N (180–230 kg N ha−1),
an increase in the N rate by 1 kg without supplementary S fertilization was not productive in any of
the studied cultivars (Figure 5).
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Figure 5. Marginal efficiency of N fertilization in winter oilseed rape cultivars in response to different S
rates, across years. * N rate intervals.

As expected, straw yield was lowest (10.12 Mg ha−1) in the semi-dwarf hybrid cultivar, moderate
(10.54 Mg ha−1) in the open-pollinated cultivar and highest (11.80 Mg ha−1) in the long-stem hybrid
cultivar (Table 5). The straw yield of the long-stem hybrid cultivar was particularly high (11.92 Mg ha−1)
in the first year of the experiment with above-average precipitation and a favorable rainfall pattern
during the spring and summer growing seasons (Figure 6). Straw yield continued to increase up to the
N rate of 130 kg N ha−1 (Table 5). Higher N rates (up to 230 kg N ha−1) (Figure 7) increased straw
yield only when the water requirements of plants were well met (year 1). Sulfur fertilization had no
influence on straw yield (Table 3).

The ratio of seed yield to total biomass yield (harvest index) was higher in the semi-dwarf cultivar
(0.347) than in long-stem cultivars (0.321–0.339). The harvest index of winter rapeseed increased
up to the N rate of 180 kg ha−1 (Table 5). The influence of N fertilization on the harvest index was
determined by weather conditions (Y × N interaction) and cultivar (Cv. × N interaction) (Table 3).
In the dry year (year 3), an increase in N rates up to 230 kg ha−1 contributed to an increase in the
harvest index (Figure 8). In the long-stem hybrid cultivar, the ratio of seed yield to straw yield was
most desirable at the N rate of 130 kg ha−1. In the open-pollinated cultivar and the semi-dwarf hybrid
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cultivar, the highest value of the harvest index was achieved at the N rate of 180 kg N ha−1 (Figure 9).
The harvest index was not significantly affected by S fertilization (Table 3).
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3.3. Seed Quality

The crude fat content of seeds was higher in the open-pollinated cultivar and in the semi-dwarf
hybrid cultivar (506–509 g crude fat kg−1 DM seeds). An increase in N rate decreased (by 2–5%)
the crude fat content of seeds (Table 6) and the greatest decrease (5%) was noted in the semi-dwarf
hybrid cultivar (Figure 10). The adverse effect of N fertilization on crude fat concentration was less
pronounced when precipitation was low during the spring and summer growing seasons (year 3)
(Figure 11). Spring S fertilization had no influence on the crude fat content of seeds in any of the
analyzed cultivars (Table 3).

Table 6. Quality of winter oilseed rape seeds.

Parameter
Crude Fat

(g kg−1 DM)
FAs (%) Total Protein

(g kg−1 DM)

GLS
(µM g−1 DM) LHV

(MJ kg−1)
C18:1 C18:2 C18:3 Total Alkenyl

Growing Season

2011/2013 503.6 b 62.1 ab 20.8 ab 10.4 178.5 b 11.8 a 8.3 a 25.2 b

2012/2013 513.6 a 62.4 a 20.6 b 10.3 173.4 c 12.0 a 8.4 a 25.7 a

2013/2014 493.6 c 61.8 b 20.9 a 10.6 184.0 a 11.4 b 8.1 b 25.7 a

Cultivar

Adriana 505.5 a 63.2 b 20.4 b 9.8 c 180.8 a 12.6 b 9.3 b 25.6 a

Artoga 496.8 b 59.5 c 22.5 a 11.4 a 182.0 a 13.1 a 9.8 a 25.4 b

PRD06 508.5 a 63.7 a 19.4 c 10.2 b 173.2 b 9.4 c 5.6 c 25.6 a

Nitrogen Rate (kg ha−1), across Years

80 513.2 a 62.4 ab 20.7 b 10.2 b 171.6 b 12.1 a 8.6 a 25.6
130 503.6 b 62.6 a 20.5 b 10.3 b 174.9 b 11.6 b 8.1 c 25.5
180 503.2 b 61.7 c 21.1 a 10.6 a 182.6 a 11.2 c 7.9 d 25.5
230 494.3 c 61.8 bc 20.8 ab 10.7 a 185.7 a 11.9 ab 8.4 b 25.5

Sulfur Rate (kg ha−1), across Years

0 505.0 62.1 20.8 10.4 177.9 10.1 c 6.7 c 25.5
40 502.3 62.2 20.8 10.4 178.0 12.0 b 8.6 b 25.5
80 503.5 62.0 20.8 10.6 180.1 13.0 a 9.4 a 25.6

FAs—fatty acids; C18:1—oleic acid; C18:2—linoleic acid; C18:3—linolenic acid; GLS—glucosinolates; LHV—lower
heating value. Means with the same letters do not differ significantly at p ≤ 0.05 in Tukey‘s test. The absence of
letters denotes the non-significance of main effects.

The concentrations of major fatty acids (FAs) in the oil of winter oilseed rape reached 60–64%
C18:1, 19–23% C18:2 and 10–11% C18:3. The long-stem hybrid cultivar (Artoga) was least abundant in
C18:1 (59.5%) and most abundant in C18:2 (22.5%) and C18:3 (11.4%). Nitrogen fertilization contributed
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to an increase in C18:1 (up to 130 kg N ha−1) as well as C18:2 and C18:3 (up to 180 kg N ha−1) levels
(Table 6). The content of major FAs in the oil of winter oilseed rape was not significantly affected by S
fertilization (Table 3).
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The semi-dwarf hybrid cultivar (PR44 D06) accumulated significantly less total protein (by
7.6–8.8 g kg−1 DM) than long-stem cultivars (Adriana and Artoga). Nitrogen applied in spring up
to the rate of 180 kg ha−1 increased total protein concentration in the seeds of winter oilseed rape
by 6% (Table 6). The effect of N and S fertilization on total protein content varied across cultivars
(Cv. × N and Cv. × S interactions) (Table 3). Nitrogen contributed to a greater increase in the total
protein content of seeds in hybrid cultivars (13%) than in the open-pollinated cultivar (5%) (Figure 12).
Protein synthesis increased (by 3%) under the influence of S fertilization only in long-stem cultivars
(Adriana and Artoga). In the semi-dwarf hybrid cultivar (PR44 D06), S fertilization decreased total
protein concentration by 2% (Figure 12).

Long-stem cultivars (Adriana and Artoga) accumulated 34–39% more GLS than the semi-dwarf
hybrid cultivar (PR44 D06) (Table 6). In long-stem cultivars, N rates up to 180 kg ha−1 decreased GLS
content by 7–8%, whereas higher N rates increased GLS content by 7–11%. The GLS content of seeds in
the semi-dwarf hybrid cultivar was not significantly modified by N fertilization (Figure 13). Sulfur
fertilization rates of 40 kg ha−1 and 80 kg ha−1 increased GLS levels by 19% and 29%, respectively
(Table 6). The GLS content of seeds in long-stem cultivars increased up to the S rate of 80 kg S ha−1

and it was 1.4-fold higher in the hybrid cultivar than in the open-pollinated cultivar (2.6 µM g−1 DM
vs. 3.7 µM g−1 DM). In the semi-dwarf cultivar, GLS levels continued to increase up to the S rate of
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40 kg S ha−1 and were 30% lower than in long-stem cultivars (Figure 13). A significant interaction of
N × S fertilization was found for the GLS content of winter oilseed rape seeds (Table 3). The S-induced
increase in GLS levels was enhanced by growing rates of N fertilization (Figure 14). Therefore, N
fertilization exacerbated the negative effects of S fertilization on the GLS content of all studied cultivars.
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Figure 13. The effect of N and S rates on the total glucosinolates (GLS) content of winter oilseed rape
seeds, across years. Means with the same letters do not differ significantly at p ≤ 0.05 in Tukey‘s test.

 

 

 

 

 

 

 

 

 

Figure 14. The relationship between N and S rates vs. the total GLS content of winter oilseed rape
seeds, across years. Means with the same letters do not differ significantly at p ≤ 0.05 in Tukey‘s test.
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The content of alkenyl GLS in total GLS ranged from 60% in the semi-dwarf cultivar to 74–75% in
long-stem cultivars. Long-stem cultivars accumulated 66–75% more alkenyl GLS than the semi-dwarf
cultivar (9.3–9.8 µM g−1 DM vs. 5.6 µM g−1 DM). An increase in the N fertilizer rate to 180 kg ha−1

decreased the content of alkenyl GLS by 8% in all cultivars of winter oilseed rape (Table 6). An increase
in the N fertilizer rate from 180 kg ha−1 to 230 kg ha−1 increased (by 6–11%) the content of alkenyl
GLS in long-stem cultivars and induced a further drop (by 3–4%) in the analyzed parameter in the
semi-dwarf cultivar (Figure 15). Sulfur fertilization rates of 40 kg ha−1 and 80 kg ha−1 increased the
content of alkenyl GLS by 28% and 40%, respectively (Table 6). The increase in the S fertilizer rate from
40 kg ha−1 to 80 kg ha−1 did not cause an increase in alkenyl GLS levels only in the semi-dwarf cultivar
(Figure 15). The S-induced increase in the concentrations of alkenyl GLS was further exacerbated by a
rise in N rates in all cultivars (Figure 16).

 

 

 

 

 

 

 

 

 

Figure 15. The effect of N and S rates on the content of alkenyl GLS in winter oilseed rape seeds, across
years. Means with the same letters do not differ significantly at p ≤ 0.05 in Tukey‘s test. 

 

 

 

 

Figure 16. The relationship between N and S rates vs. the content of alkenyl GLS in winter oilseed rape
seeds, across years. Means with the same letters do not differ significantly at p ≤ 0.05 in Tukey‘s test.

The lower heating value (LHV) of winter rapeseed was weakly modified by the experimental
factors. The above parameter was marginally higher (by 2%) in years with lower precipitation during
the spring and summer growing seasons (years 2 and 3). Hybrid (long-stem and semi-dwarf) cultivars
were characterized by significantly higher LHV (by 1%) than the open-pollinated cultivar (Table 6).
Nitrogen and S fertilization did not differentiate LHV values in any of the studied cultivars (Table 3).

3.4. Economic Efficiency of Winter Rapeseed Production

The costs associated with the production of the open-pollinated cultivar ranged from €542–599
(≤130 kg N ha−1) to €619–672 ha−1 (≥180 kg N ha−1). Sulfur fertilization increased the production
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costs of the open-pollinated cultivar by up to ±3%. In hybrid cultivars, production costs were
€25–28 (long-stem) and €21–25 ha−1 (semi-dwarf) higher on average than in the open-pollinated
cultivar. The difference (3–5% on average) between the production costs of hybrid cultivars and the
open-pollinated genotype had no significant effect on cost structure. Mineral fertilizers accounted
for 37–43% (≤130 kg N ha−1) to 47–49% (≥180 kg N ha−1) of total production costs in all cultivars
(Tables 7–10).

All cultivars of winter oilseed rape generated revenues and high profits in NE Poland.
The long-stem hybrid cultivar (Artoga) was most economically effective, followed by the semi-dwarf
hybrid cultivar (PR44 D06) and the open-pollinated cultivar (Adriana) (Table 10). In each of the
analyzed cultivars, seed production value and revenue were highest in the production technology
with fertilizer rates of 230 kg N ha−1 and 40 kg S ha−1. The influence of N and S fertilizer rates varied
across cultivars. The production technology involving 180 kg N ha−1 and 40 kg S ha−1 maximized
the profitability of the open-pollinated cultivar (358%) and the semi-dwarf hybrid cultivar (368%).
In the long-stem hybrid cultivar (Artoga), profitability peaked (419%) in response to a lower N rate
(130 kg N ha−1) supplemented with 40 kg S ha−1 (Table 10).

Table 7. Production costs of the open-pollinated cultivar of winter oilseed rape (cv. Adriana),
across years.

Parameter

Nitrogen Rate (kg ha−1)

80 130 180 230

Sulfur rate (kg ha−1)

0 40 80 0 40 80 0 40 80 0 40 80

Production costs (€ ha−1),
including:

542 553 561 580 591 599 619 629 637 652 664 672

Tillage 100 100 100 100 100 100 100 100 100 100 100 100
Sowing 70 70 70 70 70 70 70 70 70 70 70 70

Mineral fertilizers 201 211 219 235 245 253 272 282 290 306 316 324
Weed control 75 75 75 75 75 75 75 75 75 75 75 75
Pest control 50 50 50 50 50 50 50 50 50 50 50 50

Harvest and transport 46 47 47 50 51 51 52 52 52 51 52 53

Table 8. Production costs of the long-stem hybrid cultivar of winter oilseed rape (cv. Artoga),
across years.

Parameter

Nitrogen Rate (kg ha−1)

80 130 180 230

Sulfur Rate (kg ha−1)

0 40 80 0 40 80 0 40 80 0 40 80

Production costs (€ ha−1),
including:

569 581 586 605 616 624 645 655 663 679 689 697

Tillage 100 100 100 100 100 100 100 100 100 100 100 100
Sowing 90 90 90 90 90 90 90 90 90 90 90 90

Mineral fertilizers 201 211 219 235 245 253 272 282 290 306 316 324
Weed control 75 75 75 75 75 75 75 75 75 75 75 75
Pest control 50 50 50 50 50 50 50 50 50 50 50 50

Harvest and transport 53 54 52 54 55 55 57 57 57 57 57 57

3.5. Energy Efficiency of Winter Rapeseed Production

The demand for energy in the production of winter rapeseed ranged from 14.5–19.3 (≤130 kg N ha−1)
to 22.4–27.0 GJ ha−1 (≥180 kg N ha−1) (Tables 11–13). The energy demand of all winter oilseed rape
cultivars increased by 26% (130 kg N ha−1), 52–53% (180 kg N ha−1) and 78–79% (230 kg N ha−1) when
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N fertilizer was applied at rates higher than 80 kg ha−1. Cultivar differentiated energy demand by up to
±0.5% in all production technologies. The variation in energy demand in response to S fertilization did
not exceed ±4%. Mineral fertilization accounted for 75–86% of total energy inputs in the production of
the evaluated winter rapeseed cultivars. The proportions of the remaining agronomic operations in
the structure of energy inputs were determined at—tillage—6–11%, harvest—4–8%, weed and pest
control—3–5% and sowing—1–2% (Tables 11–13).

The energy output and energy gain in the production of open-pollinated and semi-dwarf cultivars
were highest in the production technology where N and S fertilizers were applied at 230 kg N ha−1 and
40 kg S ha−1 (Table 14). In the production of the long-stem hybrid cultivar, energy output peaked in
response to the highest fertilization levels (230 kg N ha−1, 80 kg S ha−1), whereas the highest energy
gain was noted in response to the lowest N rate (180 kg N ha−1) without S fertilization. In all tested
cultivars, energy efficiency was highest in the low-input production technology with an N fertilizer rate
of 80 kg N ha−1 and no S fertilization (Table 14). All winter oilseed rape cultivars were characterized by
a positive energy balance and high energy efficiency. However, energy output (173.2 GJ ha−1), energy
gain (149.0 GJ ha−1) and energy efficiency (10.14) were highest in the long-stem hybrid cultivar. The
average energy efficiency of the semi-dwarf hybrid cultivar and the open-pollinated cultivar was 10%
and 18% lower, respectively (Table 14).

Table 9. Production costs of the semi-dwarf hybrid cultivar of winter oilseed rape (cv. PR44 D06),
across years.

Parameter

Nitrogen Rate (kg ha−1)

80 130 180 230

Sulfur Rate (kg ha−1)

0 40 80 0 40 80 0 40 80 0 40 80

Production costs (€ ha−1),
including:

567 576 584 603 614 621 642 652 660 677 688 694

Tillage 100 100 100 100 100 100 100 100 100 100 100 100
Sowing 91 91 91 91 91 91 91 91 91 91 91 91

Mineral fertilizers 201 211 219 235 245 253 272 282 290 306 316 324
Weed control 75 75 75 75 75 75 75 75 75 75 75 75
Pest control 50 50 50 50 50 50 50 50 50 50 50 50

Harvest and transport 49 48 48 52 52 52 53 53 53 54 55 53

Table 10. Economic efficiency of the analyzed winter oilseed rape cultivars, across years.

Parameter

Nitrogen Rate (kg ha−1)

80 130 180 230

Sulfur Rate (kg ha−1)

0 40 80 0 40 80 0 40 80 0 40 80

Cv. Adriana

Production value (€ ha−1) 1749 1782 1753 1974 2065 2043 2148 2254 2239 2141 2344 2341
Revenue (€ ha−1) 1207 1229 1192 1394 1474 1444 1529 1624 1602 1489 1681 1668

Profitability index (%) 323 322 313 341 349 341 347 358 351 328 353 348

Cv. Artoga

Production value (€ ha−1) 2265 2301 2192 2490 2580 2468 2682 2682 2609 2686 2700 2693
Revenue (€ ha−1) 1695 1720 1605 1885 1964 1844 2037 2027 1946 2007 2011 1996

Profitability index (%) 398 396 374 412 419 396 416 409 394 396 392 386

Cv. PR44 D06

Production value (€ ha−1) 2032 2029 2036 2228 2225 2163 2326 2399 2312 2323 2493 2359
Revenue (€ ha−1) 1466 1453 1452 1625 1611 1541 1685 1747 1652 1646 1805 1665

Profitability index (%) 359 352 349 369 362 348 363 368 351 343 362 340
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Table 11. Energy inputs in the production of the long-stem open-pollinated cultivar of winter oilseed rape (cv. Adriana), across years.

Parameter

Nitrogen Rate (kg ha−1)

80 130 180 230

Sulfur Rate (kg ha−1)

0 40 80 0 40 80 0 40 80 0 40 80

Energy inputs (MJ ha−1), including: 14,480 14,896 15,252 18,411 18,834 19,190 22,352 22,751 23,107 26,178 26,601 26,981
Tillage 1623 1623 1623 1623 1623 1623 1623 1623 1623 1623 1623 1623
Sowing 247 247 247 247 247 247 247 247 247 247 247 247

Mineral fertilizers 10,955 11,353 11,709 14,805 15,203 15,559 18,697 19,095 19,451 22,547 22,945 23,301
Weed control 373 373 373 373 373 373 373 373 373 373 373 373
Pest control 324 324 324 324 324 324 324 324 324 324 324 324

Harvest and transport 957 975 975 1038 1063 1063 1087 1087 1087 1063 1087 1112

Table 12. Energy inputs in the production of the long-stem hybrid cultivar of winter oilseed rape (cv. Artoga), across years.

Parameter

Nitrogen Rate (kg ha−1)

80 130 180 230

Sulfur Rate (kg ha−1)

0 40 80 0 40 80 0 40 80 0 40 80

Energy inputs (MJ ha−1), including: 14,602 15,025 15,337 18,477 18,900 19,256 22,439 22,837 23,193 26,289 26,687 27,043
Tillage 1623 1623 1623 1623 1623 1623 1623 1623 1623 1623 1623 1623
Sowing 220 220 220 220 220 220 220 220 220 220 220 220

Mineral fertilizers 10,955 11,353 11,709 14,805 15,203 15,559 18,697 19,095 19,451 22,547 22,945 23,301
Weed control 373 373 373 373 373 373 373 373 373 373 373 373
Pest control 324 324 324 324 324 324 324 324 324 324 324 324

Harvest and transport 1107 1132 1087 1132 1157 1157 1201 1201 1201 1201 1201 1201
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Table 13. Energy inputs in the production of semi-dwarf hybrid cultivar of winter oilseed rape (cv. PR44 D06), across years.

Parameter

Nitrogen Rate (kg ha−1)

80 130 180 230

Sulfur Rate (kg ha−1)

0 40 80 0 40 80 0 40 80 0 40 80

Energy inputs (MJ ha−1), including: 14,526 14,900 15,256 18,433 18,831 19,187 22,350 22,748 23,104 26,219 26,642 26,954
Tillage 1623 1623 1623 1623 1623 1623 1623 1623 1623 1623 1623 1623
Sowing 220 220 220 220 220 220 220 220 220 220 220 220

Mineral fertilizers 10,955 11,353 11,709 14,805 15,203 15,559 18,697 19,095 19,451 22,547 22,945 23,301
Weed control 373 373 373 373 373 373 373 373 373 373 373 373
Pest control 324 324 324 324 324 324 324 324 324 324 324 324

Harvest and transport 1031 1007 1007 1087 1087 1087 1112 1112 1112 1132 1157 1112

Table 14. Energy efficiency of the analyzed winter oilseed rape cultivars, across years.

Parameter

Nitrogen Rate (kg ha−1)
80 130 180 230

Sulfur Rate (kg ha−1)

0 40 80 0 40 80 0 40 80 0 40 80

Cv. Adriana

Energy output (GJ ha−1) 113.1 114.1 114.8 128.7 133.9 132.4 139.3 145.6 145.4 139.4 152.6 151.7
Energy gain (GJ ha−1) 98.5 99.2 99.5 110.3 115.0 113.2 117.0 122.8 122.3 113.2 126.0 124.7
Energy efficiency ratio 7.79 7.66 7.53 6.99 7.11 6.90 6.23 6.40 6.29 5.33 5.74 5.62

Cv. Artoga

Energy output (GJ ha−1) 148.1 147.9 140.6 159.9 165.7 158.8 171.5 171.6 169.1 172.6 172.0 173.2
Energy gain (GJ ha−1) 133.5 132.9 125.3 141.4 146.8 139.5 149.0 148.8 145.9 146.3 145.3 146.2
Energy efficiency ratio 10.14 9.84 9.17 8.65 8.77 8.24 7.64 7.51 7.29 6.57 6.45 6.40

Cv. PR44 D06

Energy output (GJ ha−1) 132.1 131.9 132.9 144.1 142.4 141.1 150.4 156.2 150.7 151.2 161.4 153.1
Energy gain (GJ ha−1) 117.5 117.0 117.7 125.7 123.6 121.9 128.0 133.4 127.6 125.0 134.8 126.2
Energy efficiency ratio 9.09 8.85 8.71 7.82 7.56 7.35 6.73 6.87 6.52 5.77 6.06 5.68
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4. Discussion

4.1. Biomass Yield and the Harvest Index

Rapeseed cultivars represent genetic progress and they are the most important and the cheapest
factors in the crop production technology. The agricultural performance of winter oilseed rape cultivars
differs significantly. In Europe, the yields of hybrid cultivars are approximately 7–9% [8] or even 13%
higher compared with the yields of open-pollinated cultivars [9]. The introduction of cultivars resistant
to clubroot [127] and imazamox (CL) [128], and the development of semi-dwarf cultivars of winter
oilseed rape [129], were important milestones in agricultural production in the last decade. The yields of
semi-dwarf cultivars of winter oilseed rape are generally 1–7% [9,10,130,131] to 9–18% [10,130,132,133]
lower in comparison with cultivars with a conventional growth habit. In semi-dwarf cultivars, lower
yields result from a smaller (by 24–31%) number of seeds per silique [132] or a smaller (by 6–18%)
number of seeds per silique and lower (by 3–6%) 1000-seed weight [10,134]. The yields of semi-dwarf
cultivars approximate those noted in morphotypes with a conventional growth habit under conditions
that do not support the achievement of their full yield potential [21] and under unfavorable thermal
conditions in winter [10]. In the present experiment conducted in NE Poland, weather conditions
promoted high and stable yields (6.2–6.4 Mg ha−1). Under favorable conditions, the yield of the
semi-dwarf hybrid cultivar was 11% lower (0.79 Mg ha−1) than in the long-stem hybrid cultivar but 8%
higher (0.48 Mg ha−1) than in the open-pollinated cultivar. Similar relationships between the yields
of open-pollinated and hybrid cultivars with an indeterminate and determinate growth habit were
reported by Gugała et al. [133] in central-eastern Poland.

Semi-dwarf cultivars of winter rapeseed are less susceptible to lodging and are characterized by
a higher harvest index [23]. In a study conducted by Miersch et al. [23] in Central Germany (Lower
Saxony), the seed yield to straw yield ratio (harvest index) of 108 hybrids (54 normal-type and 54
semi-dwarf hybrids) was significantly higher in semi-dwarf hybrids (0.410–0.460) than in normal-type
hybrids (0.340–0.410). In the present experiment, the harvest index was also higher in the semi-dwarf
cultivar (0.347) than in long-stem cultivars (0.321–0.339). Contrary results were reported in a study
by Jankowski et al. [10], where semi-dwarf cultivars produced shorter but more branched stems and
formed a higher number of productive siliques than the long-stem cultivar [10]. The harvest index was
also higher in long-stem cultivars than in semi-dwarf cultivars of winter oilseed rape in the work of
Gugała et al. [133] and Dresbøll et al. [135].

Research into double-low cultivars of conventional winter oilseed rape demonstrated the positive
effects of spring N fertilization at 150–180 kg N ha−1 [10,136,137]. In high-input production technologies,
yields improved in response to N fertilization rates of 200–250 kg N ha−1 [10,26,44,138–141] or even
300 kg ha−1 [70,142]. Miersch et al. [23] demonstrated that yields were 9% higher in semi-dwarf hybrids
than in normal-type hybrids (2.24 Mg ha−1 vs. 2.05 Mg ha−1) when nitrogen supply was low, whereas no
differences in yield were observed between cultivars when nitrogen supply was high. Kessel et al. [30]
also reported differences in NUE between open-pollinated and hybrid cultivars. Despite the above,
a significant interaction of cultivar and N rate for seed yield is difficult to prove [30,44,143–145].
Differences in the development of long-stem and semi-dwarf cultivars of winter oilseed rape are
manifested mainly in fall and early spring [146]. At the end of flowering, differences between cultivars
generally disappear and their harvest index reaches similar values [10,133,135]. For this reason,
long-stem and semi-dwarf cultivars can respond similarly to N fertilization [10,130,132,133]. In the
current study, N fertilizer applied at a rate of up to 180 kg ha−1 exerted a yield-forming effect in all winter
oilseed rape cultivars. In all tested cultivars, the yield-forming effect of the highest N rate (230 kg ha−1)
was observed only during the spring and summer growing seasons with low precipitation. The strong
impact of environmental and climatic conditions on the yield-forming potential of N fertilizer applied
in spring was also described by Jankowski et al. [10]. Nitrogen rates exceeding 180 kg ha−1 exerted
no yield-forming effect when the water requirements of winter oilseed rape were fully met in spring.
In years with low rainfall in spring, N fertilizer rates up to 240 kg ha−1 improved yields in all analyzed
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cultivars [10]. In a study by Litke et al. [26], weather conditions also significantly differentiated the
yield-forming effects of N fertilization across growing seasons. The seed yield of winter oilseed rape
supplied with 240 kg N ha−1 ranged from 1.8 Mg ha−1 to 6.8 Mg ha−1.

According to Cheema et al. [147], the harvest index increases with a rise in N fertilization rate until
the achievement of maximum seed yield. The harvest index is lower when the N rate exceeds the rate
required for maximum seed yield. In a study by Dresbøll et al. [135], an increase in the N fertilization
rate from 120 kg N ha−1 to 280 kg N ha−1 increased the harvest index in the semi-dwarf cultivar (from
0.340 to 0.375) and the long-stem cultivar (from 0.355 to 0.385). In the work of Miersch et al. [23], the
harvest index of both semi-dwarf and normal-type hybrids was higher in production technologies
characterized by high (0.410–0.460) than low N supply (0.340–0.410). Jankowski et al. [10] found that
the harvest index of winter oilseed rape peaked in response to the N rate of 180 kg ha−1. A further
increase in N rate (240 kg ha−1) caused a marginal decrease in the value of the harvest index (N rates
higher than 180 kg N ha−1 were more likely to stimulate straw yield than seed yield) [10]. In the present
experiment, the harvest index of winter oilseed rape also increased up to the N rate of 180 kg ha−1.
However, the yield-forming effect of N fertilization varied across cultivars. The harvest index of the
long-stem hybrid cultivar peaked in response to the N rate of 130 kg N ha−1. The highest increase in
the harvest index of the open-pollinated (long-stem) cultivar and the semi-dwarf hybrid cultivar was
noted when the N rate was increased to 180 kg ha−1. These findings indicate that N rates exceeding
130 kg ha−1 exerted more stimulatory effects on seed yield than straw yield only in the open-pollinated
cultivar and the semi-dwarf hybrid cultivar.

The S requirements of oilseed rape range from 1.5 to 2.0 kg S 100 kg−1 of seeds [148,149]. Seed
yields increase considerably in response to S fertilization when S levels are low in soil and plants.
The lower the availability of S for plants, the greater the S-induced increase in yields [32,43,45,150,151].
In the experiments conducted by Withers et al. [36] and Bilsborrow et al. [37], oilseed rape yields
increased by 15–74% and were highest (65% higher than in the control treatment) in soils deficient in
SO2−

4 and at S fertilizer rate of 40 kg ha−1. In soils with moderate SO2−
4 levels, S fertilization increased

oilseed rape yields by up to 10%. Jankowski [44] demonstrated that the yield-forming effect of S
fertilization was strongly correlated with environmental and climatic conditions. The yield-forming
effect of S fertilization was weak in soils relatively abundant in SO2−

4 and in years with above-average
precipitation in fall. High S rates (90 kg ha−1) improved yields in soils deficient in SO2−

4 and in a year
with heavy precipitation in late fall [44]. In the present experiment, established on soil with low and
moderate levels of SO2−

4 , S fertilization exerted a weak yield-forming effect (seed yield increased by 3%
in response to the S rate of 40 kg ha−1).

Zukalová et al. [152] demonstrated that the genetic factor significantly influences the effectiveness
of S fertilization. The demand for S fertilizer was higher in low-yielding cultivars. The optimal S rate
in the cultivation of a genetically modified (highest yielding) cultivar was determined at 40 kg ha−1.
The S-induced increase in the seed yield of less productive (open-pollinated and hybrid) cultivars was
2–4 lower than the corresponding increase in the seed yield of the transgenic cultivar and it required
higher S supply (80 kg ha−1). In a study by Jankowski [44], S fertilization induced a significant increase
in seed yield only in the cultivar with a lower yield potential (open-pollinated). The yield of the more
productive hybrid cultivar did not increase in response to S fertilization, In contrast, Wielebski and
Wójtowicz [153] found that S fertilization increased yields in both open-pollinated and hybrid cultivars.
In the current study, all of the tested winter oilseed rape cultivars responded similarly to S fertilization.

Sulfur plays a particularly important role in N metabolism by accelerating the conversion of
plant-absorbed N into protein [154]. Sulfur increases seed yields mainly by improving the N balance
in plants [42,85]. Balanced fertilization of winter oilseed rape is essential for maximizing productivity
(seed yield) and profits [42]. The interaction effects of S and N on rapeseed yields have been long
recognized [42,45,80]. In a study by Jankowski [44], high N rates (240 kg ha−1) exerted a yield-forming
effect only in combination with an S fertilizer rate of 30 kg ha−1. A correlation between the agronomic
effectiveness of high N rates and S fertilization was also noted in alternative Brassica crops [50,54,80].



Energies 2020, 13, 4654 24 of 36

According to Fismes et al. [55], N and S exert synergistic effects if both elements are optimally balanced
and antagonistic effects if one of the elements occurs in excess. Seed yields can decrease in S-deficient
plants supplied with high N rates because non-protein N exerts toxic effects on plants [87]. In the
present experiment, N rates higher than 180 kg ha−1 exerted a yield-forming effect only in combination
with S fertilization. In production technologies with high N rates (180–230 kg N ha−1), the increase in
the N rate by 1 kg without supplementary S fertilization was unproductive in all cultivars of winter
oilseed rape.

Sulfur fertilization generally improves the ratio of seed yield to total biomass yield in Brassica
crops. In the work of Ahmad et al. [155] and Fazili et al. [41], the S rate of 40 kg S ha−1 increased the
harvest index of field mustard (Brassica rapa L.) from 0.317 to 0.335 and from 0.265 to 0.345, respectively.
In a study by Piri [156], the harvest index of black mustard (Brassica nigra L.) increased from 24% to 29%
in response to the application of 45 kg S ha−1. In experiments conducted in NE Poland, S fertilization
did not differentiate the harvest index of camelina [50]. In the current study, S fertilization did not
cause differences in the harvest index of the tested winter oilseed rape cultivars.

4.2. Seed Quality

In a study of registered crop varieties conducted by the Polish Research Center for Cultivar
Testing (COBORU), the average content of crude fat and total protein in the seeds of 25 open-pollinated
cultivars grown in 2016–2018 was determined at 466–500 g kg−1 DM and 354–396 g kg−1 DM,
respectively [9]. Nutrient concentrations in the seeds of 94 hybrid cultivars grown in the same period
were 3 g kg−1 DM (crude fat) and 4 g kg−1 DM (total protein) lower than in the seeds of open-pollinated
cultivars. In 2016–2018, the semi-dwarf cv. Thure (the only semi-dwarf variety examined by COBORU)
accumulated 11 g kg−1 DM less crude fat than long-stem hybrids [9]. The semi-dwarf cultivar was
also less abundant in crude fat in the present experiment. In a study conducted in Czechia, the crude
fat content of semi-dwarf cultivars of winter oilseed rape was determined at 432–472 g kg−1 DM and
was 1% and 2% higher on average than in hybrid and open-pollinated cultivars, respectively [157].
In Central Germany (Lower Saxony), semi-dwarf and normal-type hybrids of winter oilseed rape
accumulated similar amounts of crude fat (496–500 g kg−1 DM) and total protein (183–184 g kg−1

DM) [23].
Glucosinolate levels are an important parameter in winter rapeseed processing, in particular in

feed production. Open-pollinated cultivars registered in Poland accumulate around 8.6–14.4 µM of
GLS g−1 seeds. Glucosinolate concentrations are around 5–6% higher in hybrid than in open-pollinated
cultivars. The semi-dwarf cultivar of winter oilseed rape tested by COBORU contained approximately
1% more GLS in seeds than long-stem hybrid cultivars [59]. Research conducted in Poland outside
COBORU stations also demonstrated that GLS content was 2–3% higher in semi-dwarf than in long-stem
cultivars of winter oilseed rape [158,159]. In contrast, Ratajczak et al. [129] found that GLS levels
were 13% lower in the semi-dwarf cultivar than in long-stem hybrid and open-pollinated cultivars.
In the present study, both long-stem cultivars of winter oilseed rape also accumulated 34–39% more
GLS than the semi-dwarf hybrid cultivar. The content of undesirable alkenyl GLS was significantly
higher in long-stem cultivars than in the semi-dwarf cultivar (74–75% vs. 60%). The concentration and
qualitative composition of GLS in the seeds of the semi-dwarf hybrid indicate that this cultivar is more
suitable for the production of feed than long-stem hybrid and open-pollinated cultivars.

High N fertilization rates in spring decrease the crude fat content and increase the total protein
content of winter oilseed rape. The above relationships have been observed in all rapeseed types,
including long-stem cultivars with high EA and GLS content [160], canola-quality cultivars with low
EA and GLS content [61,64,80,147] and HEAR lines with high EA content and low GLS content [161].
Similar correlations between N fertilization vs. crude fat and total protein content were reported in
many Brassica crops, including camelina [50], brown mustard [68] and white mustard [53,54]. In the
present study, N fertilization also increased the crude fat content and decreased the total protein
content of winter oilseed rape. The N-induced changes in the concentrations of the above nutrients
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varied across cultivars. Higher N rates provoked a greater decrease in the crude fat content of the
semi-dwarf cultivar than long-stem cultivars (5% vs. 3%). The N-induced increase in total protein
concentration was nearly three-fold higher in both hybrid cultivars than in the open-pollinated cultivar
(13% vs. 5%). In a study by Miersch et al. [23], crude fat accumulation was highly similar in semi-dwarf
and long-stem hybrids (495 g kg−1 DM and 500 g kg−1 DM, respectively) supplied with low N rates.
Semi-dwarf cultivars accumulated less crude fat than long-stem cultivars (466 g kg−1 DM vs. 476 g kg−1

DM) in response to high N supply.
Nitrogen fertilization also influences the content and qualitative composition of GLS. In the works

of Bilsborrow et al. [70] and Narits [61], the total GLS content of rapeseed increased up to 140–150 kg
N ha−1 and was stabilized at higher rates. Zhao et al. [74] and Zhao et al. [139] reported an increase in
the GLS content of rapeseed up to N rates of 240–300 kg N ha−1. However, Wójtowicz et al. [162] and
Wójtowicz et al. [163] found that an increase in the spring rate of N from 60 to 220 kg ha−1 did not
differentiate GLS levels in oilseed rape. In the present experiment, N fertilization exerted a positive
effect on the content and qualitative composition of GLS in the semi-dwarf cultivar. In long-stem
cultivars (hybrid and open-pollinated), total GLS concentrations and the content of alkenyl GLS
continued to decrease up to the N rate of 180 kg ha−1. In the above cultivars, total GLS concentrations
and the content of alkenyl GLS increased in response to higher rates (>180 kg N ha−1) of N fertilization.

The absence of plant-available S generally inhibits the biosynthesis of total protein in oilseed
rape, which was observed in traditional cultivars (high-EA and high-GLS) [164], canola-quality
cultivars [80,81,83] and alternative Brassica crops, including B. juncea canola [151], B. juncea
mustard [151,165], C. sativa [48] and S. alba [54,166]. In the current study, the S-induced increase in total
protein content was noted only in long-stem cultivars (open-pollinated and hybrid). Sulfur fertilization
decreased total protein concentration in the seeds of the semi-dwarf cultivar.

Sulfur fertilization exerts varied effects on the crude fat content of winter oilseed rape seeds [34].
Differences in the crude fat content of Brassica crops, including B. campestris [167], C. sativa [48,50],
B. juncea and S. alba [34], were also noted in response to S fertilization. In the present experiment, the
application of S did not affect crude fat concentrations in winter oilseed rape. Sulfur fertilization had
no influence on the crude fat content of rapeseed in the works of Filipek-Mazur et al. [47], Ijaz and
Honermeier [57], Šiaudinis and Butkutė [38] and Jankowski et al. [34]. In turn, Jankowski et al. [83],
Čeh et al. [168] and Sardana and Atwal [169] observed a decrease in the crude fat content of rapeseed
supplied with S. Crude fat levels in rapeseed increased in response to S fertilization in Pakistan [80],
Iran [81], central and southern Poland [82], China [170] and France [64].

Sulfur fertilizers can compromise the quality of seeds in canola cultivars of winter rapeseed by
increasing their total GLS content by 7% [171], 14–37% [34,56,83] (Table 6) or even 50–80% [56,80].
The adverse impact of S fertilization on GLS levels is generally stronger in hybrids than in
open-pollinated cultivars [44]; Figure 13 and in plants supplied with high rates of N [44]; Figure 14.
Sulfur stimulates primarily the biosynthesis of alkenyl GLS [34,79,172], which compromises the
nutritional value of non-fat seed residues [173]. Sulfur enhances the synthesis of methionine which
acts as a precursor for alkenyl GLS [60]. In the present experiment, higher S rates increased the content
of alkenyl GLS by 28–41% only in long-stem cultivars (with a higher concentration of alkenyl GLS).
In the semi-dwarf cultivar (with a low content of alkenyl GLS), the accumulation of GLS was low
even in response to a high S fertilization rate (80 kg ha−1). The detrimental effects of S on winter
rapeseed cultivars with a higher content of alkenyl GLS were also observed by Wielebski [174]. In turn,
Rotkiewicz et al. [175] and Jankowski [44] reported a stronger correlation between S fertilization and
the concentration of alkenyl GLS in rapeseed cultivars with a lower GLS content.

4.3. Economic Efficiency of Winter Rapeseed Production

Economic efficiency, defined as the difference between agricultural inputs and outputs, is a very
important consideration in crop production. Only farms where revenues exceed costs are able to
grow and build a competitive advantage on the agricultural market [103]. A study conducted by
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Nilsson et al. [104] in Northern and Central Europe (United Kingdom, Germany, Poland, Estonia,
Sweden) demonstrated that traditional (high-input) winter rapeseed production technologies were
characterized by the highest economic efficiency but also by the highest production costs. The costs
associated with the production of winter rapeseed in the high-input technology were estimated
at €800–1000 ha−1 in Germany, €700–800 ha−1 in the United Kingdom, €600–700 ha−1 in Sweden
and €550–580 ha−1 in Poland. The relevant costs were lower by €100–150 ha−1 on average in the
integrated (medium-input) technology [104]. Sokólski et al. [120] also argued that the production
technology of winter oilseed rape should be optimized for specific cultivars (morphotypes) to maximize
profitability. According to Chiriac et al. [21], cultivars with different yield potential generate different
costs in identical production technologies. In the work of Sokólski et al. [120], the costs associated
with the high-input production technology of winter oilseed rape seeds ranged from €861–910 ha−1

(semi-dwarf cultivars) to €956 ha−1 (long-stem cultivar). In the current study, the costs associated with
the production of the open-pollinated cultivar (Adriana) ranged from €542–599 (≤130 kg N ha−1) to
€619–672 ha−1 (≥180 kg N ha−1). Production costs were 4% higher in hybrid cultivars (semi-dwarf
and long-stem) than in the open-pollinated cultivar. Sulfur fertilization increased production costs
by up to ±3% in all analyzed cultivars of winter oilseed rape. Economic efficiency was highest in the
long-stem hybrid cultivar (Artoga), followed by the semi-dwarf hybrid cultivar (PR44 D06) and the
open-pollinated cultivar (Adriana). Long-stem hybrids should be grown in high-input technologies
(230 kg N ha−1 and 40 kg S ha−1) in small-area farms where production is limited mainly by access
to land (highest revenue per ha). However, when the key limiting factor is the availability of energy
resources rather than land (large-area farms), the energy efficiency of long-stem hybrids is expected to
be higher in low-input technologies (130 kg N ha−1 and 40 kg S ha−1).

4.4. Energy Efficiency of Winter Rapeseed Production

In Europe, energy consumption in rapeseed production ranges from 13 35 GJ ha−1 to 35 GJ ha−1,
depending on agricultural intensity [108,176–178]. In a study conducted in a large-area farm in NE
Poland, the energy inputs associated with the cultivation of winter oilseed rape reached 29–32 GJ ha−1

in the high-input technology, 21–24 GJ ha−1 in the medium-input technology and 14–19 GJ ha−1

in the low-input technology [44,108]. In the present experiment, energy consumption ranged
from 14–19 GJ ha−1 (≤130 kg N ha−1) to 22–27 GJ ha−1 (≥180 kg N ha−1) regardless of cultivar.
In western Asia (Turkey, Iraq), the energy inputs associated with rapeseed production were estimated
at 18 GJ ha−1 [179,180]. In the Mediterranean Region (Italy, Greece, Croatia), energy consumption
in the production of winter oilseed rape ranged from 9–10 GJ ha−1 to 17–23 GJ ha−1, subject to the
intensity of agricultural inputs [176,181,182]. In large-area farms in the northern USA, energy inputs in
rapeseed production reached 9.5 GJ ha−1 [125].

The energy generation potential of biomass depends mainly on its energy efficiency ratio (ratio of
energy outputs to energy inputs). In Europe, the energy efficiency ratio of rapeseed production ranges
from 1.1–2.4 [176,177,183] to 3.5–5.4 [108,109,184]. In the present experiment, the most energy-efficient
crop was the long-stem hybrid cultivar (Artoga), followed by the semi-dwarf cultivar (PR44 D06) and
the open-pollinated cultivar (Adriana). The long-stem hybrid was characterized by the highest energy
gain in the production technology with an N rate of 180 kg ha−1 and no S fertilization. This production
technology is particularly recommended in small and medium-sized farms. In large-area farms where
the availability of energy resources is the main limiting factor, the long-stem hybrid cultivar (Artoga)
should be cultivated in a lower-input technology with an N rate of 80 kg ha−1 and no S fertilization
(highest energy efficiency ratio). Sokólski et al. [120] also observed a relationship between cultivar and
the energy efficiency of the production technology of winter oilseed rape. In their study, the optimal
production technology of semi-dwarf cultivars was also most energy efficient. In turn, the cultivation
of the long-stem cultivar of winter oilseed rape was most energy efficient in the low-input production
technology [120].
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5. Conclusions

The yield of the semi-dwarf morphotype of winter rapeseed was higher than that of the
open-pollinated cultivar but lower than that of the long-stem hybrid cultivar. Nitrogen exerted
a yield-forming effect up to a rate of 180 kg ha−1 in all studied cultivars. Higher N rates (230 kg ha−1)
improved yields only in years with low precipitation during the spring and summer growing seasons.
Regardless of cultivar, the yield-forming effect of N rates higher than 180 kg ha−1 was apparent only in
combination with an S rate of 40 kg S ha−1. The ratio of seed yield to total biomass yield was higher in
the semi-dwarf morphotype than in long-stem cultivars. The harvest index peaked in response to N
rates of 130 kg ha−1 (long-stem hybrid) or 180 kg ha−1 (open-pollinated and semi-dwarf cultivars).
The semi-dwarf hybrid cultivar accumulated significantly more crude fat and less total protein and
GLS than long-stem cultivars. An increase in the N rate gradually decreased the crude fat content of
winter oilseed rape seeds, in particular in long-stem cultivars. Nitrogen fertilization in spring increased
the total protein content (to a greater extent in hybrid cultivars) and decreased the GLS content (to a
greater extent in the semi-dwarf cultivar) of winter oilseed rape seeds. Sulfur fertilization increased the
concentrations of total protein (in long-stem cultivars) and GLS (in all cultivars). Economic efficiency
and energy efficiency were highest in the long-stem hybrid, followed by the semi-dwarf morphotype
and the open-pollinated cultivar. The production of the long-stem hybrid cultivar generated the
highest revenue in the technology involving 230 kg N ha−1 and 40 kg S ha−1 and the highest profit
in the technology involving 130 kg N ha−1 and 40 kg S ha−1. The energy efficiency of the long-stem
hybrid cultivar peaked in response to the N rate of 180 kg ha−1 (highest energy gain per hectare) or
80 kg ha−1 (highest energy efficiency ratio) without sulfur fertilization.
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164. Wielebski, F.; Muśnicki, C. The influence of increasing sulfur rates and sulfur application methods on the
seed yield and glucosinolate content of two winter rapeseed cultivars in field experiments. Rocz. AR Poznań
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