
energies

Article

Parameter Calibration for a TRNSYS BIPV Model
Using In Situ Test Data

Sang-Woo Ha 1, Seung-Hoon Park 1, Jae-Yong Eom 2, Min-Suk Oh 3, Ga-Young Cho 4

and Eui-Jong Kim 1,*
1 Department of Architectural Engineering, Inha University, Incheon 22212, Korea; swha@inha.edu (S.-W.H.);

pshtony@inha.edu (S.-H.P.)
2 R&D Division, EAGON Windows&Doors Co., Ltd., Incheon 22107, Korea; jyum@eagon.com
3 R&D Division, DAEJIN, Seoul 05839, Korea; oh-ms@hanmail.net
4 Department of Smart City Research, Seoul Institute of Technology, Seoul 03909, Korea; zec@sit.re.kr
* Correspondence: ejkim@inha.ac.kr

Received: 27 August 2020; Accepted: 17 September 2020; Published: 20 September 2020
����������
�������

Abstract: Installing renewable energy systems for zero-energy buildings has become increasingly
common; building integrated photovoltaic (BIPV) systems, which integrate PV modules into the
building envelope, are being widely selected as renewable systems. In particular, owing to the rapid
growth of information and communication technology, the requirement for appropriate operation and
control of energy systems has become an important issue. To meet these requirements, a computational
model is essential; however, some unmeasurable parameters can result in inaccurate results. This work
proposes a calibration method for unknown parameters of a well-known BIPV model based on in situ
test data measured over eight days; this parameter calibration was conducted via an optimization
algorithm. The unknown parameters were set such that the results obtained from the BIPV simulation
model are similar to the in situ measurement data. Results of the calibrated model indicated a root
mean square error (RMSE) of 3.39 ◦C and 0.26 kW in the BIPV cell temperature and total power
production, respectively, whereas the noncalibrated model, which used typical default values for
unknown parameters, showed an RMSE of 6.92 ◦C and 0.44 kW for the same outputs. This calibration
performance was quantified using measuring data from the first four days; the error increased slightly
when data from the remaining four days were compared for the model tests.

Keywords: BIPV; model parameter calibration; particle swarm optimization; TRNSYS

1. Introduction

In many developed countries, the sector that accounts for the greatest percentage of energy
use is building construction [1,2]. A general approach to mitigating energy consumption in this
sector is improving thermal insulation, which is effective in reducing HVAC energy consumption.
Energy production from renewable energy systems is mandatory in several countries to ensure
the sector is zero-energy [3] or positive-energy for the future. Recently, various renewable energy
systems have been installed to supply a large portion of the required energy in buildings via on-site
energy production.

The building integrated photovoltaic (BIPV) system is one of the most popular renewable energy
systems for achieving zero-energy buildings. The photovoltaic (PV) cell array of the BIPV module is
enclosed in transparent building material, such as window glass or double-skin facades, and it converts
building envelopes to a power generation system. These BIPV modules can be installed on any of the
building skins, while the installation of a typical PV module is limited to rooftops or surplus areas
besides the building. Thus, the BIPV system is effective, particularly for buildings with a curtain wall.
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The BIPV system generates electricity via a simple mechanism, with high durability and without
any specific problems. Therefore, the BIPV system is regarded as a promising and practical renewable
energy system [4,5]. Consequently, the market share of the BIPV system has continuously increased,
along with related studies [5,6].

The efficiency of BIPV can be categorized according to types of installation such as angle,
direction, location, etc. [7]. Annual power generation per a typical BIPV module in Seoul for 2013
was 659.6 kWh/kWp·year when installed on vertical southwest wall and 626.6 kW/kWp·year on a
horizontal roof [8].

An important and well-known issue concerning the performance of the BIPV system is that the PV
cell temperatures inevitably increase during the process of generating electricity from solar energy [9].
The BIPV modules are scarcely cooled as they are installed on the building envelope; thus, the increased
cell temperature decreases the overall efficiency of the BIPV system [9–12].

Despite such issues, several studies have focused on using the BIPV system more efficiently.
Table 1 presents details of some previous studies. These studies designed the capacity of the BIPV
system by accounting for the rising cell temperature [13], predicting the amount of electrical power
generation required to control the energy management system (EMS) [14], or implementing data-driven
or mathematical models for fault detection and diagnosis (FDD) [15,16]. To conduct such studies,
a simulation model that can describe and predict physical behaviors is essential.

Table 1. Brief review of research on the BIPV system.

Authors Year Purpose of Studies
Methodologies

Exp. Simulation

S. Yadav & S.K. Panda [13] 2020 Finding the optimum angle x Mathematical model
J.E. Goncalves et al. [14] 2020 Predicting power generation x Mathematical model
R.A. Agathokleous et al. [17] 2018 Modeling and validation x Commercial software
M. Debbarma et al. [18] 2017 Modeling - Mathematical model
O. Hachana et al. [19] 2016 Fault detection & diagnosis x Mathematical model
W. Chine et al. [15] 2016 Fault detection & diagnosis x Data-driven model
S. Li et al. [16] 2015 Predictive control x Commercial software
E. Vuong et al. [20] 2015 Model development - Commercial software
L. Aelenei et al. [6] 2014 Model validation x Mathematical model
T. Yang & A.K. Athienitis [21] 2014 Model validation x Mathematical model
C.Y. Huang et al. [22] 2011 Model validation x Mathematical model
L. Liao et al. [23] 2007 Heat distribution prediction - CFD

As shown in Table 1, most studies were conducted by using simulations with self-developed or
existing models, provided in commercial programs. However, the development of a mathematical
model requires elaboration and time, particularly for debugging. Conversely, utilizing an existing
model is useful and efficient as it requires less time; however, a limitation is that the system complexity
and some physical relations among the system components relating to target cases are not fully reflected
in the model. In addition, uncertainties in material properties, manufacturing, and installation quality
are sporadic. Therefore, calibration of the simulation model may be required to describe the target case.

A comparison between model results and in situ test data is typically employed for model
calibration. A common method to use existing models is parameter fitting using empirical data
collected over a short period. The fitted model can then be used for long-term performance evaluation,
such as BIPV electricity yield or various engineering works. Model-based FDD is one such example.

Figure 1 shows how an existing model can be used to depict a real target case in this work. An in
situ test was performed for short period and a TRNSYS BIPV model was selected as the existing model.
Then, the calibration is performed not only for the most sensitive parameters among unknown ones but
also for physically uncertain parameters as a target case is not fully reflected in a model as mentioned
earlier. The deviation between simulation and field tests was minimized through TRNOPT, which is
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parameter optimization tool implemented in TRNSYS. This paper presents a detailed process of this
proposed methodology.
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Figure 1. Concept diagram of the proposed methodology for developing a calibrated model.

2. Materials and Methods

2.1. In Situ Measurement of the Target BIPV System

Figure 2 depicts the target test building, located in Incheon, South Korea. The country has a
mild climate. For instance, in 2019, the highest temperature in Incheon was around 36 ◦C in summer,
and about the lowest one was around −10.4 ◦C in winter. Total annual amount of solar irradiance was
1466.66 kWh/m2 in Incheon, and this level is similar over the country.

A total of 58 polycrystalline Si (C-Si) BIPV modules were installed on the southern façade spandrel
and 120 amorphous-Si (A-Si) BIPV modules were installed on the double-skin façade. The target
system of this study consists of C-Si BIPV modules on the spandrel adjacent to the indoor ceiling space.
Two arrays of 29 C-Si parallel-connected BIPV modules were investigated; the rated power of each
BIPV module was 116 W, and the maximum power point voltage, VMPP, and current, IMPP, were 14.2 V
and 8.17 A, respectively, under the standard temperature condition (STC, solar irradiance = 1000 W/m2,
air mass = 1.5 G, and cell temperature = 25 ◦C). The size of each module was 1.034 m2, and the thickness
of the back insulation material was 75 mm.
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The BIPV module of the target building was fabricated from top to bottom, with the following
order: outer cover glass, PV cells, substrate glass, air channel, and back insulation. The temperatures
of the outer cover, substrate glass surface, and channel of the BIPV module were measured using
thermocouples, and the indoor space temperature was measured using a Testo device. The power
generated from the 58 BIPV modules was also measured via a DC meter from the inverter inlet.
Daily meteorological data, including total horizontal solar radiation and temperatures, were obtained
from the website of the Korea Meteorological Administration (KMA), and the target total radiation
along the southern orientation was calculated using a direct diffuse split model [24,25]. This selection
of using meteorological data was made to ensure our fitted model is useful in the future, requiring only
data from the KMA. The temperatures were measured for eight days, from 27 November to 4 December.
Figure 3 presents details of the measurement location for the target BIPV system. Although the
measuring instruments were installed in one module, the cell temperature of the BIPV module was
assumed to be the average of the inner and outer surface temperatures of the module.
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2.2. Theoretical Review of the TRNSYS BIPV Model

TRNSYS is a well-known dynamic energy simulation tool developed by Klein et al. [26], and the
steady-state BIPV simulation model, type 567, is included in the model library. This model uses a
thermal network of BIPV components, as shown in Figure 4.
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Figure 4. Thermal network of TRNSYS type 567 (BIPV simulation model).

The model can describe airflow within the air channel between the BIPV module and back
insulation, with inlet airflow temperature and flow rate. The gray-colored calculation nodes represent
the material layers for the BIPV cover, PV cells, substrate, and the front and back of the back insulation
material of the BIPV module. The model inputs are indicated by the white nodes as boundary
conditions, as follows: sky temperature, Tsky, ambient air temperature, Tamb, indoor temperature,
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Tindoor, and inlet air temperature of the channel, Tfluid,in. The resistances are set as model parameters,
and they explain the thermal relations between nodes, together with the outdoor convection heat
transfer coefficient, hconv. The resistances can be deduced from the material properties, such as
conductivity, emissivity, and thickness, or calibrated values, which will be discussed later.

Based on the thermal network in Figure 4, TRNSYS type 567 calculates the PV efficiency and
power production using Equations (1)–(3). Here, ηBIPV is the BIPV module efficiency, η0 is the reference
PV efficiency at STC, EMR and EMT are the efficiency modifiers of the solar radiation and temperature,
respectively, Qref and Tref are the solar radiation and temperature of the STC, respectively, Qsol is the
solar irradiation, and Tcell is the calculated cell temperature:

ηBIPV = η0 ×
{
1 + EMR × (Qsol −Qref)

}
×

{
1 + EMT × (Tcell − Tref)

}
, (1)

IAM =
τα
ταn

= 1− 0.1×
( 1

cosθ
− 1

)
, (2)

.
EBIPV = ταn × IAM× ηBIPV ×A×Qsol, (3)

Type 567 uses the solar incident angle modifier proposed by ASHRAE [27]. The incident angle
modifier (IAM) is defined by τα (product of transmittance and absorptance of the module under a
given incident angle, θ) or as ταn (the normal τα) when θ is zero. The IAM is used to calculate the BIPV
power production,

.
EBIPV, as shown in Equation (3). Here, A is the surface area of the BIPV module.

Details of the parameters for the target BIPV modules are presented in Table 2.

Table 2. Parameters of the target BIPV module.

Parameter Value Unit

Cover area (A) 1.034 m2

Cover thickness 0.005 m
Channel height 0.085 m

Cover thermal conductivity (1/Rcover) 0.96 W/m·K
Substrate thermal resistance (Rsubs) 7.052 m·K/W

Back insulation thermal resistance (Rback) 1.876 m·K/W
Normal transmittance-absorptance (ταn) 0.85 -

Cover emissivity (εcover) 0.9 -
Substrate emissivity (εsubs) 0.9 -

Back insulation emissivity (εback) 0.9 -
Reference BIPV efficiency (ηBIPV) 14.1 %

Rated power (
.
EPV) 116 W

Maximum power point voltage (VMPP) 14.2 V
Open circuit voltage 18.9 V

Maximum power point current (IMPP) 8.17 A
Short circuit current 8.71 A

Efficiency modifier—temperature (EMT) −0.00039 ◦C−1

Efficiency modifier—solar radiation (EMR) 0.00009 m·K/W

hconv can be simply calculated using the outdoor air velocity, v, as shown in Equation (4), the values
for which are obtained from weather data. The sky temperature, Tsky, can be represented by Equation (5)
as a the function of ambient air temperature, Tamb, sky emissivity, εsky, and cloud factor, CF, which has
a range of 0–1 (for a clear sky, CF = 0) [28].

hconv =
5.7 + 3.8v

3.6
, (4)

Tsky = Tamb × εsky + 0.8×
(
1− εsky ×CF

)0.25
, (5)
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The values of all the presented parameters are given in Table 2; these were obtained from the
manufacturer’s documentation of the BIPV module and meteorological data. However, parameters such
as surface emissivity, transmittance, absorptance, sky emissivity, and air channel inlet flow rate cannot be
defined without special measurements. Therefore, these parameters need to be appropriately identified
such that the PV model can account for correct values of the target module; sporadic differences in the
values from the manufacturer and those from the proposed equations are attributed to the parameters
that need to be calibrated.

2.3. Parametric Sensitivity Analysis

To select the most sensitive parameters, a parametric sensitivity analysis was performed similarly
to [29], and only selected sensitive parameters were used for model calibration. Table 3 shows the
undefined variables that need to be defined appropriately. These variables may directly affect the PV
cell temperature (Tcell), PV efficiency (ηBIPV), and PV power production (

.
EPV); thus, the sensitivity,

defined as the variation in hourly Tcell over an annual simulation, was investigated according to
changes in the target variables within predefined ranges, as presented in Table 3. When the sensitivity
analysis was performed for one variable, the other variables were fixed as the reference value.

Table 3. The target variables and values for sensitivity analysis.

Target Variable Reference Value
Bounds

Unit
Lower Upper

εsky Sky emissivity 0.90 0.60 1.00 -
εcover Cover emissivity 0.90 0.72 0.99 -
ταn Normal transmittance-absorptance 0.85 0.68 0.99 -
εsubs Substrate emissivity 0.90 0.72 0.99 -
εback Back insulation emissivity 0.90 0.72 0.99 -
.

m Inlet flow rate of air channel 100 20 200 kg/h

Here, the sky emissivity, εsky, denotes the radiative heat transfer ability of the sky;
the cover emissivity, εcover, denotes the outer cover glass surface emissivity; the normal
transmittance-absorptance, ταn, is the product of the normal direction transmittance-absorptance for
the collector surface; the substrate and back insulation emissivity, εsubs and εback, respectively, are used
to describe the channel flow heat transfer; the inlet flow rate,

.
m, denotes the inlet fluid mass flow rate

to the airflow channel.
The lower and upper bounds of εcover, εsubs, ταn, and εback were selected as a normal value of

clear glass, 0.90, and its ±20% range. The reference value of εsky was also selected as a normal value;
however, the range was obtained from a previous study [30], and a large range of

.
m was assigned owing

to the high uncertainties in the channel air velocity due to factors such as uncontrolled construction
quality and unknown airtightness. In addition, this large range may indirectly calibrate the convective
heat transfer of the channel. The parameter sensitivity results of the hourly Tcell are presented by
scatter plots with values normalized to the maximum Tcell, over an 8760 h simulation; the scatter plot of
ταn represents 3515 points, indicating 3515 h because ταn only exists when the beam radiation reaches
the outer cover surface. The sensitivity was estimated using the root mean square error (RMSE) (◦C),
as shown in Equation (6), for the highest Tcell difference (◦C); this typically occurs for the upper and
lower bound values. n is the number of values for the annual simulation.

RMSE =

√(
Tub

cell − Tlb
cell

)2

N
, (6)
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2.4. Parameter Calibration Using the Optimization Method

Parameter calibration for the TRNSYS BIPV model was conducted in TRNSYS by using the
TRNSYS optimization program, TRNOPT, which is widely used to determine optimal solutions for
optimization problems [31]. Among the eight days of the measuring test, data for the first four days
were used for calibrating parameters of the BIPV model, and data from the remaining four days were
used for evaluating the calibrated model.

Generally, optimization problems require defining an objective function, constraints, design variables
and their ranges, and algorithm parameters. Optimization problems can be categorized according to the
optimization algorithms, number of objective functions, or the existence of constraints.

The optimization objective of the parameter calibration in the present work is to match the TRNSYS
BIPV model with the in situ BIPV module by determining unknown parameters of the TRNSYS BIPV
model. Thus, the particle swarm optimization (PSO) algorithm with a single objective function and
without constraints was applied [32]. The PSO algorithm is a global random search algorithm for
single-objective optimization. Users can set the number of particles (Npts) and generations (Ngen).
Thereafter, the algorithm searches for an optimal solution among the results provided from all the
particles, moving from the first generation (Ngen = 1) to the last generation (Ngen = 50), based on
the given constraints and range of design variables. The optimal solution represents a case in which
the objective function is minimized. In the present study, Npts was set to 40 and Ngen was set to 50.
The flow chart for the PSO algorithm with TRNOPT is presented in Figure 5.
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The same range of design variables presented in Table 3 was used for the PSO algorithm;
the objective function was defined as in Equation (7), using the measured and simulated BIPV cell
temperature and power production. Here, Qtotal is the total radiation on the BIPV surface (W/m2),
Tcell,sim and Tcell,measured indicate the BIPV cell temperature (◦C), and

.
EBIPV,sim and

.
EBIPV,measured are

the BIPV power production (kW) for the simulated and measured values, respectively. The use of
the multiplier Qtotal is intended to sum the differences between simulated and measured values only
when beam radiation is present. Generally, the calibrated TRNSYS BIPV model with PSO optimization
describes the thermal and electrical behaviors observed through in situ measurement data better than
the uncalibrated model.

min fobj =

stop∑
start

Qtotal ×
{
abs(Tcell,sim − Tcell,measured) + abs

( .
EBIPV,sim −

.
EBIPV,measured

)}
(7)
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After optimization, the error between simulation and measurement results was evaluated using
Equation (8), like Equation (6).

RMSE =

√
(Tsim − Tmea)

2

N
, (8)

3. Results

3.1. Results of the Parameter Sensitivity Analysis

Scatter plots of the sensitivity analysis for the target variables—εsky, εcover, εsubs, εback, ταn,
and

.
m—are presented in Figure 6. The normalized BIPV cell temperatures (Tcell/Tcell,max) were plotted

for each case of the lower bound (x-axis) and upper bound (y-axis) of the target variables. The plotted
points in the graphs correspond to hourly temperatures for 8760 h, but the points were obtained from
two annual simulations with distinct variables of upper and lower bound variables. The scatter plots
are visual representation of the degree of change in cell temperature within the range of variation of
the variables to identify the variables that are sensitive to cell temperature change before calibration of
the variable.
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The BIPV cell temperature (Tcell) is affected, with an RMSE of 0.01–4.16 ◦C. Tcell is rarely affected
in the case of variations of 0.72–0.99 in εsubs and εback. The points are aligned on the diagonal line,
so the variables of εsubs and εback in the model are not sensitive for Tcell. On the contrary, ταn exhibits
the highest RMSE and a maximum difference of 12.67 ◦C for Tcell. Other variables, such as εcover,
εsky, and

.
m, exhibit RMSEs of 1.16, 0.21, and 0.55 ◦C, respectively; and 5.01, 0.96, and 1.49 ◦C in the

maximum differences of Tcell.
According to the results in Figure 6, εcover, εsky,

.
m, and ταn were selected as the design variables of

the parameter calibration for the BIPV model, except for εsubs and εback. The eliminated variables, εsubs

and εback, do not have a remarkable impact on Tcell and they show a difference of less than 10−3 (kW)
in electrical power production.
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3.2. Parameter Calibration Results for the BIPV Model

The initial values, ranges, and optimum values of the design variables used for the parameter
calibration optimization are presented in Table 4. The initial values in Table 4 were changed to optimum
values through approximately 2000 (Npts × Ngen) simulations, using the PSO 50 generation.

Table 4. Target variables and optimum values obtained via sensitivity analyses.

Design Variables
Value

Unit
Min. Initial Max. Opt.

εsky Sky emissivity 0.60 0.90 0.99 0.87 -
εcover Cover emissivity 0.72 0.90 0.99 0.97 -
ταn Normal transmittance-absorptance 0.68 0.85 0.99 0.68 -

.
m Inlet flow rate of air channel 20 100 200 58.53 kg/h

During optimization, the initial values are arbitrarily modified within the bounds, and a set
of variables to be optimized that show minimum errors are selected as starting values for the next
generation. Figure 7 shows this optimization process. The iteration represents Ngen, and the plotted
values for each iteration indicates a combination of the test variable with a least error among test
particles. During the first 600 generations, the values fluctuated over iterations, but then they were
converged to optimal values.
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Figure 7. Optimization process results using GenOpt.

Figures 8 and 9 depict the simulation results obtained using the calibrated and noncalibrated
(initial) parameters. Figure 8 presents the BIPV cell temperatures. The y-axis represents temperatures
while the right y-axis represents total solar radiation (Qtotal) on the surface, and the curve is plotted
at the bottom of the figure. Figure 9 presents the BIPV power production results. The calculated
power production using the BIPV simulation model represents the case obtained using 58 modules,
which is obtained by multiplying the amount of power produced by a single module with the number
of modules.
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Figure 8. Results of calibrated and noncalibrated models for BIPV cell temperatures (first four days).
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Figure 9. Results of calibrated and noncalibrated models for BIPV power production (first four days).

Prior to calibration, Tcell,ini had an RMSE of 6.92 ◦C compared to Tcell, and it was reduced to an
RMSE of 3.39 ◦C after calibration for sunlit hours.

.
EBIPV,ini yields an RMSE of 0.44 kW, which is also

reduced to 0.26 kW using the calibrated parameters. All the noncalibrated models exhibited higher
RMSEs in cell temperatures and power production, whereas the calibrated model had lower errors and
a fluctuation pattern similar to that in the in situ test data. Moreover, the magnitude of calibrated cases
was distinctively reduced as the calibration seemingly uses the smaller ταn, i.e., the most sensitive
design variable. Here, it is somewhat implied that a real value of ταn is closer to our optimum value;
however, this value can be regarded as the most representative value to match the simulation and
measured data in a physically acceptable range.

The calibrated BIPV model was evaluated by comparison with data from the remaining four days,
which were not used during the optimization process. The results are shown in Figures 10 and 11.
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Figure 11. Power production of calibrated and noncalibrated models for unused in situ test data
(last four days).

The predicted performance of the calibrated model for the last four days indicates an increased
RMSE. The RMSE in the BIPV cell temperature increased from 3.39 to 5.62 ◦C and that in the total power
production increased slightly from 0.26 to 0.29 kW. However, as shown in the figures, the calibrated
model was still a better fit than the noncalibrated model.

3.3. Annual Prediction of Energy Production

As an application example of the calibrated BIPV model, annual TRNSYS simulations were run.
The second version of Typical Meteorological Year (TMY2) provided in TRNSYS was used as weather
data for Seoul, and the calibrated and noncalibrated models were compared using Type 56, a building
model, to give boundary temperatures to the BIPV models.

Figure 12 is a box plot that shows monthly energy production obtained by the calibrated and
noncalibrated models. The BIPV energy production calculated by the calibrated model was lower than
the noncalibrated model. Table 5 shows hourly average and annual total BIPV energy production.
The annual total energy production with the calibrated model was less than the noncalibrated model
by about 17%. As shown in the hourly average value, the calibrated model was also less by about 17%.
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Table 5. Difference in BIPV energy production between calibrated and noncalibrated models.

Energy Production Noncalibrated Calibrated

Hourly average 1.07 kWh 0.89 kWh
Total 4750.27 kWh 3941.29 kWh

4. Conclusions

This work presents a calibration method for unknown and uncertain parameters of the BIPV
simulation model in TRNSYS. Among them, the most sensitive parameters of the model, such as cover
emissivity, sky emissivity, normal transmittance-absorptance, and channel flow rate, were selected
via a sensitivity analysis, and these parameters were calibrated using optimum values determined by
employing the PSO algorithm implemented in TRNOPT.

The calibrated BIPV simulation model exhibited an RMSE of 3.39 ◦C in terms of the cell temperature
and an RMSE of 0.26 kW in terms of power production. These errors were lower than those for the
noncalibrated model, with RMSEs of 6.92 ◦C and 0.44 kW for the same cases. On evaluating the
predicted performance of the calibrated BIPV model, RMSEs of 5.62 ◦C and 0.29 kW were determined,
which were still lower than those for the noncalibrated model.

Thus, this work proposes a calibration method capable of selecting sensitive parameters that
need to be calibrated among parameters that are poorly defined based on available documentation
and information and are not directly related to the test case. The proposed calibration method can be
applied for other calibration cases, and the calibrated model presented in the work can also be used
for designing and operating a similar BIPV system using proper weather data. An annual hourly
simulation using that calibrated model shows a difference between that a realistic calibrated model
and an initial one, and such results can be used for an economic analysis using target weather data.

To reduce the error found in this work, more parameters can be selected and calibrated that are
already known to users, particularly under broader bounds. However, a projection of the calibrated
model under such conditions for a long-time simulation can cause a problem of so-called out-fitting.
Further work is required to investigate this issue.
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Nomenclature

Symbols
A Area (m2)
CF Cloud factor (-)
.
E Power production (kW)
I Current (A)
V Voltage (V)
.

m Inlet flowrate of air channel (kg/h)
N Number (-)
Q Solar radiation (W/m2)
R Resistance (m·K/W)
T Temperature (◦C)
v Air velocity (m/s)
hconv Convective heat transfer coefficient (m2

·K/W)
Greeks
ε Emissivity (-)
η Efficiency (-)
τα Product of transmittance and absorptance (-)
θ Incidence angle (rad)
Superscripts
lb Lower bound
ub Upper bound
Subscripts
amb Ambient
back Back insulation
cell PV cell
channel Channel space
conv Convection
cover Cover of BIPV module
gen Generations
in Inlet
indoor Indoor space
ini Initial
max Maximum
mea Measurement
MPP Maximum power point
n Normal
obj Object for optimization
opt Optimal value
pts Particles
R Solar radiation modifier
ref Reference
sim Simulated
sky Sky temperature
sol Solar radiation
subs Substrate
T Temperature modifier
total Total solar radiation
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Abbreviations

A-Si Amorphous Si
C-Si Polycrystalline Si
CFD
EM

Computer fluid dynamics
Efficiency modifier

EMS Energy monitoring system
FDD Fault detection diagnosis
HVAC Heating, ventilation, and air-conditioning
IAM Incidence Angle Modifier
KMA Korea Meteorological Administration
PSO Particle swarm optimization
RMSE Root mean square error
STC Standard test condition
TMY2 Typical meteorological year (second version)
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