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Abstract: Electricity theft and fraud in energy consumption are two of the major issues for power
distribution companies (PDCs) for many years. PDCs around the world are trying different
methodologies for detecting electricity theft. The traditional methods for non-technical losses
(NTLs) detection such as onsite inspection and reward and penalty policy have lost their place in
the modern era because of their ineffective and time-consuming mechanism. With the advancement in
the field of Artificial Intelligence (AI), newer and efficient NTL detection methods have been proposed
by different researchers working in the field of data mining and AI. The AI-based NTL detection
methods are superior to the conventional methods in terms of accuracy, efficiency, time-consumption,
precision, and labor required. The importance of such AI-based NTL detection methods can be judged
by looking at the growing trend toward the increasing number of research articles on this important
development. However, the authors felt the lack of a comprehensive study that can provide a
one-stop source of information on these AI-based NTL methods and hence became the motivation for
carrying out this comprehensive review on this significant field of science. This article systematically
reviews and classifies the methods explored for NTL detection in recent literature, along with their
benefits and limitations. For accomplishing the mentioned objective, the opted research articles for
the review are classified based on algorithms used, features extracted, and metrics used for evaluation.
Furthermore, a summary of different types of algorithms used for NTL detection is provided along
with their applications in the studied field of research. Lastly, a comparison among the major NTL
categories, i.e., data-based, network-based, and hybrid methods, is provided on the basis of their
performance, expenses, and response time. It is expected that this comprehensive study will provide
a one-stop source of information for all the new researchers and the experts working in the mentioned
area of research.

Keywords: non-technical loss; electricity theft; power utilities; Artificial Intelligence; machine learning

1. Introduction

Losses of electrical energy in the power grids at the transmission and distribution level include both
technical losses (TL) and non-technical losses (NTLs) [1]. The computation of TL is generally needed

Energies 2020, 13, 4727; doi:10.3390/en13184727 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-2170-2074
https://orcid.org/0000-0003-2382-6553
https://orcid.org/0000-0002-5201-5111
https://orcid.org/0000-0002-2056-9371
http://www.mdpi.com/1996-1073/13/18/4727?type=check_update&version=1
http://dx.doi.org/10.3390/en13184727
http://www.mdpi.com/journal/energies


Energies 2020, 13, 4727 2 of 25

for the correct estimation of NTL [2]. TLs are unavoidable as these occur in the equipment during
the transmission and distribution (T&D) process, whereas NTLs are labeled as administrative losses
that occur because of non-billed electricity, malfunction of the equipment, error in billings, low-quality
infrastructure, and illegal usage of electricity [3]. The fraudulent behavior of energy customers is
usually associated with electricity theft, regularized corruption, and organized crime [4]. Therefore,
such sort of losses cannot be precisely estimated. Generally, the expenses linked with these NTL
activities are compensated by legitimate customers. The effect of the NTLs is worse in under-developed
or developing countries; however, it can affect the developed economies too [5]. The researchers and
experts in power industries and academia have been trying different methods to address the mentioned
problem effectively. The traditional methods utilize the statistical analysis of data to understand
the significant indicators of fraudulent behavior, allowing the development of effective policies to
address the issue. The installation of smart meters has appeared to be one of the meaningful and
latest solutions to address the NTL detection issue [6]. However, their deployment, operational
cost, and design involve massive amounts, which are not practical solutions for weak economies [7].
Other methodologies include the utilization of machine learning algorithms for analyzing the data
from meters and the evaluation of the consumption patterns that may imply fraudulent activities.
Installations of specific equipment, sensors, and grid structures have also been suggested for efficient
detection of NTLs [8]. There is a great number of research articles available in the literature that
have used several methods to address the NTL detection issue. Hence a systematic compilation of all
the related articles is the need of the hour which consequently led the motivation behind carrying out
current systematic review study on this important topic.

Even though the author in [9] provided a useful review in the mentioned field, however, it only
includes the paper until the year 2013. Furthermore, the authors have only discussed the technical
aspects of the fraud detection system (FDS) while completely ignoring the features commonly used
and the metrics which are used to evaluate the performance of the classifiers. The authors in [10]
provided a detailed review of the NTL detection articles published in a few important conferences
and journals, but the detailed description of the methodologies is lacking. Similarly, the author in [11]
provides a comprehensive review in similar area of research. However, it covers articles up to 2017
and lacks in critical review of the literature. Furthermore, contrary to current work, the authors in
the mentioned work did not adopt a systematic review approach. Therefore, the authors of the current
research work felt the necessity of a comprehensive review in the mentioned field of study as there
is a vast amount of research work with a variety of novel techniques left unattended which need to
be summarized in order to provide a single comprehensive source of information in modern NTL
detection methods. This article offers a comprehensive review of the literature on the subject of NTLs
detection, offering a helping hand to the utilities and researchers on the latest development in NTL
detection methods. The clear objectives of the paper are as follows:

i. Review for evaluating the available NTL detection solutions.
ii. Review of the various features used for NTL detection.
iii. Review of various metrics required for the evaluation of machine learning classifiers.
iv. The detailed comparison of the current approaches with their advantages and limitations.

It is worthwhile to mention here that, for achieving the objectives of the current review, an analysis
of 85 papers has been carried out. The selected articles are thoroughly reviewed and analyzed in
the current systematic literature review by using the guidelines of a general systematic literature review.

The article is set out as follows:
In Section 2 the approach described in the article is discussed. Section 3 sets out a description of

NTL forms and sources. Section 4 provides a description of the outcomes of NTL detection approaches.
The meanings are set out in Section 5.
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2. Review Methodology

In this section, the methodology adopted for screening and selecting the articles for the current
review is described in detail. The section is further divided into the following subsections based on
the articles’ selection process.

2.1. Search Terms

The articles that were published after the year 2000 are adopted, while the rest are discarded.
A wide variety of keywords such as electricity theft, non-technical losses, fraud in energy consumption,
and supervised machine learning-based electrical theft detection methods.

2.2. Inclusion and Exclusion Criteria

Criteria for exclusion and inclusion are used to select the research articles from the pool of studies.
The inclusion criteria in this review consist of:

i. The study should identify, estimate, or predict any form of NTLs in the electric grid.
ii. The study must present the analysis and determinants influencing the NTL.
iii. The study should suggest a novel strategy for detecting NTLs.

The exclusion criteria are stated below:

i. Studies must not be published before the year 2000.
ii. Duplicate articles with the same methodologies are discarded.
iii. It should not be a feasibility study of a specific area.

After performing the inclusion and exclusion criteria, only 85 most relevant articles were selected
for the review.

2.3. Prisma Flowchart

The search process with the mentioned keywords was performed initially and 273 articles
were selected from the databases of the following four repositories; Science Direct, IEEE explore,
Google Scholar, and ACM Digital library. After eliminating the duplicates, all abstracts and titles were
screened to choose the most appropriate research articles depending on the inclusion and exclusion
criteria. The finalized lists of the articles selected from the journals and the conferences are depicted
in tabular form in Tables 1 and 2, respectively and the flow chart of the article selection procedure is
shown in Figure 1.
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Table 1. Selected journals with a number of articles.

Journals # References

IEEE Transactions on Smart Grid 10 [12–21]

IEEE Transactions on Power Systems 8 [22–29]

IEEE Transactions on Power Delivery 5 [4,5,30–32]

International Journal of Electrical Power and Energy Systems 4 [33–36]

Electric Power Systems Research 4 [11,37–39]

IEEE Transactions on Industrial Informatics 3 [40–42]

Energies 3 [43–45]

Energy Policy 3 [46–48]

IEEE Access 3 [49–51]

IEEE Transactions on Emerging Topics in Computing 2 [52,53]

IET Generation, Transmission and Distribution 2 [54,55]

Renewable and sustainable energy 2 [7,56]

IEEE Journal on selected areas in communication 2 [8,57]

Computers and Electrical Engineering 2 [58,59]

Energy Research and social science 1 [3]

International Journal of Artificial Intelligence and Applications 1 [2]

Tsinghua science and technology 1 [9]

IEEE Transactions on information forensics and security 1 [60]

Energy 1 [61]

Computers and Security 1 [62]

Electronics 1 [63]

ACM Transactions on Information and System Security 1 [64]

Measurement: Journal of the International Measurement Confederation 1 [65]

Knowledge-Based Systems 1 [66]

Utilities Policy 1 [67]

Expert Systems with Applications 1 [68]

Machine Learning and Data Mining in Pattern Recognition 1 [69]

Table 2. Selected conferences in this study.

Conferences/Symposium References

IEEE Power and Energy Society and General meeting [1]

IEEE/ACM International Conference on big data computing [70]

IEEE PES Transmission and Distribution Conference and Exposition [71]

International Conference on Information Technology and Multimedia [72]

IEEE International Conference on Data Science and Advanced Analytics [73]

International Conference on Critical Information Infrastructures Security (CRITIS) [74]

International Conference on Power Systems (ICPS) [75]

North American Power Symposium, NAPS 2015 [76]

IEEE Symposium on Computational Intelligence and Applications in Smart Grid. [77]

International Conference on Advances in Science, Engineering and Robotics Technology 2019 [78]

IEEE Power and Energy Society Innovative Smart Grid Technologies Conference. [79]

2017 IEEE Power and Energy Conference at Illinois [80]
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3. Features Used in NTL Detection

One of the most significant approaches available for NTL detection through machine learning
algorithms is the feature-based NTL detection approach [61]. In such methods, generally, time-series
energy usage data are utilized to extract a few of the most relevant features of each consumer and
based on the analysis of the outcomes, the consumers are categorized as honest or fraudulent [11].
Different research studies use different types and numbers of features; therefore, it is a challenging
task to explain all the features used for NTL detection precisely. The time resolution of these newly
synthesized features relies heavily on the time resolution of its initial raw data features. Two of
the major advantages of the feature-based classification are enhanced classification accuracy and
reduction in data size as only the most relevant feature is selected by using a feature selection method
that provides an accurate picture of NTL activity [61]. However, the frequency for which new features
are computed must be chosen carefully, i.e., hourly consumption features for one month may provide
a different outcome than that of the monthly average consumption of 1 year.

Another important aspect of the feature-based NTL detection methods is the feature selection
process. As mentioned earlier, the optimal and most relevant features are selected by utilizing
the feature selection algorithm [62]. The feature selection algorithms have utilized several times in
literature for enhancing the functioning of different algorithms used for the NTL detection, such as
in [12,23,30,58,59,81]. The authors in [23] have tested all the possible fraud indications by utilizing a
comparatively smaller number of features. Ramos et al. [12] utilized several types of meta-heuristic
algorithms, such as binary black hole algorithm, Harmony Search (HS), Particle Swarm Optimization
(PSO), Differential Evolution (DE), and Genetic Algorithm (GA) for selecting an optimal set of features.
The authors in [58] evaluated the HS algorithm for the optimal feature selection process and have
compared it to PSO on identical conditions. The same authors extended their work in [30] and used
the Binary Gravitational Search Algorithm (BGSA) for the same purpose and evaluated its performance
against the HS and PSO. In another article, Pereira et al. [59] used Social Spider Optimization (SPO)
for tuning the parameters of the classifier and feature selection process. Martino et al. [82] proposed
the filter and wrapper-based method for selecting the best features. Table 3 provides the detailed list of
most commonly used features in the literature for NTL detection process.

Table 3. List of most commonly used features in the literature for non-technical losses (NTL) detection.

Features Used Description Reference

Max/Min, Standard Deviation, Average,
Monthly kWh consumption Energy consumption feature computed for a given period. [5,31,43,83]

Streaks The number of times the energy consumption curve rises and falls to the mean axis. [24,33]

Load factor It is defined as the ratio of average load to the peak load over a given period. [12,30]

Wavelet coefficients The gap between the Wavelet coefficients determined from the to be listed consumption curve
and the Wavelet coefficients from previous year consumption curves. [32,82]

Estimated readings The number of estimated readings that are charged by the PDC because of their inability to
obtain the actual reading. [73]

Reduction in energy consumption The decrease in energy usage during a specified period compared to the previous reading of
the same duration. [73]

Seasonal consumption difference Total energy usage by the customer in the particular season compared to the energy
consumption of another season [34,43]

Euclidean distance to mean customer A Euclidean distance from the consumption curve to the active energy consumption curve
that is measured in the data set as the mean consumption of all customers. [4,63]

Predicted kWh The difference between the observed active energy consumption value to the anticipated value. [40,74]

PCA components A set of factors that are measured by the Kernel Principal Component Analysis (KPCA) or
Principal Component Analysis (PCA) on the active energy consumption curves. [58,84]

Fractional order dynamic errors Features that convey the difference between the use of a profiled meter calculation and a time
series consumption for real-time. [13,14,54]

Discrete Cosine Transform coefficients The first k coefficients of the discrete transformation of cosines. [76]

Pearson coefficient
It is defined as the active energy usage curve over a given duration. The Pearson coefficient
calculates how well the relationship exists between the time and actual energy consumption,
as calculated in a linear equation.

[33]

Power factor It is the ratio of real power to the apparent power. Its value is between 0 and 1. [12,30,59]

Skewness Computes the asymmetry or distortion in a normal distribution of a dataset. [43]

Kurtosis Measures the total number of outliers present in the distribution. [43]
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4. Performance Metrics Used for NTL Detection

Generally, the performance of a classifier is assessed by evaluating different performance indicators.
One of such indicators is the confusion matrix. It presents the details for the accurate classification
as “True” and of the wrong classification as “False.” The True Positive (TP) in the confusion matrix
signifies the fraudster customers who are rightly identified as the fraudsters, whereas the False Positive
(FP) portrays the honest customers that are incorrectly classified as fraudsters. Likewise, the True
Negative (TN) reflects legitimate customers accurately identified as legitimate and False Negative (FN)
signifies the fraudulent customers incorrectly classified as honest. The other well-known metrics that
are evaluated through the confusion matrix in the NTL classification problems are Accuracy (Acc),
precision, Detection Rate (DR), True Negative Rate (TNR), False-Negative Rate (FNR), False Positive
Rate (FPR), and F1 score.

The most commonly used matrix in the literature for NTL detection and in almost all the data-based
approaches are Acc and DR. A better DR and good Acc reflect that the model operates well and has an
excellent classifying ability for the samples belonging to both classes. However, there is a need for
other performance metrics in the scenarios where the dataset is imbalanced, i.e., when the number
of samples of negative class (honest) is significantly higher than the number of samples of positive
type (fraudulent). Detection Rate (DR), Recall, or True Positive Rate are the metrics that are popularly
used in such situations. These metrics describe the percentage of NTL samples classified accurately to
the total amount of NTL in the dataset. High DR values usually imply a well-operating NTL detection
model; however, to verify this, other metrics should also be considered. Therefore, both accuracy
and DR must be considered when determining the efficiency of the model. FPR and precision are
the other two most utilized metrics for NTL detection. Precision or Positive Predictive Value (PPV) of
the classifier can be calculated by dividing the total number of fraudster customers correctly identified
to the overall customers classified as fraudsters. On the other hand, the high precision of the classifier
indicates that the majority of the customers that are classified as fraudsters are truly fraudsters. It is
worthwhile to mention here that recall and precision are antagonistic metrics. The improvement in
the performance of the one metric will result in the reduction of the performance of the other. Therefore,
it is essential to achieve the perfect balance between both metrics. This balance between the two metrics
is evaluated by computing the F1 score. A high value of the F1 score indicated that the model identifies
maximum fraud cases with a very low rate of false positives. Nevertheless, his metric is occasionally
used in literature for NTL detection, yet it is still one of the most relevant and vital metrics while
working with imbalanced data [73,85]. In fact, numerous research works have been conducted on this
issue as it offers a perfect solution for the correct assessment of the classifier [37]. Another important
performance evaluation metric is FPR. It is expressed as the number of samples that are wrongly
marked as positive (fraudster) to the overall negative (honest) samples. If the value for FPR is high for
any classifier, it leads to the excessive meter inspections that result in a large operational cost burden
on PDCs. Therefore, the PDCs always want to achieve a low value of FPR because the threshold level
relies on the overall size of the two classified categories, i.e., theft and healthy.

It is important to note that making decisions on the basis of any single metric may provide
misleading information. For example, for a collection of 1000 customers with ten fraudulent and 990
honest consumers, the FPR is calculated as 10 percent, which implies that 99 customers are fraudulent.
This assumption will lead to 99 needless inspections of meters to identify 10 cases of fraud. The FPR of
1% indicates that ten false reports would be generated in detecting ten genuine fraud cases. Therefore,
the selection of the performance metrics is very tricky while addressing the class imbalance problems
as in NTL detection. In the scenarios of imbalanced datasets, the combination of different metrics
such as precision, accuracy, FPR, TNR, and DR should be utilized. The Bayesian Detection Rate
(BDR) is another crucial metric, but that is not commonly used in literature for NTL detection [64].
This parameter usually obtains small values in the intrusion and fraud detection domains because
the fraud in these scenarios is not that frequent. Table 4 provides the list of most commonly used
performance metrics for the evaluation of NTL detection models.
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Table 4. Performance metrics used for evaluation for NTL detection methods.

Performance Metric Calculation References

Accuracy Acc = (TN + TP)/(TN + TP + FN + FP) [25,43,50,52,60,63]

Precision Precision = (TP)/(TP + FP) [43,55,63,73]

Detection Rate (DR) DR = (TP)/(FN + TP) [43,52,63,64,77]

False Positive Rate FPR = (FP)/(TN + FP) [15,43,51,78]

TNR TNR = (TN)/(TN + FP) [43,63,64,70,79]

FNR FNR = (FN)/(TP + FN) [26,43,62,63,79]

F1 Score F1 score = 2[(Recall. Precision)/(Recall + Precision)] [27,43,63]

AUC AUC is used in the classification analysis to evaluate which models classify effectively. [27,43,63,80]

Average precision Combines the result of recall and precision. [43]

Recognition Rate Rec.Rate = 1–0.5[(FP/N) + (FN/P)] [12,38]

BDR [P(I). DR]/[P(I). DR + P(-I). FPR [16,64]

Support It is applied to the rule-based approaches. It is described as the number of samples on which rules
are applicable to the total number of samples. [24,33]

Classification time The time required by the model to classify the samples. [8,17,28,86]

Training time The time needed by the NTL model for the training purpose. [58]

Energy balance mismatch The difference in the amount of active energy at the consumer level and substation level. [87,88]

Cost of an undetected attack Defined as the cost of the worst possible undetected attack. [89]

Inspection costs The expenses required for inspecting all customers classified as a fraudster. [17,25]

Average bill increase Increase in the electricity bill if the NTLs is shared in all customers. [88]

Anomaly coverage index The ratio of fraudster customers identified by RTUs to the actual number of fraudster customers. [53,90]

Minimum detected deviation Described as the smallest deviation identified from the typical profile. [18]

RTU cost The total expenditure required for installing RTUs. [19,26]

5. Categorization of NTL Detection Methods

Researchers are trying different methodologies for efficiently identifying fraudster customers.
The existing methods for NTL detection can be broadly categorized into hardware-based and
non-hardware-based methods. The hardware-based solutions mainly focus on installing meters
with specific equipment to enable PDCs in identifying any malicious activity by consumers [56,60].
The recent advances in communication and data processing of the energy consumers’ behavior have
led to the development of non-hardware-based NTL detection methods. These non-hardware-based
solutions are classified into three major categories, i.e., data-based methods, network-based methods,
and hybrid methods. Furthermore, the relationship between demographic and socio-economic issues
that helps PDCs to investigate the phenomenon of NTLs is categorized into different theoretical
methods. A general classification of NTL detection schemes is given in Figure 2.
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The detailed aspect of every category along with the methodology adopted, benefits,
and drawbacks are given in the subsequent sections.

5.1. Studies Based on Social and Economic Conditions

The literature discloses the presence of NTL over the specific population or geographical area
and social aspects that relate to the fraud. The authors in [47,91] used the statistical techniques to
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develop the relation between market variables, economic, and social demographics to the amount of
theft. The author in [92] proposed a scheme to understand the main parameters linked to NTL in India
and regions of Tanzania using ethnographic fieldwork, surveys, and empirical analysis. The author
in [67] examines different socio-economic characteristics of fraudulent customers using econometric
analysis. The primary advantages of these studies are that they are beneficial in designing policies
and have a great impact on decisions to decrease NTL. The complexity and the quantity of the data
available in these types of studies can be managed easily even if it consists of the indicators and
variables that cover the entire region. The major drawback of these techniques is that their scope
is limited, i.e., it usually focuses on the specific country or region. These studies are not enough to
identify instances of fraud and errors in billing or metering. The generalized additive model (GAM)
has been used to demonstrate the spatial allocation of NTL activities in [32]. This model has been
inspired by the subject domain of epidemiology. The research study assumes that electricity theft and
fraudulent activities increase in specific areas rendering to specific technical and social characteristics.
GAM can be utilized to compute the chances of fraudulent activities in any area and the effect of every
technical and social feature if provided with the consumers consumption data. A Markov chain model
was utilized later to demonstrate how NTL can sweep in a particular region. This algorithm calculates
the spatial distribution and the likelihood of fraud but did not detected the NTL. These models are
beneficial when planning and making long-term guidelines for lessening the fraud.

5.2. Hardware-Based Solutions

The hardware-based solution mainly proposes a method in which the researchers majorly
emphasize on the characterization and design of the apparatus that allows the identification and
estimation of any fraudulent activity [60]. The author in [93] proposes an anti-tampering algorithm
that offers help to PDCs in identifying tampering of energy meters. This anti-tempering algorithm will
help the PDCs to address the issue of bypassing the neutral line and mainline, reversing problems and
opening of the frame cover or terminal. The author in [94] proposed a processor for the protection of
energy meters from bypassing phase line, disconnection of neutral line, and tempering of energy meters.
A message will be sent to the PDCs if any of the mentioned discrepancies are observed. The authors
in [95] addressed the NTL detection problem by proposing a radio frequency identification (RFID)
technology for the sealing of energy meters and speeding the inspection process. The authors in [65]
proposed two points reading that identifies the difference in the electric current flowing from the power
pole to the meter wire. The difference in readings of both points can lead to the detection of an NTL
activity. The authors in [96] proposed the usage of the harmonic signal generator for the NTL detection
problem. The signals were introduced in the distribution feeders after disconnecting the supplies of
honest consumers to destroy the appliances of fraudulent consumers. The authors in [48] proposed a
high-frequency signal generator to identify the location of NTL activity.

5.3. Non-Hardware Based Solutions

As the hardware-based methods need to install the new infrastructure, which involves
massive amounts, therefore, it is not feasible for several PDCs, especially those in underdeveloped
countries. Therefore, the researchers these days are giving more importance to non-hardware-based
solutions. Non-hardware-based solutions relies on the studies in which the main focus of
the researchers is to identify the presence of electricity theft from consumers’ energy consumption data.
The non-hardware-based solutions can be further classified into the three major classes.

i. Data-based methods.
ii. Network-based methods.
iii. Hybrid methods.

The detail of each of the methods is given in the respective sections.
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5.3.1. Data-Based Methods

Data-based methods are merely based on machine learning techniques and data analytics.
The main difference between data-based and network-based methods is the utilization of the network
in the electricity grid [11]. The data-based methods are further subdivided into the supervised methods
and unsupervised methods, each of which is discussed in the subsequent subsections.

5.3.2. Supervised Methods

Supervised methods are those methods that utilize the data of both classes (positive class/fraudster
or negative class/honest class) for the training of the classifier [73]. These methods learn the patterns
in the consumption data of energy consumers for prediction purposes. These supervised methods
used the labeled data for training of the classifier, which is later tested on the new dataset. The main
drawback of the supervised methods is that, in the absence of the labeled data of fraudster (positive
class) consumers, or where the number of fraud cases is much lower than those of honest customers,
it is very difficult to use this method [20]. The supervised machine learning techniques that have been
used to solve the NTL detection problem are depicted in Figure 3.
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Each of the methods depicted in Figure 3, is described in subsequent subsections along with their
applications, merits, and limitations.

5.3.3. Support Vector Machine (SVM)

SVM has been used plenty of times as the binary classifiers for NTL detection problem
because they are immune to the class imbalance issue [1,5,15,21,28,31,40,43,59,72,78]. Many different
methodologies have been used, including the cost-sensitive SVM (CS-SVM) and one-class SVM
(OC-SVM). The OC-SVM can be viewed as an outlier identification technique. It is normally trained
on the data that belong to one class (mostly the honest consumers, i.e., negative class). Nagi et al. [5]
trained an SVM-based model by utilizing the risk and energy usage data of the costumers to predict
the presence of NTL. The model was tested in peninsular Malaysia to assist Tenaga Nasional Berhad
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(TNB) sdn.bhd. The SVM-based model increased the detection rate from 3 to 60%. The CS-SVM can
give distinct weights to different classes, for example, one class can allot a higher cost to the wrong
classifications of the class with a smaller number of labels that ultimately results in better performance,
i.e., low FPR and high BDR. The study of recent literature indicates that SVMs can be used for NTL
detection even though it is time-taking and problematic to tune the parameters of SVM. The other most
frequently used classes of SVM are the radial basis function kernel (RBF) SVM (SVM-RBF) and linear
kernel SVM (Linear-SVM). The difference between SVM-RBF and linear- SVM is that in SVM-RBF,
the cost and gamma are required to be tuned, whereas only cost parameter must be tuned in case of
Linear-SVM. To increase the classification performance, SVMs are sometimes combined with other
well-known classifiers like fuzzy inference system (FIS), DT, or artificial neural networks (ANN).

5.3.4. Artificial Neural Networks (ANN)

ANN are multilayered machine learning algorithms. It has an interrelated set of artificial neurons
that are used for addressing prediction and complex problems [97]. Multi-layer perceptron (MLP) is
the most used version of ANN that is used as a binary classifier for NTL detection problems along
with back propagation MLP (BP-BLP) [1,2,29,41,43,98]. Furthermore, ANN models have also been
utilized for time series forecasting of energy consumption. The difference between the measured
value and the predicted value is used for detecting fraud in energy consumption. The selection of
different thresholds and the likelihood that fraudulent consumers’ energy consumption data will affect
the output of ANN must be considered. However, in both cases (forecast and binary classification),
the training of the model must be done after choosing the structure of the network. Even though
in most of the recent works, the selection of the optimal network structure is important, yet few of
the methodologies select the number of hidden layers and a corresponding number of neurons by
the trial and error method. The cross-validation process is used in this scenario to ensure that the model
has good generalization ability. Extreme learning machine (ELM) has also been proposed apart from
the BP-MLP for forecast and binary classification. ELMs have single or multiple layers of hidden
nodes. Hence the parameter tuning of the hidden layers is not needed. In most of the cases, the output
weights of the hidden layers are generally computed in a single step. Therefore, ELM models can be
trained much faster without having any decline in their performance.

5.3.5. Optimum Path Forest

Optimum path forest (OPF) is also a supervised machine learning graph-based algorithm that
is usually used for classification applications. The classification process in OPF is comprised of two
steps, i.e., i. Fit and ii. Predict. Compared to the previously used machine learning algorithms which
attempt to obtain the optimal hyperplane for the separation of the two classes. The OPF classifier
functions by splitting the graph into optimum path trees (two or more than two trees), each one
characterizing a separate class. Every tree is connected to the prototype and the assembly of these
trees makes the OPF classifier. In the prediction process, the testing samples are assigned the labels of
the prototype with the help of cost function. The main advantage of OPF classifier is that it can handle
the overlapped class issue with less training time. Therefore, making it feasible for online training of
NTL detection [12,23,30,38,58]. These features are critical in the scenarios where the testing samples
may differ significantly from the training samples.

5.3.6. Rule Induction Methods

A set of rules can be utilized for NTL detection comes in the category of rule induction methods.
Expert knowledge and statistical analysis are mostly used in defining the rules for this purpose. In most
of the cases, such knowledge is not enough. Therefore, the rule induction methods are utilized for
extracting the rules hidden in the data (customarily labelled). The major aim of the process is to
forecast the sample belonging to a specific class using the values of other features. FIS has been used
for the NTL detection process to explain the reasoning procedure of the experts [24,31,33,35,44,66,68].
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To improve the classification performance of the rule-based systems, they are sometimes joined with
well-known classifiers like DT, Bayesian networks and SVM, etc.

5.3.7. Decision Tree

DTs have been used several times for addressing the NTL detection problem [25,33,40,43,62,63,99–101].
A DT is a support tool that uses a flowchart-like graph or model to form a set of rules that helps in
classifying new samples. DT algorithms are regarded as one of the highly promising AI algorithms in
supervised machine learning methods. DT maps the non-linear relations much better than linear models.
These are used for performing both classification and regression problems. The rule formed by DTs
helps in better understanding the characteristics of the NTL. Ensembles of DTs are formed by combining
the practices of DTs with other specific rules, as defined by the experts [63]. DTs are highly dependent on
the training of the dataset and are sensitive to the class imbalance issue. A number of different DTs such
as QUEST, CART, C5.0, and EBT have been used for solving NTL detection problems in the literature.
The key benefit of using DTs includes their easy interpretation and transparency to the operatives.

5.3.8. Kth Nearest Neighbor

Kth nearest neighbor (K-NN) is one of the simplest supervised machine learning algorithms used
for both classification and regression. K-NN classifies the new data by comparing it with the already
present data using the similarity measure. K-NN is usually used in the literature for NTL detection as a
baseline for comparison with other machine learning algorithms [20,55,63,102]. The class membership
is the output in the k-NN classification. The plurality vote of the neighbors is used for classifying
the object which is just allocated to the specific class if the value of k = 1 of its nearest neighbor.

5.3.9. Bayesian Classifiers

The Bayesian classifiers are the probabilistic classifiers in which the responsibility of the class
is to predict the values of the features. The Bayesian classifier needs the previous information of
NTL probability that can be obtained from the general statistics [27,33,62,64,103]. The working of this
classifier is based on the fact that if the class of the sample is known, it can be utilized to calculate
the values of the different features. It accomplishes the mentioned objective by using the non-intrusive
load monitoring (NILM) procedure to learn the pattern of every device being used by the customer.
In the scenario of the new sample, NILM is performed repeatedly and the chance of fraud is estimated
at the end of the process. These methods need a huge amount of previous information that significantly
affects the output of the classifier. Bayesian networks in Bayesian classifiers utilize a set of variables
that graphically signify the class probability. The main advantage of Bayesian networks is that they
can be easily understood by humans and hence provide a human-friendly interface.

5.3.10. Unsupervised Methods

All those methods that do not require any labels (positive/negative) for the training of the classifiers
are known as unsupervised methods [38]. These methods do not need supervision and hence the model
work at its own to learn the information hidden in the provided data. As compared to the supervised
machine learning algorithms, unsupervised methods can perform more complicated processing tasks.
The following types of unsupervised machine learning algorithms have been used for the NTL
detection problem.

Each of the mentioned algorithms in Figure 4 is discussed in the subsequent subsections.
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5.3.11. Clustering Algorithms

Clustering algorithms have been used several times in the NTL detection problem [4,16,38,42].
Clustering is mostly done at the initial stage for data preprocessing. This is done in order to assemble
similar costumers with different types of energy patterns and then a classifier is trained on them to
identify or classify the unlabeled data. This process increases the classification performance by reducing
the false-positive cases. The clustering algorithms can also be used to compute the baseline energy
consumption profile of different customers. The fraud is identified when the new samples substantially
vary from these baseline profiles. The clustering process can also be utilized as the unsupervised
classification process by calculating the space between the new sample to the middle of the cluster.
Fuzzy clustering has been used by correlating the new samples with the odds of fraud. This allows
the PDCs to develop and tune the method according to their requirements. Density-based clustering
methods have also been used effectively for the NTL detection as they consider different clusters with a
little resemblance that can form the dense area and unlike clusters from the less dense area of the space.

5.3.12. Expert Systems

Expert systems are based on the instructions described by the professionals responsible for
identifying the NTL in the distribution system [45,66,68,104]. They are utilized in both supervised
as well as unsupervised methods. One of the examples of such systems is FIS. The key aim of these
systems is to solve the complex issues by the logic and analysis, mostly represented by if-then rules.
These rules are very simple but still achieve high classification performance. Advanced expert systems
can merge the latest knowledge clearly and hence update the models very quickly.

5.3.13. Statistical Methods

Control graphs, particularly for the time-series data, have been utilized for observing the individual
energy consumption and for describing the areas, where the consumption pattern may be considered
as anomalous for time series data. These control graphs investigate the difference between the moving
range and the actual consumption. Violation of the rules is the indication of fraud and therefore needs
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immediate inspection [32,66,69,75]. Non-parametric cumulative sum control chart and exponentially
weighted moving average (EWMA) control chart are few other types of charts that have been explored
for NTL detection. These types of maps are famous in industries for the rapid identification of NTL
as they provide online information and have the ability of visual examination of data. Such quick
detections commonly result in a large number of FPs, therefore, reducing the overall outcome. One of
the major limitations of these types of methods is that it fails to identify the fraudulent activity if
the consumer is involved in the fraud from its very initial monitoring phase since their very working
mechanism is based on detecting the change in consumption patterns. Another limitation of this
method is that it interprets the different types of energy consumption changes as the fraud which is
not the case in real scenario and hence results in a lot of unnecessary FPs.

5.3.14. Regression Methods

Auto-regressive moving average (ARMA) and auto-regressive integrated moving average (ARIMA)
are the regression models that are applied for estimating time series models. The methodology of
regression methods depends on the difference between the expected and the calculated value if
the regression model has been trained with one class of consumers’ consumption data. The chances of
fraud will be higher if the difference between the forecasted and calculated values is higher [36,105].
ARIMA and ARMA are two well-known regression models for solving the time series forecasting
problems. ARIMA-based models are superior in performance for domestic customers.

5.3.15. Outlier Detection

NTL detection is generally carried out by borrowing many concepts from outlier detection
methods [38,42,51,106–108]. For example, consider a data set of honest customers in Multivariate
Gaussian Distribution (MGD) where every cluster of samples is demonstrated as the Gaussian
distribution [38]. The probability of the new sample belonging to both of the distributions is
determined. The likelihood of the samples is evaluated with the threshold value to decide whether
the new sample belongs to the anomaly or not. The difficult task in these scenarios is to decide the total
number of clusters and the boundaries of the gaussian distribution. K-means clustering and OPF are
usually utilized for the outlier detection purpose. The local outlier factor (LOF) has also been used
in [109]. It is the density-based indication of the fraud. LOF is used to compute the local density of
the sample and then makes its comparison to the average of the density of the nearest neighbor’s
sample. All samples will be considered as anomalies if the local density is considerably less than
its neighbors. In this context, it is important to identify the true indication of fraud as a very high
LOF is not necessarily an indicator of the fraud. Therefore, new rules should be made and tested
before marking a sample as an anomaly. Kaulback-Lieber-Divergence (KLD) has been used in [110]
for NTL detection purposes. It is computed by calculating the distance among the two probability
distributions. KLD is utilized for the comparison of the distribution of classes with the standard
attained from the historical distribution. KLD is utilized for identifying the smart attacks which conceal
the fraudulent consumption usage by adjusting it into the authentic ARIMA models. One obvious
benefit of these methodologies is that they can still identify the fraudulent activity even if they were
not previously present in the training set.

5.3.16. Network-Based Methods

Network-based methods rely on the information attained from the smart meters and calculation of
different physical parameters of the electrical network for efficiently identifying the NTL activity [11,111].
Several studies have used the power flow process to calculate the total volume of NTL activity. The area
where the fraudulent activity occurs is identified by calculating the energy stability and other parameters
with the help of the central observer meter. In contrast, other studies have used distribution state
estimation and false data detection for the problems mentioned above. Network-based methods
usually are more accurate; however, these methods are not easy to implement. Dedicated sensors are
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generally required for detecting fraudulent activity. To calculate the minimum number of sensors and
their optimal placement in the distribution grid, AI algorithms are generally utilized. Figure 5 depicts
different types of Network-based methods utilized in literature for NTL detection purpose.
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5.3.17. Load Flow Approach

The calculation of energy flow in the distribution grid is a clear way to detect NTL activity [18,22,42].
The central observer meter, which is installed for the monitoring of energy meter on the LV section
of a distribution transformer, is required in such scenarios. The observer meter’s measurement is
then compared with the total energy recorded by the smart meters. The difference between these
two readings is computed for computing the overall percentage of technical losses. The chances of
NTL activities are higher if the difference between the mentioned readings is higher. Fraudulent
activities can be detected with these methodologies up to the secondary substation level. However,
the central observer meter is needed to identify every single fraudster customer. In addition to
that, the difficult task in these methods is the precise calculation of technical losses in the network.
The authors in [57,90] used this concept for NTL detection. The different parameters related to meter’s
behavior are computed through various methods. These parameters are then matched with that of
the regular meter’s parameters to indicate the fraud.

Similarly, for the scenarios in which TLs are not known, the authors in [18] proposed a new model
for calculating network parameters and computing the TLs. The authors in [39] used a probabilistic
power scheme for spotting the NTL activity. The fraudulent activity is identified at the network
level with the help of observer meters and the exact location of fraud under the specific observer
meter can also be identified. The authors in [112] proposed a smart substation-based methodology
in which both observer meters and smart meters are present. The model will be able to identify
the location of the fraudulent activity at the consumers’ level, even if there is not a significant difference
between the observer meter reading and the smart meter reading. The authors in [113] used an
identical approach to track network voltage changes by utilizing smart meter data of honest customers.
These changes are then used as the network model for computing voltages provided the active power
values are known.

5.3.18. State Estimation Approach

Distribution state estimation (DSE) methodologies utilize data from smart meters to observe
the grid and hence act as an excellent scheme for correct identification of fraudulent activity [9,114,115].
DSE has been mostly employed at the medium voltage (MV) networks. Fraudulent activity is
usually termed as the false data injection (FDI) attacks or as the bad data in the scenarios of state
estimation approaches. The significant dissimilarity between FDI and wrong data may include several
different bad data. Therefore, FDI is very hard to identify as compared to bad data, which generally
appears in a random and isolated fashion. The application of FDI effectively results in fooling
the state-estimation-based data detector approaches. The attacker requires substantial information
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of the grid parameters to initiate the process successfully. The authors in [57] proposed Kalman
filter state-estimator-based centralized solution for locating biases and line currents. The users are
expected to be committing fraud if their preferences are higher than the already defined threshold.
The Kalman filter ensured privacy by offering a distributed solution. In such scenarios, the operator
does not need to acquire permission to access the voltage measurements and power measurement of
the users. The proposed solution provides excellent results in the microgrids with the small line spans.
In [52], the fraudulent customer is supposed to have incomplete information of the network topology
and hence lacks the ability to enlarge or reduce the values of many smart meters at the uniform
spell. These attempts result in non-detection by conventional electricity stability schemes. The author
proposed sensor placement, communication devices and smart meters for identifying these types of
attacks. The authors in [114] proposed a weighted least square (WLS) based state estimator approach for
calculating a total load of MV/LV transformers from three-phase current, voltage, reactive, and active
power values. The considerable variation in estimated and measured values indicate a potential NTL
activity. The authors in [115] proposed a methodology based on network clustering for the detection
of bad data. The process is repeated for each of the networks for the identification of bad data and
network partitioning.

5.3.19. Sensor Network Approach

The installation of the specific sensors in the power distribution system is an emerging development
in the network-oriented-methods. The aim is to reduce the infrastructure expenses and to compute
the optimal position and number of sensors to localize and detect NTLs efficiently [8,17,52,116].
These approaches usually need accurate information on the network structure. They are closely linked
to the state estimation approaches, as the objective of the majority of these models is to increase
the inspection of the network. Instead of locating the ideal position of smart meters with sensors,
the work also examines the positioning of unnecessary smart meters. The issue is resolved by installing
the central observer meter and the inspector box before each customer’s smart meter. The central
observer meter exchanges the information with customers’ smart meters and compares the energy usage
information to detect NTL activity. The fraud is authenticated if the difference between the measured
readings is significant.

5.3.20. Hybrid Methods

Hybrid-based approaches are used to implement the techniques and algorithms of both
data-oriented and network-based methods for NTL detection with suitable accuracy [16,26,40].
The authors in [16] used the SVM algorithm along with the central observer meter. The observer
meter cross-checks the SVM output to calculate the active power measurements of the network.
The difference in the active power measurement and the system’s technical losses are calculated with
the SVM algorithm. The inspection is required if the customer is classified as fraudulent, i.e., if the SVM
yields positive output and the difference is higher than the predefined limit. Similarly, the authors
in [40] used the same methodology and proposed a combination of DT and SVM for the same purpose.
The authors in [26] proposed the installation of the remote technical unit (RTU) for NTL detection.
The power distribution system is divided initially into sub-networks according to the availability
of the RTU. The projected methodology identifies the sub-networks with electricity theft utilizing
the calculations from smart meters and RTUs directly. A meter tampering is confirmed if the difference
between the RTUs and the smart meters is higher than a predefined threshold. In the last stage,
SVM and fuzzy c-means are used to identify the individual customers that are committing fraud.
The authors in [34] proposed a network loss analysis method to estimate the number of customers
that are involved in fraudulent activities. The suspected boundary region is calculated by rough sets.
The authors in [117] proposed the asymmetric control limit (ACL)-based control charts for addressing
the same problem. The upper and lower limits are used to enhance the balance between total energy
used by customers, the total energy measured, and the total losses. Another approach proposed
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in [118] used ANOVA and state estimation for NTL detection that require RTU data, smart metering
data, and different network parameters. A distribution state computation is applied by utilizing
the smart meters’ consumption data. The normalized residual procedure is then used to identify
the exact location of fraudulent activity at the LV transformer level. The ANOVA is used at the later
stage for comparing the outcomes with the previously verified baselines. The findings of ANOVA
are then fed back to the state estimator section to replace the bad data with the improved estimates.
The authors in [119] also used the same idea to address the state estimation issues with semidefinite
programming. The author in [120] proposed the opposite framework in which the density of different
anomalies per transformer is calculated by an unsupervised anomaly detection algorithm. The weight
matrix of the state estimator is then adjusted by that density, which computes the loading position
of the transformer utilizing the pseudo-calculations and load forecasting. TL and NTL’s can then
be calculated at the individual transformer level. The author in [121] used a state estimation-based
approach along with the supervised approach based on the OPF classifier to evaluate the level of
fraudulent activities. The author in [122] proposed the hybrid method using multivariate control
charts, state estimation, and path search algorithms. The state estimation is applied to the MV side
utilizing data from the field appliances. The variance in the estimated current/voltage value and
measured value are being used for describing the multivariate procedure monitoring issues. The fraud
is detected if any of the above-described differences are outside the region. Table 5 provides a detailed
comparison of data-based methods in term of resources, class imbalance, response time, cost required
and performance.

Table 5. Comparison among data based, network based and hybrid-based methods for NTL detection.

Comparison Data Based Methods Network-Based Methods Hybrid Approaches.

Resources
Need a huge amount of data to guarantee
generalization of models. Need labelled data.
Rely on extensive data sets of less diversity.

Don’t need data of significant volume.
Needs data of high-quality and high
resolution. Needs extensive data from
observer meters, smart meters, RTUs and
network data information.

Hybrid methods also need large
volumes and a large variety of data.

Class imbalance
Sensitive to class imbalance problem.
The model tends to overfit if the data of one
class is scarce.

Immune to class imbalance problems, since
they don’t require labelled data for training
and validation.

Counter similar issues as
the data-based methods.

Response time Need monthly, seasonal or yearly consumption
data that increases the response time.

Fastest response time. Do not need a large
amount of data for finalizing the decision.
High-resolution real time data speeds up
the NTL detection process.

Face similar issues as data-based
methods.

Cost

Don’t require additional cost for purchasing,
installing and maintaining the existing system.
The data-based methods can be developed
promptly with small costs and existing
infrastructure.

Need a huge amount of expenses. Need
additional communication devices,
observer meters and RTUs. Their operating
tools increase training/operating costs.

It fluctuates between both according
to the need of specific devices from
the network-based methods.

Performance

Models can be trained easily on existing data;
therefore, they can easily identify existing
frauds. However, it produces a large number of
FP’s if there are changes in energy usage
resulting from the change of residents or house,
making it look like a fraud.

Performs better after installation of specific
devices, i.e., smart meters, observer meters
and RTU’s.

Performs adequately depending on
the utilization of the model.
The addition of energy balancing
condition to the data-based method
can significantly enhance
the performance of hybrid methods.

6. Limitations of Available Solutions and Future Recommendations

The supervised machine learning algorithms generally perform superior compared to
unsupervised machine learning algorithms [123]. However, the major drawback associated with
the supervised machine learning algorithms is the requirement of labelled data, which is not readily
available. Another major problem faced by supervised machine learning algorithms is a class imbalance.
Since there are pros and cons linked to every supervised machine learning algorithm, it is very crucial to
select a suitable algorithm for a particular classification task. For example, SVM performs better when
dealing with higher dimensional data and cases where the classes are separable. Another key advantage
of SVM-based algorithms is that the outlier does not have much impact on the results. Despite the vast
applicability of SVM classifiers, they suffer from few drawbacks such as, they require huge time
for processing of data, performs poorly in the scenarios of overlapped classes, and the selection
of appropriate kernels and hyperparameters is a strenuous task. Naïve Bayes, on the other hand,
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are suitable for real-time classification/predictions and perform well with high dimensional data.
The key limitation of this algorithm is that the significance of the single feature does not hold
prominent as a combination of all the features contributes to the outcome. The advantage of logistic
regression (LR)-based algorithms is that these algorithms are simple and effective to implement as
tuning of hyperparameters and scaling of features is not needed; however, they perform poorly in
the case of non-linear data-set where they are generally outperformed by its counterpart algorithms.
Decision tree-based algorithms does not require scaling and normalization of data. They can tackle
the missing values and can be easily interpreted. The major drawbacks of DT-based algorithms are
that they result in overfitting, sensitive to the class imbalance and need massive time for the training
of models. Similarly, ensemble methods like Bagging and Boosting reduces the error due to voting
of weak learners to reach the final decision and, at the same time, perform well in the scenarios of
imbalanced data sets. Another important aspect of the mentioned category of classifiers is that they
can handle huge data and missing values better than conventional algorithms such as SVM and DTs.
Furthermore, the outliers have a very minute impact on the final predictions in ensemble methods and
hence these models do not result in overfitting to the training data. Despite the mentioned benefits,
this method also suffers from few prominent drawbacks such as; they appear as the black box, trees are
needed to be uncorrelated and each feature needs to have the predictive ability; otherwise, they are
not considered.

Contrary to the supervised machine learning methods, the unsupervised machine learning
methods do not require labelled data for the model training purpose. This is because of the reason that
these methods are applied in the scenarios where positive samples (fraudster customers data) cases are
rare and large number of negative samples (honest customers data) are available. Unlike the supervised
ML methods, the unsupervised methods possess the capability of detecting the new fraud cases;
hence they can be applied conveniently for NTL detection; however, they normally result in poor
performance with a large number of false positives.

Owing to the above mentioned facts, it is evident that the supervised methods can be
explicitly used in the scenarios where there sufficient samples of positive class (fraudster) are
available while unsupervised methods are suitable when the data for the mentioned class is scarce.
Concluding the above discussion, it is important to note that all algorithms respond differently to
different types of data. For example, Naïve Bayes performs best when features are highly independent.
SVM, on the other hand, is suited for a medium-sized data set with a large number of features.
Linear regression and logistic regression are best suited for training the models when there exists a
linear relationship between independent and dependent variables. K-NN can be used in the scenarios
when the data set is of small size and the relationship between the independent and dependent variables
is not known. Hence, different machine learning algorithms respond differently to different types of
data sets. Therefore, there is no thumb rule for selecting an algorithm accurately for a classification
problem; however, based on the above discussion one can try the most relevant algorithms considering
the available data and its stated features.

The detailed review of the literature reveals that there is a scarcity of research that assesses
the impact of NTL in non-developed countries. Contrary to that, the developed countries have
much less impact of NTL; yet the impact is considerable. It is worthwhile to mention that, there is a
lack of research on assessing the financial impact of implementing the network-based methods, i.e.,
installation of specific sensors and smart meters. The stated assessment is important to infer whether
the benefit from NTL reduction from installing new infrastructure exceeds the equipment cost. Most
of the published research work on this area of research focuses on a single aspect of NTL sources.
The authors of the current research, after a detailed literature review in the current area of research,
felt the necessity of a systematic study that considers all types of potential NTL sources and their
implications. Furthermore, the applications that incorporate numerous solutions to classify the NTLs
from a variety of possible sources are also lacking in the existing literature. The author, therefore,
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envisages that the future studies should emphasize on developing the applications which utilize
the multiple solutions of NTL detection in an integrated manner.

7. Conclusions

This article presents a detailed review of state-of-the-art methodologies for identifying fraudulent
activities in PDCs as discussed in three significant repositories: ACM Digital Library, Science Direct,
and IEEE explore published since 2000. The study focuses mainly on the proposed solutions, criteria,
and drawbacks. The literature review in the current article focused primarily on nor-hardware-based
solutions, 79 of 91 studies belongs to non-hardware-based solutions. The summary of the literature
revealed a sufficient gap in the category of theoretical methods as there is a strong need to investigate
the causes of NTL in developing countries. The developed countries have a much low percentage
of NTLs, yet the consequences are substantial. There is an insufficient evaluation of the financial
viability in the hardware-based methods, as this is essential for concluding that the reduction from
the NTLs activities can recover the cost of equipment. How hardware-based methods communicate
with non-hardware-based methods should also be examined in-depth since these methodologies go
side by side typically.
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Nomenclature

Acc Accuracy
ANN Artificial Neural Network
ARMA Auto-Regressive Moving Average
ARIMA Auto-Regressive Integrated Moving Average
ANOVA Analysis of variance
AUC Area Under Curve
BP-MLP Back propagation multi-layer perceptron
CART Classification and Regression Trees
DR Detection Rate
DT Decision Tree
EBT Ensemble Bagged Tree
EWMA Exponentially Weighted Moving Average
FDS Fraud Detection System
FPR False Positive Rate
FNR False Negative Rate
GAM Generalized Additive Model
KLD Kaulback-Lieber-Divergence
K-NN Kth-Nearest Neighbor
LOF Local Outlier Factor
LV Low Voltage
MGD Multivariate Gaussian Distribution
MLP Multi-Layer Perceptron
MV Medium Voltage
NILM Non-Intrusive Load Monitoring
NTL Non-Technical Losses
OPF Optimum Path Forest
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PDC Power Distribution Companies
PPV Positive Predictive Value
ROC Receiver Operating Characteristic
RTU Remote Technical Unit
SVM Support Vector Machine
TL Technical Losses
TNR True Negative Rate
TPR True Positive Rate
WLS Weighted Least Square
QUEST Quick, Unbiased, Efficient, Statistical Tree
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