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Abstract: This paper builds an optimal carbon-energy combined-flow (OCECF) model to optimize the
carbon emission and energy losses of power grids simultaneously. A novel multi-agent cooperative
reduced-dimension Q(λ) (MCR-Q(λ)) is proposed for solving the model. Firstly, on the basis of the
traditional single-objective Q(λ) algorithm, the solution space is reduced effectively to shrink the size
of Q-value matrices. Then, based on the concept of ant cooperative cooperation, multi-agents are
used to update the Q-value matrices iteratively, which can significantly improve the updating rate.
The simulation in the IEEE 118-bus system indicates that the proposed technique can decrease the
convergence speed by hundreds of times as compared with conventional Q(λ), keeping high global
stability, which is very suitable for dynamic OCECF in a large and complex power grid compared
with other algorithms.
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1. Introduction

With the increasing impact of the greenhouse effect on the environment, low-carbon economy has
gradually become the key development direction of various energy consumption industries. As the
largest CO2 emitter, the electric power industry will play an important role in low-carbon economic
development [1]. All kinds of energy-consuming enterprises have also commenced on focusing on
the control of carbon emissions, especially in the power industry, which makes up approximately
40% of CO2 emissions in the whole world [2]. Generally speaking, low-carbon power involves four
sectors: generation, transmission, distribution and consumption. Therefore, how to reduce the carbon
emissions of transmission and distribution sectors in the power grid industry has turned into an instant
issue to be solved [3,4].

Up to now, numerous scholars have carried out research on all aspects of low-carbon power,
including optimal power flow (OPF) [5–7], economic emission dispatching [8,9], low-carbon power
system dispatch [10], unit commitment [11,12], carbon storage and capture [13,14] and other issues.
However, the previous studies mainly focused on the carbon emissions of the generation side, with a
lack of research on how to reduce the carbon emissions of the power network (i.e., the transmission and
distribution sides). Therefore, the optimal carbon-energy combined-flow (OCECF) model, which can
reflect the energy flow and carbon flow distribution of the power grid, is further established in this
paper. Basically, the OCECF is on the basis of the conventional reactive power optimization model,
which should not only attempt to minimize the power loss and voltage deviation, but also aim to
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minimize the carbon emission of the power network while satisfying the various operating constraints
of power systems.

Obviously, the OCECF is a complicated nonlinear planning problem considering the carbon
flow losses of power grids, which can be solved by traditional optimization strategies including
nonlinear planning [15], the Newton method [16] and the interior point method [17]. However, due to
the strong nonlinearity of power systems, the discontinuity of the objective function and constraint
conditions, as well as the existence of multiple local optimal solutions, usually hinder the effectiveness
or applications of the classical optimization methods. On the other hand, meta-heuristic algorithms
including the genetic algorithm (GA) [18], particle swarm optimization (PSO) [19,20], grouped grey
wolf optimizer (GWO) [21] and the memetic salp swarm algorithm (MSSA) [22] have relatively low
dependence on specific models, and can obtain relatively satisfactory results when solving such
problems. However, due to the low convergence stability of the algorithm, these algorithms may only
converge to a local optimal solution. Thus, the conventional Q(λ) reinforcement learning algorithm
with better convergence robustness and stability is proposed in [23]. Nevertheless, because of the
search ergodicity of the single agent Q(λ) algorithm, its convergence is relatively long for large-scale
system optimization due to the low learning efficiency, while the “dimension disaster” problem with
the increasing number of variables can also occur. Moreover, the on-line optimization requirement of
the OCECF is also difficult to be met.

Therefore, the author of ant colony optimization (ACO) introduces the concept of ant colony in the
classical Q-learning algorithm and puts forward the multiagent Ant-Q algorithm with a faster optimization
speed [24]. Based on this, a new multi-agent cooperation-based reduced-dimension Q(λ) (MCR-Q(λ))
learning is proposed for OCECE in this paper, which mainly contains the following contributions:

(i) Most of existing low-carbon power studies did not consider the carbon emissions of the power
network due to the energy flow and carbon flow from the generation side to the load side, which cannot
satisfy the low-carbon requirement from the viewpoint of the power network. In contrast, the presented
OCECF can further reduce the carbon emissions of the power network, which can improve the benefit
of the power grid company in a carbon trading market.

(ii) The proposed MCR-Q(λ) can effectively shorten the dimension of the solution space of the Q
algorithm to solve the OCECF problem by introducing the eligibility trace (λ) returns mechanism [23].
Besides, it also can accelerate the convergence rate and avoid trapping into a low-quality optimum for
OCECE via multi-agent cooperation.

The framework of this paper mainly includes: firstly, Section 2 which concludes the related
work; Section 3 presents the establishment of the OCECF mathematical model; then, the principle
of MCR-Q(λ) learning is described in Section 4; Section 5 gives the concrete steps of solving the
OCECF problem; Section 6 undertakes simulation studies on the IEEE 118 node system to verify
the convergence and stability of MCR-Q(λ) learning. Finally, the conclusion of the whole paper is
presented in Section 7.

2. Related Work

2.1. Low-Carbon Power

To achieve a low-carbon operation of a power system, extensive studies were devoted to
addressing the environmental economic dispatch (EED). In EED, the minimization of emissions [25] is
generally designed as one part of the objective function. To further improve the operation economy,
the uncertainty of wind power was considered in [26,27], in which the power output of a wind turbine
was evaluated based on a probability distribution function of the wind speed. Besides, a modified
EED, by combining heat and power economic dispatch, was presented in [28], which can achieve
an optimal operation for the heat and power system simultaneously. Furthermore, a coordinated
operation of an integrated regional energy system with various energies (e.g., a CO2-capture-based
power) was proposed in [29], while the demand response was also introduced in EED. To further
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reduce carbon emissions, the CO2 emission trading system was combined into the daily operation of
an energy system. In [30], a decentralized economic dispatch was proposed by considering the carbon
capture power plants with carbon emission trading. Moreover, the power uncertainty of wind and
photovoltaic energy was fully taken into account in [31,32] based on carbon emission trading. For the
purpose of clarifying the internal relation between energy consumption and carbon emissions from
power grids, the concept of carbon emission flow is put forward for the first time in reference [33].
On this basis, the authors of [34–36] carried out a theoretical analysis and case verification on the
carbon emission flow calculation and the carbon flow tracking of a power system, respectively.

2.2. Application of Meta-Heuristic Algorithms

In fact, the optimal low-carbon operation of a power system faces with various complex and
difficult optimization problems, e.g., EED. Hence, various meta-heuristic algorithms have been
employed for these optimization problems due to their strong searching ability and high application
flexibility. In [25], an improved PSO combining the differential evolution algorithms was designed
for EED. In [26], a so-called exchange market algorithm was used for EED due to its fast convergence
and strong global searching ability. In [27], a population-based honey bee mating optimization with
an online learning mechanism was presented. Inspired by the well-known tag-team game in India,
the novel Kho-Kho optimization algorithm [28] with an excellent optimization performance was
proposed for EED. To achieve a distributed optimization for real-time power dispatch, a novel adaptive
distributed auction-based algorithm with a varying swap size was proposed in [37]. On the other hand,
the reinforcement learning-based optimization attracted many investigations for optimal operations of
power systems. In [23], a distributed multi-step Q(λ) learning was proposed for the complex OPF of a
large-scale power system. To satisfy the requirement of multi-objective optimization, an approximate
ideal multi-objective solution Q(λ) learning was presented in [36] via a design of multiple Q matrices
for different objective functions.

3. OCECF Mathematical Model

3.1. Carbon-Energy Combined-Flow

The carbon-energy combined-flow (CECF) of the power grid is a comprehensive network flow [36],
which combines the power flow of the power grid with the carbon emission flow attached to the power
flow of the power grid. Among them, the energy flow is the actual network flow, and the carbon
emission flow is the virtual network flow, which can be referred to as the carbon flow in the power
system. Carbon flow is generated in the power generation, which represents the concept that the
carbon emission is transferred from the generation side to the demand side. The energy flow transfers
from the power supply end to the receiving end, but unlike the energy flow, only the power supply
that produces carbon emissions at the power supply end can be called a carbon source, as shown in
Figure 1. For a given carbon source, the carbon emission is equivalent to the product of the energy
flow and the carbon emission rate of the corresponding power generation side [35].

Energy flow is the transmission of electric energy in the power grid. In the process of transmission,
there will be power losses, commonly known as network losses, which are generally described
as follows:

Ploss =
∑

i, j∈NL

gi j
[
V2

i + V2
j − 2ViV j cosθi j

]
(1)

where Vi and Vj are the voltage amplitudes of the interconnection node i and j, respectively; θij means
the voltage phase angle difference between node i and j; gij denotes the conductance between node i
and j; NL denotes the branch set of the power network.
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Figure 1. The carbon-energy combined-flow (CECF) structure in power systems. 
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In the process of power transmission, the energy flow should bear the corresponding amount
of carbon flow losses. The tracking of the grid carbon emission flow is based on load flow tracking,
and the source of network loss is traced in light of the proportional sharing rule [35]. The ratio of the
wth generator to the whole active power injected at node j is

βwj =
a(−1)

jw Psw

P′nj
(2)

where Psw is the active output of the wth generator; P′nj represents the whole active power injection of

the j node in the equivalent lossless network; a(−1)
jw means the active power injection weight of the wth

generator at node j, its specific derivation process can be found in [23].
The proportion of the wth generator outgoing line at node j is the same, and the line loss is

decomposed according to the utilization share of the carbon source to the line. Hence, βwj is the
component ratio of the active power losses of the wth generator in line i–j. Here, the active power
losses of line i–j can be expressed as follows:

∆Pi j =
∑
w∈W

a(−1)
jw ∆Pi j

P′nj

Psw (3)

where W denotes the generator set.
Therefore, the total carbon flow losses of the power grid can be described by

Cds =
∑

i, j∈NL

∑
w∈W

a(−1)
jw ∆Pi j

P′nj

Pswδsw (4)

where δsw denotes the carbon emission rate of the wth generator.

3.2. OCECF Model

The OCECF model aims to reduce the network losses and carbon flow losses as much as possible
according to satisfying the constraints of the power grid and maintaining the stability of the power
system voltage. Therefore, the OCECF model is able to describe as follows [23,36]:
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

min µ1 f1(x) + µ2 f2(x) + (1− µ1 − µ2)Vd

s.t.PGi − PDi −Vi
∑

jεNi

V j
(
gi j cosθi j + bi j sinθi j

)
= 0

QGi −QDi −Vi
∑

jεNi

V j
(
gi j sinθi j + bi j cosθi j

)
= 0

Pmin
Gi ≤ PGi ≤ Pmax

Gi i ∈ NG

Qmin
Gi ≤ QGi ≤ Qmax

Gi i ∈ NG

Vmin
i ≤ Vi ≤ Vmax

i i ∈ NB

Qmin
Ci ≤ QCi ≤ Qmax

Ci i ∈ NC

kmin
ti ≤ kti ≤ kmax

ti i ∈ Nk

|Si| ≤ Smax
i i ∈ NL

(5)

where nonlinear functions f 1(x) and f 2(x) are the components of carbon flow loss and active power
loss; Vd is the voltage stability component; µ1 and µ2 are the weight coefficients, µ1 ∈ [0, 1], µ2 ∈ [0, 1],
µ1 + µ2 ≤ 1; x = [V, θ, kt, QC]

T corresponds to the voltage value of each node of the power grid
V, the phase angle of each node θ and the on-load tap changer (OTLC) ratio kt, reactive power
compensation QC. The remaining variables can be referenced in the nomenclature and Vd can be
described as [23]

Vd =
n∑

j=1

∣∣∣∣∣∣2V j −V jmax −V jmin

V jmax −V jmin

∣∣∣∣∣∣ (6)

where n represents the number of load nodes; Vj is the node voltage of load node j; and Vjmax and
Vjmin denote the maximal and minimal voltage ranges of load node j, respectively.

4. MCR-Q(λ) Learning

4.1. Q(λ) Learning

Multi-step backtrack Q(λ) learning is a conventional algorithm of RL, in which Q-learning
combines the idea multi-step TD(λ) returns [38] and introduces the eligibility trace, such that the
convergence speed of the algorithm can be improved to a certain extent. The eligibility trace can be
described as [38]

ek(s, a) =
{
γλek−1(s, a) + 1, if (s, a) = (sk, ak)

γλek−1(s, a), otherwise
(7)

where ek(s, a) stands for the eligibility trace under a state-action pair (s, a) corresponding to the kth
iteration; (sk, ak) denotes the actual state-action pair of the kth iteration; γmeans the discount factor;
and λ represents the trace-decay factor.

The eligibility trace (λ) uses the “backward estimation” mechanism to approximate the optimal
value function matrix Q*, and sets Qk as the kth iterative value of the estimated value Q*, thus the
value function of the algorithm can be updated iteratively as follows [39]:

ρk = R(sk, sk+1, ak) + γQk(sk+1, ag) −Qk(sk, ak) (8)

δk = R(sk, sk+1, ak) + γQk(sk+1, ag) −Qk(sk, ag) (9)

Qk+1(s, a) = Qk(s, a) + αδkek(s, a) (10)

Qk+1(sk, ak) = Qk+1(sk, ak) + αρk (11)

where α is the learning factor; R(sk, sk+1, ak) is the reward function value of the kth iterative time
environment from state sk to sk+1 through the selected action ak; and ag is the greedy action strategy,
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which also represents the action corresponding to the highest Q-value in the current state, which can
be written by [39]

ag = argmax
a∈A

Qk(sk+1, a) (12)

where A represents the action set, which is also the alternative action set for each variable.

4.2. MCR-Q(λ) Learning

4.2.1. Reduced-Dimension of Solution Space

As shown in Figure 2, the traditional single-objective Q(λ) algorithm does not decompose the
action space of all the variables. Assume that the ith variable xi has mi alternative solutions, the number
of action set elements |A| = m1m2 · · ·mn, when the number of variables n is large, the alternative action
combination will increase accordingly, which leads to a slow convergence and difficulties in the iterative
calculation. Up to now, the most usual way to work out this “dimension disaster” issue is hierarchical
reinforcement learning (HRL) [40]. However, it is difficult to determine the hierarchical design and
connection, which usually leads to the convergence of the algorithm to the local optimal solution.
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Under the framework of the proposed MCR-Q(λ) learning algorithm, each variable has a
corresponding value function Qi matrix, and the action set is respectively divided into (A1, A2, · · · , An)

with |Ai| = mi. In the iterative optimization of each Q matrix, the difficulty of optimization is greatly
reduced due to the action space being obviously smaller. Meanwhile, the action space of each variable
is the state space of the next variable, which enhances the internal relationship between variables, as can
be illustrated in Figure 2. The state space of the first variable is divided according to the load scenario.

4.2.2. Multi-Agent Cooperative Search

In the iterative optimization of Q(λ) learning, which only employs a single agent for exploration
and exploitation, the Q matrix is less efficient at updating just one element per iteration. On the
contrary, in MCR-Q(λ) learning, there are multiple agents for exploration and exploitation at the same
time, in which multiple elements of the Q matrix can be updated at each iteration, and the update
speed of the Q matrix is greatly improved. Here, the value function of MCR-Q(λ) learning can be
updated iteratively as follows [23]:

ρ
i j
k = Ri j

(
si j

k , si j
k+1, ai j

k

)
+ γQi

k

(
si j

k+1, ai
g

)
−Qi

k

(
si j

k , ai
g

)
(13)
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δ
i j
k = Ri j

(
si j

k , si j
k+1, ai j

k

)
+ γQi

k

(
si j

k+1, ai
g

)
−Qi

k

(
si j

k , ai
g

)
(14)

Qi
k+1

(
si, ai

)
= Qi

k

(
si, ai

)
+ αδ

i j
k ei

k

(
si, ai

)
(15)

Qi
k+1

(
si j

k , ai j
k

)
= Qi

k+1(sk, ak) + αρ
i j
k (16)

where the superscript i represents the ith variable or the ith Q-value matrix; the superscript j represents
the jth objective; ei

k

(
si, ai

)
and ai

g are similar to Equations (7) and (12), respectively.
As with the Ant-Q algorithm, MCR-Q(λ) does not calculate the global reward function after each

individual selects all the variables, i.e., from the start to the end, as shown in Figure 2. The reward
function value can be calculated as follows [24]:

Ri j
(
si j

k , si j
k+1, ai j

k

)
=

 W
LBest

, if
(
si j

k , ai j
k

)
∈ SABest

0, otherwise
(17)

where LBest represents the function value of an individual (i.e., the best individual) that has the lowest
value of the objective function value at the kth iteration; W is a positive constant; SABest denotes the
state-action pair set of the optimal individual executed at the kth iteration.

4.2.3. Action Selections

As all individuals are exploring and learning, they are faced with action selections. When the
individual j prepares to determine the variable xi, its action selection is based on the following
equation [41]:

ai j
k+1 =

 argmax
ai∈Ai

Qi
k+1

(
si j

k+1, ai
)
, if q ≤ q0

aS, otherwise
(18)

where q is a random number; q0 is a positive constant for determining the probability of a pseudo-random
selection; as denotes the action determined by the pseudo-random selection. In this paper, the rotary
selection method is adopted to determine the action to be selected according to the Pi

k distribution of
the action probability matrix, and the probability matrix is calculated as follows:

Pi
k+1

(
si j

k+1, ai
k+1

)
=

Qi
k+1

(
si j

k+1, ai
k+1

)
∑

ai∈Ai
Qi

k+1

(
si j

k+1, ai
) (19)

When an individual finds the best value of the objective function, the probability of its state-action
for the corresponding action will be increased, which will attract other individuals to perform the same
action. When the algorithm converges, all individuals will perform the same state-action pair when
selecting all variables from the start to the end.

5. OCECF Based on MCR-Q(λ) Learning

5.1. Design of State and Action

As mentioned above, the action space of each variable is designed to be the state space of the next
variable, in which the state space of the first variable is designed to be the state set of the environment
(i.e., the power grid). For OCECF, the power grid load scenario can be designed as the state of the first
variable, where a load scenario is divided at every 15 min and the scenarios with similar loads are set
to the same state, e.g., the power grid load scenarios with different loads at 11:00 a.m. and 11:15 a.m.
can be regarded as two different states.
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In addition, OCECF mainly optimizes the carbon emissions on the power grid side, and the
variables in the model are mainly divided into two categories: (a) reactive power compensation device
and (b) the OTLC ratio. Thus, the action set corresponding to each variable is a discrete optional action
of the reactive power compensation quantity or transformer changer ratio.

5.2. Design of Reward Function

As shown in Equation (17), LBest represents the optimal objective function value of all individuals.
According to the OCECF model described by Equation (5), the inequality constraint is brought in by
the objective function, and then the objective function value obtained by the individual j becomes [41]

L j = µ1 f1(x j) + µ2 f2(x j) + (1− µ1 − µ2)V
j
d + N j (20)

LBest = min
j∈J

L j (21)

where Nj denotes the number of unsatisfied inequality constraints calculated by the power flow after
the individual j determines the variable, and J is the number of groups.

5.3. Parameter Setting

In MCR-Q(λ) learning, six parameters γ, λ, α, q0, J and W, have great influence on the effect of the
algorithm [36]. After a large number of simulation tests using trial-and-error, all the parameters can be
set as indicated in Table 1.

5.4. Algorithm Flow of the OCECF

Generally speaking, the algorithm flow of OCECF based on MCR-Q(λ) learning is shown in
Algorithm 1.

Algorithm 1 Flow of MCR-Q(λ) Learning for OCECF

1: Initialization: functions QI, action probability Pi, eligibility trace matrices ei, and i = 1, 2, · · · , n;
2: Input power flow calculation result;
3: Calculate fitness values of all individuals;
4: Set k: = 0;
5: WHILE k < kmax;
6: FOR i = 1 to n
7: According to Equations (18) and (19), individual j selects the corresponding action ai

k of each
variable in turn and records the next state;

8: Calculate power flow for all variables x determined by individuals;
9: END FOR
10: According to Equations (1) and (4)–(6) respectively calculate the linear loss Ploss, the carbon loss Cds,

the number of constraints N of dissatisfaction inequality, and the voltage stable component Vd;
11: Calculate the reward function Rij from Equations (17)–(21);
12: Update the Q-value functions by Equations (13)–(16);
13: END WHILE
14: Output: optimal variable x and corresponding optimal function value.
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Table 1. Parameter setting of MCR-Q(λ) learning.

Parameters Range Value

γ 0 < γ < 1 0.1

λ 0 < λ < 1 0.5

α 0 < α < 1 0.1

q0 0 < q0 < 1 0.8

J J > 1 20

W W > 0 1

6. Case Studies

For purpose of testing the optimization performance of MCR-Q(λ) learning, the simulation results
of Q(λ) learning, Q learning [41], quantum genetic algorithm (QGA) [42], GA [43], PSO [44], ant colony
system (ACS) [45], group search optimizer (GSO) [46] and artificial bee colony (ABC) [47] were also
introduced for comparison. Note that the weight coefficient in Equation (5) can be adjusted according to
the preference on different components of the objective function. In the simulation analysis, since three
components of the objective function in Equation (5) have the same preferences, and the weight
coefficient in Equation (5) is set to be 1/3, both the testing IEEE 118-bus system and IEEE 300-bus
system are referenced from the tool called MATPOWER [48], in which the detailed parameters can
be found in [49]. Besides, it assumes that both the wind and solar energy outputs can be accurately
acquired by using effective forecasting techniques, e.g., the deep long-short-term memory recurrent
neural network [50]. Among them, the algorithms are simulated and tested in Matlab 2016b by a
personal computer with an Intel(R) Core TM i5-4210 CPU at 2.6 GHz with 8 GB of RAM.

6.1. Case Study of IEEE 118-Bus System

6.1.1. Simulation Model

According to different generator types, the carbon emission rate δsw of each unit in the IEEE
118-bus system is summarized in Table 2. Besides, this paper adopts the same benchmark model of
IEEE 118-bus system in all case studies, related detail parameters can be referenced in [36].

Moreover, the system load of the IEEE 118-bus system is mainly divided into five scenarios,
as shown in Table 3. Particularly, the scenarios from 1 to 5 represent the system with different load
demands, where the load demand gradually increases from scenarios 1 to 5 for all the presented nodes
in Table 3. As mentioned above, Tables 2 and 3 are obtained under the same benchmark model of IEEE
118-bus system [36].

In fact, reactive power compensation can be designed for the nodes with generators or load
demand to provide adequate reactive power, while the OLTC ratio can be selected for the line with
two different voltage nodes. According to this rule, the reactive power compensation of nodes 45, 79,
and 105, and the OLTC ratio of lines 8–5, 26–25, 30–17, 63–59, and 64–61 are respectively selected as
controllable variables, which are defined in sequence as (x1, x2, x3, x4, x5, x6, x7, x8), with

(1) The reactive power compensation is divided into five configurations as {−40%, −20%, 0%, 20%,
40%} with its reference value;

(2) The OLTC ratio is divided into three grades, which are {0.98, 1.00, 1.02}.

Hence, the optimization variables of the IEEE 118-bus system can be found in Table 4, where the
variables can be divided into two types, i.e., the reactive power compensation and OLTC ratio;
the “no. of bus” represents the location of each variable in the power network; the “action space”
denotes the set of the alternative control actions for each variable; and the “variable number” is the
number of all the optimization variables.
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Table 2. Carbon emission rate of the IEEE 118-bus system.

Generator Node Generator Type δsw (kg/kW·h) Generator Node Generator Type δsw (kg/kW·h)

1 Gas 0.5 65 Hydro 0

4 Hydro 0 66 Wind 0

6 Coal 1.06 69 Gas 0.5

8 Coal 1.01 70 Hydro 0

10 Coal 0.95 72 Coal 1.06

12 Coal 1.5 73 Coal 1.01

15 Coal 0.7 74 Coal 0.95

18 Gas 0.5 76 Coal 1.5

19 Hydro 0 77 Coal 0.7

24 Hydro 0 80 Hydro 0

25 Coal 1.01 85 Hydro 0

26 Coal 0.95 87 Gas 0

27 Coal 1.5 89 Wind 0

31 Wind 0 90 Gas 1.01

32 Coal 1.06 91 Coal 0.95

34 Coal 1.01 92 Coal 1.5

36 Coal 0.95 99 Coal 0

40 Coal 1.5 100 Hydro 0

42 Coal 0.7 103 Hydro 0

46 Hydro 0 104 Gas 1.06

49 Hydro 0 105 Coal 1.01

54 Gas 0.5 107 Coal 0.95

55 Photovoltaic 0 110 Coal 1.5

56 Coal 1.01 111 Coal 0.7

59 Coal 0.95 112 Coal 0

61 Coal 1.5 113 Hydro 0

62 Hydro 0 116 Hydro 0

Table 3. Load statistical conditions employed in five scenarios.

Scenarios
Active Power (MW)

Node 54 Node 59 Node 80 Node 90 Node 116

1 91 221 105 131 148

2 102 249 118 147 166

3 113 277 131 163 184

4 124 305 144 179 202

5 135 333 157 192 220

Table 4. Optimization variables of the IEEE 118-bus system.

Variable Type Number of Bus Action Space Variable Number

Reactive power compensation 45, 79, 105 {−40%, −20%, 0%, 20%, 40%} 3

OLTC ratio 8–5, 26–25, 30–17, 63–59, 64–61 {0.98, 1.00, 1.02} 5
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6.1.2. Convergence Analysis

Figure 3 illustrates the convergence process of the Q-value deviation between Q(λ) learning and
MCR-Q(λ) learning under scenario 1, where the Q-value deviation is defined as the 2-norm of matrix
(Qk+1 −Qk), that is, ‖Qk+1 −Qk‖2. As obtained from Figure 3a, since the Q matrix of single-objective
Q(λ) learning is large and the updating speed is slow, the algorithm can converge to the optimal
Q* matrix through a variety of trial-and-error explorations, while the convergence time is about
530s. In contrast, after reducing the dimension of the solution space of MCR-Q(λ) learning, the Qi

matrix corresponding to each variable is very small, and 20 objectives are updated at the same time.
The optimization speed is more than 100 times of that of Q(λ) learning, which can converge after
about 3.5 s, as shown in Figure 3b. Moreover, it can be obtained from the convergence of the objective
function values in Figure 4 that the optimization speed of MCR-Q(λ) learning is much faster, and both
algorithms can converge to the global optimal solution.
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When MCR-Q(λ) learning converges, the value function matrix Qi and probability matrix Pi

corresponding to all variables will prefer a state-action pair, and all individuals will tend to be consistent
in selecting the action, as demonstrated in Figure 5.
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6.1.3. Comparative Analysis of Simulation Results

For the purpose of evaluating the optimization capability of MCR-Q(λ) learning, this section
applies all the algorithms to solve the OCECF model for 10 repetitions. For each method, the objective
function value is directly taken to evaluate the quality of a solution during the searching process,
which is the most crucial index to evaluate the optimization performance.

Table 5 indicates the average convergence results of 10 repetitions for the different algorithms,
and it can be found that:

(a) The optimal solution obtained by Q learning and Q(λ) learning is the best, but the optimization
time is also the longest, which also shows the strong ergodicity of RL;

(b) The convergence objective value of MCR-Q learning and MCR-Q(λ) learning is the closest to
Q learning and Q(λ) learning, and the convergence time is the shortest, while the convergence
speed is about 100 times that of single-objective Q learning and Q(λ) learning;

(c) RL improves the algorithmic speed by up to 37.13% with the introduction of the eligibility trace
(λ) returns mechanism;

(d) With the increase in the load scenario, the line losses and carbon losses of the power grid will
also increase correspondingly. However, since the power system has a sufficient reactive power
supply, its voltage stability component just changes slightly.

Table 5. Average results of different algorithms on the IEEE 118-bus system in 10 runs.

Scenarios Indexes ABC GSO ACS PSO GA QGA Q Q(λ) MCR-Q MCR-Q(λ)

1

Time (s) 55.08 13.30 13.68 31.44 17.14 20.53 660.00 608.00 5.75 5.27

Cds (t/h) 50.71 50.71 50.71 50.71 50.77 50.71 50.71 50.71 50.71 50.71

Ploss (MW) 128.85 128.85 128.85 128.85 128.91 128.85 128.85 128.85 128.85 128.85

Vd 27.65 27.63 27.63 27.64 27.86 27.65 27.63 27.63 27.63 27.64

Objective 69.07 69.07 69.06 69.07 69.18 69.07 69.06 69.06 69.06 69.06

2

Time (s) 65.73 15.83 8.93 29.72 16.44 16.52 646.00 450.00 4.14 3.43

Cds (t/h) 52.69 52.69 52.69 52.69 52.73 52.70 52.69 52.69 52.69 52.69

Ploss (MW) 130.24 130.23 130.23 130.23 130.28 130.24 130.23 130.23 130.23 130.23

Vd 27.58 27.56 27.56 27.57 27.70 27.58 27.56 27.56 27.57 27.57

Objective 70.17 70.16 70.16 70.17 70.23 70.17 70.16 70.16 70.17 70.16

3

Time (s) 36.75 12.66 23.69 49.40 15.57 12.35 671.00 445.00 4.92 3.09

Cds (t/h) 54.92 54.92 54.92 54.92 54.95 54.92 54.92 54.92 54.92 54.92

Ploss (MW) 132.50 132.50 132.49 132.49 132.53 132.49 132.49 132.49 132.49 132.49

Vd 27.52 27.52 27.52 27.53 27.74 27.52 27.52 27.52 27.53 27.52

Objective 71.65 71.65 71.64 71.65 71.74 71.64 71.64 71.64 71.64 71.64

4

Time (s) 44.11 16.65 10.16 52.77 15.93 14.33 663.00 447.00 4.70 4.30

Cds (t/h) 57.48 57.48 57.48 57.48 57.52 57.48 57.48 57.48 57.48 57.48

Ploss (MW) 135.66 135.66 135.66 135.66 135.72 135.66 135.66 135.66 135.66 135.66

Vd 27.49 27.48 27.48 27.48 27.85 27.48 27.48 27.48 27.48 27.48

Objective 73.54 73.54 73.54 73.54 73.70 73.54 73.54 73.54 73.54 73.54

5

Time (s) 26.43 18.41 7.67 42.65 14.27 12.92 658.00 441.00 6.37 5.01

Cds (t/h) 60.36 60.36 60.36 60.36 60.40 60.36 60.36 60.36 60.36 60.36

Ploss (MW) 139.73 139.73 139.73 139.72 139.76 139.73 139.72 139.72 139.73 139.72

Vd 27.45 27.45 27.45 27.45 27.74 27.45 27.45 27.45 27.45 27.45

Objective 75.84 75.85 75.85 75.84 75.97 75.84 75.84 75.84 75.84 75.84

Figure 6 gives the results comparison between different methods, where each value is the average
of the sum value of five scenarios in 10 runs. It is obvious that the result obtained by GA is the worst
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among all the methods due to its premature convergence. On the other hand, the proposed MCR-Q(λ)
learning only has a slight improvement on each index compared with the other methods, but it also
can obtain the lowest total carbon flow loss and objective function. It verifies that the proposed method
can effectively satisfy the low-carbon requirement from the viewpoint of power networks.
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Lastly, Table 6 gives the statistic convergence results of 10 repetitions for the different algorithms,
and it can be found that:

(a) The Q learning and Q(λ) learning have the highest convergence stability and can converge to the
global optimal solution every time;

(b) The statistical variance and standard deviation of MCR-Q(λ) learning are the closest to Q learning
and Q(λ) learning, which have a relatively high convergence stability;

(c) Except RL, other algorithms are more likely to trap at a local optimum because of the parameter
setting and the lack of learning ability.
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Table 6. Distribution statistics of the objective function under different algorithms in the IEEE 118-bus system in 10 runs.

Scenarios Criteria ABC GSO ACS PSO GA QGA Q Q(λ) MCR-Q MCR-Q(λ)

1

Best 69.06 69.06 69.06 69.06 69.06 69.06 69.06 69.06 69.06 69.06

Worst 69.09 69.08 69.07 69.09 69.36 69.11 69.06 69.06 69.06 69.07

Variance 1.2 × 10−4 2.7 × 10−5 5.9 × 10−6 5.5 × 10−5 8.4 × 10−3 2.2 × 10−4 0 0 0 1.6 × 10−6

Standard deviation 1.1 × 10−2 5.2 × 10−3 2.4 × 10−3 7.4 × 10−3 9.1 × 10−2 1.5 × 10−2 0 0 0 1.3 × 10−3

2

Best 70.16 70.16 70.16 70.16 70.16 70.16 70.16 70.16 70.16 70.16

Worst 70.22 70.17 70.16 70.19 70.33 70.20 70.16 70.16 70.20 70.17

Variance 3.0 × 10−4 5.7 × 10−6 0 5.5 × 10−5 4.1 × 10−3 2.3 × 10−4 0 0 1.5 × 10−4 2.8 × 10−6

Standard deviation 1.7 × 10−2 2.4 × 10−3 0 7.4 × 10−3 6.4 × 10−2 1.5 × 10−2 0 0 1.2 × 10−2 1.7 × 10−3

3

Best 71.64 71.64 71.64 71.64 71.64 71.64 71.64 71.64 71.64 71.64

Worst 71.66 71.65 71.66 71.69 71.96 71.65 71.64 71.64 71.65 71.64

Variance 2.4 × 10−5 1.3 × 10−5 2.3 × 10−5 2.7 × 10−4 1.0 × 10−2 5.6 × 10−6 0 0 8.2 × 10−6 0

Standard deviation 5.3 × 10−3 3.6 × 10−3 4.8 × 10−3 1.6 × 10−2 1.0 × 10−1 2.4 × 10−3 0 0 2.9 × 10−3 0

4

Best 73.54 73.54 73.54 73.54 73.54 73.54 73.54 73.54 73.54 73.54

Worst 73.57 73.55 73.55 73.54 73.87 73.54 73.54 73.54 73.54 73.54

Variance 7.6 × 10−5 5.7 × 10−6 2.3 × 10−5 0 1.0 × 10−2 0 0 0 0 0

Standard deviation 8.7 × 10−3 2.4 × 10−3 4.8 × 10−3 0 1.0 × 10−1 0 0 0 0 0

5

Best 75.84 75.84 75.84 75.84 75.84 75.84 75.84 75.84 75.84 75.84

Worst 75.85 75.85 75.86 75.84 76.12 75.85 75.84 75.84 75.85 75.84

Variance 5.7 × 10−6 1.3 × 10−5 2.6 × 10−5 0 8.7 × 10−3 1.6 × 10−6 0 0 5.7 × 10−6 0

Standard deviation 2.4 × 10−3 3.6 × 10−3 5.1 × 10−3 0 9.3 × 10−2 1.3 × 10−3 0 0 2.4 × 10−3 0
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6.2. Case Study of the IEEE 300-Bus System

6.2.1. Simulation Model

According to different generator types, the carbon emission rate δsw of each unit in the IEEE
300-bus system is summarized in Table 7. Besides, 96 different load scenarios are designed to simulate
different optimization tasks in a day for the IEEE 300-bus system, as shown in Figure 7. Moreover,
the optimization variables are given in Table 8.

Table 7. Carbon emission rate of the IEEE 300-bus system.

Generator
Node

Generator
Type

δsw
(kg/kWh)

Generator
Node

Generator
Type

δsw
(kg/kWh)

Generator
Node

Generator
Type

δsw
(kg/kWh)

8 Hydro 0 171 Hydro 0 7002 Hydro 0
10 Photovoltaics 0 176 Hydro 0 7003 Coal 1.06
20 Coal 1.01 177 Hydro 0 7011 Coal 1.5
63 Coal 0.95 185 Coal 1.01 7012 Coal 0.7
76 Coal 1.5 186 Coal 0.95 7017 Photovoltaics 0
84 Coal 0.7 187 Coal 1.5 7023 Gas 0.5
91 Coal 0.95 190 Hydro 0 7024 Hydro 0
92 Coal 1.5 191 Hydro 0 7039 Wind 0
98 Coal 0.7 198 Hydro 0 7044 Coal 1.5
108 Hydro 0 213 Hydro 0 7049 Coal 0.7
119 Gas 0.5 220 Wind 0 7055 Hydro 0
124 Coal 1.06 221 Gas 0.5 7057 Wind 0
125 Coal 1.01 222 Coal 1.06 7061 Coal 1.06
138 Hydro 0 227 Coal 1.01 7062 Coal 1.01
141 Hydro 0 230 Coal 0.95 7071 Coal 1.01
143 Coal 1.06 233 Coal 1.5 7130 Hydro 0
146 Coal 1.01 236 Coal 0.7 7139 Hydro 0
147 Coal 0.95 238 Coal 0.95 7166 Coal 0.7
149 Coal 1.5 239 Hydro 0 9002 Gas 0.5
152 Hydro 0 241 Hydro 0 9051 Coal 1.06
153 Photovoltaics 0 242 Coal 0.95 9053 Coal 1.01
156 Coal 1.06 243 Coal 1.5 9054 Hydro 0
170 Coal 0.95 7001 Coal 0.95 9055 Photovoltaics 0

Energies 2020, 13, x FOR PEER REVIEW 16 of 22 

 

6.2. Case Study of the IEEE 300-Bus System 

6.2.1. Simulation Model 

According to different generator types, the carbon emission rate 𝛿𝑠𝑤 of each unit in the IEEE 

300-bus system is summarized in Table 7. Besides, 96 different load scenarios are designed to simulate 

different optimization tasks in a day for the IEEE 300-bus system, as shown in Figure 7. Moreover, 

the optimization variables are given in Table 8. 

Table 7. Carbon emission rate of the IEEE 300-bus system. 

Generator 

Node 

Generator 

Type 

𝜹𝒔𝒘 
(kg/kW∙h) 

Generator 

Node 

Generator 

Type 

𝜹𝒔𝒘 
(kg/kW∙h) 

Generator 

Node 

Generator 

Type 

𝜹𝒔𝒘 
(kg/kW∙h) 

8 Hydro 0 171 Hydro 0 7002 Hydro 0 

10 Photovoltaics 0 176 Hydro 0 7003 Coal 1.06 

20 Coal 1.01 177 Hydro 0 7011 Coal 1.5 

63 Coal 0.95 185 Coal 1.01 7012 Coal 0.7 

76 Coal 1.5 186 Coal 0.95 7017 Photovoltaics 0 

84 Coal 0.7 187 Coal 1.5 7023 Gas 0.5 

91 Coal 0.95 190 Hydro 0 7024 Hydro 0 

92 Coal 1.5 191 Hydro 0 7039 Wind 0 

98 Coal 0.7 198 Hydro 0 7044 Coal 1.5 

108 Hydro 0 213 Hydro 0 7049 Coal 0.7 

119 Gas 0.5 220 Wind 0 7055 Hydro 0 

124 Coal 1.06 221 Gas 0.5 7057 Wind 0 

125 Coal 1.01 222 Coal 1.06 7061 Coal 1.06 

138 Hydro 0 227 Coal 1.01 7062 Coal 1.01 

141 Hydro 0 230 Coal 0.95 7071 Coal 1.01 

143 Coal 1.06 233 Coal 1.5 7130 Hydro 0 

146 Coal 1.01 236 Coal 0.7 7139 Hydro 0 

147 Coal 0.95 238 Coal 0.95 7166 Coal 0.7 

149 Coal 1.5 239 Hydro 0 9002 Gas 0.5 

152 Hydro 0 241 Hydro 0 9051 Coal 1.06 

153 Photovoltaics 0 242 Coal 0.95 9053 Coal 1.01 

156 Coal 1.06 243 Coal 1.5 9054 Hydro 0 

170 Coal 0.95 7001 Coal 0.95 9055 Photovoltaics 0 

 

Figure 7. The load scenarios of the IEEE 300-bus system. 

  

Figure 7. The load scenarios of the IEEE 300-bus system.

Table 8. Optimization variables of the IEEE 300-bus system.

Variable Type Number of Bus Action Space Variable Number

Reactive power
compensation 117, 120, 154, 164, 166, 173, 190, 231, 238, 240, 248 {−40%, −20%, 0%, 20%, 40%} 11

OLTC ratio

9021–9022, 9002–9024, 9023–9025, 9023–9026, 9007–9071,
9007–9072, 9003–9031, 9003–9032, 9003–9033, 9004–9041,
9004–9042, 9004–9043, 9003–9034, 9003–9035, 9003–9036,
9003–9037, 9003–9038, 213–214, 222–237, 227–231, 241–237,
45–46, 73–74, 81–88, 85–99, 86–102, 122–157, 142–175,
145–180, 200–248, 211–212, 223–224, 196–2040, 7003–3,
7003–61, 7166–166, 7024–24, 7001–1, 7130–130, 7011–11,
7023–23, 7049–49, 7139–139, 7012–12

{0.98, 1.00, 1.02} 44
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6.2.2. Comparative Analysis of Simulation Results

For the purpose of evaluating the optimization capability of MCR-Q(λ) learning, this section
applies all the algorithms to solve the OCECF model for 10 runs. Since the number of optimization
variables of the IEEE 300-bus system dramatically increases, the conventional Q and Q(λ) algorithms
cannot implement an optimization due to the dimension disaster. Figure 8 provides the results
comparison between different methods, where each value is the average of the sum value of a day
in 10 runs. It can be found that the proposed MCR-Q(λ) learning significantly outperforms other
methods on the total carbon flow loss, total power loss, voltage stability component and the objective
function. Hence, the MCR-Q(λ) learning-based OCECF can achieve a low-carbon operation for the
power network. Particularly, these values obtained by MCR-Q(λ) learning are 2.0%, 3.4%, 45.9% and
10.3% lower than that obtained by GSO. It verifies that the optimization performance of MCR-Q(λ) is
much better than other conventional meta-heuristic algorithms as the system scale increases.
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Besides, Table 9 gives the distribution statistics of the objective function under different algorithms
in the IEEE 300-bus system, where each value is the sum value of the objective function of a day in
10 runs; the best, worst, variance and standard deviation (Std. Dev.) are calculated to evaluate the
convergence stability [51]. It can be seen from Table 9 that the convergence stability of MCR-Q(λ)
learning is the highest among all the methods with the smallest variance and standard deviation of the
objective function.

Table 9. Distribution statistics of the objective function under different algorithms in the IEEE 300-bus
system in 10 runs.

Criteria ABC GSO ACS PSO GA QGA MCR-Q MCR-Q(λ)

Best 11,182.97 11,328.38 10,505.58 10,795.73 10,495.03 10,658.28 10,312.84 10,305.54

Worst 11,229.61 11,404.35 10,513.40 10,812.54 10,509.03 10,675.34 10,320.86 10,308.30

Variance 246.73 541.79 10.25 45.62 23.96 32.57 10.12 1.20

Standard deviation 15.71 23.28 3.20 6.75 4.89 5.71 3.18 1.09

7. Conclusions

This paper builds an OCECF model to optimize the carbon emission and energy losses of power
grids simultaneously and proposes a new MCR-Q(λ) learning to solve this problem, which has the
following four contributions/novelties:

(1) The OCECF model carefully considers the distribution of carbon flow in the power grid,
which effectively resolves the carbon emission optimization at the power grid side;

(2) MCR-Q(λ) learning is proposed for the first time, which largely reduces the dimension of the
solution space, and significantly accelerates the updating rate of the Q-value matrix via multi-agent
cooperative exploration learning, such that the optimization speed can be considerably accelerated;

(3) Compared with Q(λ) learning, the convergence rate of MCR-Q(λ) learning can be increased
by about 100 times, while a higher global convergence stability is guaranteed. Hence, it is
very suitable for resolving dynamic OCECF in a large and complex power grid compared with
other algorithms;

(4) Like ACO, MCR-Q(λ) learning is also suitable for solving various complex optimization problems.

To further improve the operation benefit of power grids, future works can focus on the carbon
trading system-based optimal power flow and the Pareto-based multi-objective learning methods,
while a decentralized optimization will be studied for high operation privacy and reliability.
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Nomenclature

PGi, QGi active and reactive power generation of the ith node
PDi, QDi active and reactive power demand of the ith node
Vi, Vj voltage magnitude of the ith and jth node
bij susceptance of line i–j
Si apparent power flow of the ith transmission line
Ni node set
NL set of branches of the power network
NG set of units
NH set of hydro units
NB set of PQ nodes
NC set of compensation equipment
NK set of on-load transformers
kt on-load tap changer ratio
Qc reactive power compensation
θ phase angle of each node
Vd component of voltage stability
Vjmin, Vjmax minimum and maximum voltage limit of load node j
µ1, µ2 weight coefficients
W generator set
(sk, ak) actual state-action pair of the kth iteration
δk, ρk estimates of Q-function errors

R(sk, sk+1, ak)
reward function value of the kth iterative time environment from state sk to sk+1 through a
selected action ak

ag greedy action strategy
A action set

LBest
function value of an individual (i.e., the best individual) that has the least value of the target
function value at the kth iteration

SABest state-action pair set of the best individual executed at the kth iteration
γ discount factor
λ trace-decay factor
α learning factor
J number of groups

Abbreviations

OCECF optimal carbon-energy combined-flow
OTLC on-load tap changer
MCR-Q(λ) multi-agent cooperative reduced-dimension Q(λ)
HRL hierarchical reinforcement learning
EED environmental economic dispatch
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