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Abstract: The area-proportional baseline method generates phase fraction–temperature curves from
heat capacity data of phase change materials. The curves describe the continuous conversion from
solid to liquid over an extended temperature range. They are consistent with the apparent heat
capacity and enthalpy modeling approach for the numerical solution of heat transfer problems.
However, the curves are non-smooth, discrete signals. They are affected by noise in the heat capacity
data and should not be used as input to continuous simulation models. This contribution proposes
an alternative method based on spline approximation for the generation of consistent and smooth
phase fraction–temperature, apparent heat capacity–temperature and enthalpy–temperature curves.
Applications are presented for two commercial paraffins from Rubitherm GmbH considering heat
capacity data from Differential Scanning Calorimetry and 3-layer-calorimetry. Apparent heat capacity
models are validated for melting experiments using a compact heat exchanger. The best fitting models
and the most efficient numerical solutions are obtained for heat capacity data from 3-layer-calorimetry
using the proposed spline approximation method. Because of these promising results, the method is
applied to melting data of all 44 Rubitherm paraffins. The computer code of the corresponding phase
transition models is provided in the Supplementary Information.

Keywords: solid–liquid phase transition; phase fraction–temperature curves; paraffin heat capacity
data; numerical modeling; apparent heat capacity method

1. Introduction

Paraffin waxes are interesting candidates as phase change materials (PCM). They are commercially
available for a wide range of melting temperatures, relatively low in cost and have a good thermal
reliability [1,2]. However, technical-grade materials and mixtures mostly show a non-isothermal phase
change which takes place over an extended temperature range. Moreover, paraffin systems sometimes
show two different phase transitions in the interesting temperature operating range. This phenomenon
is not unusual and can be explained by a low temperature solid–solid transition and a high temperature
solid–liquid transition [3–8]. Another possible explanation could be the different chain lengths in
mixtures of different compounds [8]. Suitable models for a reasonably accurate description of this
complex phase transition behavior are needed to assess the performance of latent heat thermal energy
storage systems using paraffins as PCM.

The most popular approaches for the mathematical modeling of phase change problems in PCM
are the enthalpy method, the apparent (or effective) heat capacity method, and the source based
method [9]. Following these approaches, a mushy transition zone between the two (solid and liquid)
phases is considered. In this zone, a single enthalpy–temperature, apparent heat capacity–temperature,
or a heat flux-temperature curve is applied. The numerical solution takes place on a fixed-space grid [9].
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The definition of the local liquid fraction is a key feature for the application of the apparent heat
capacity and source-based methods [10]. Within the phase transition temperature range, the structure
of the PCM is approximated by the solid and the liquid phase [10]. Accordingly, the progress of
the phase change is determined by the liquid fraction and the apparent (or effective) specific heat
capacity is modeled by contributions from the two phases and the phase transition enthalpy [11,12].
While, for the energy balance equation, the mass liquid fraction is used, for the momentum equation,
the volumetric liquid fraction (or porosity) is used [13–15].

The local liquid fraction depends on the phenomena occurring during the PCM’s phase transitions
during heating (melting) and cooling (solidification). Their complexity is usually determined by the
nature of the solidification process. e.g., as pointed out by Voller et al. [10], if the kinetics of the
transformation are such that under-cooling is significant, the local liquid fraction might depend on
temperature, cooling rate, nucleation rate, and solidification speed. In addition, in multi-component
materials, solutal transport (macro-segregation) will also influence the local liquid fraction (field) [10].

However, for many systems, it can be reasonably assumed that the liquid fraction is a function of
temperature alone [9]. Caggiano et al. [16] provide a recent review of temperature-dependent apparent
(or effective) heat capacity models in the framework of fixed-grid methods. It is noted that not all of the
reviewed models explicitly consider the liquid fraction as a system state. However, because of the direct
relation between the liquid fraction and the heat capacity, [11,12,17] these models fall into the same
category. The same applies for models defined by enthalpy–temperature curves, see e.g., [18]. The heat
capacity models in Caggiano et al. [16] use smooth and non-smooth transition functions, including
interpolation functions using tabulated data from differential scanning calorimetry (DSC) [19].

The most straightforward way to model phase fraction–temperature curves is to define a linear
function between the liquidus and solidus temperatures, see e.g., [15]. This approach can also be used
for PCM with an isothermal phase change introducing a small artificial temperature region, see [10]
and FLUENT Manual [20]. Enthalpy–temperature and heat capacity–temperature curves are also often
designed to match the results of heat capacity data, e.g., generated by DSC or 3-layer-calorimetry.
These curves then correspond to data recorded during complete melting, complete solidification, or to
intermediate curves between both, see e.g., [18,21–27]. They are usually modeled e.g., by piecewise linear
functions [28], probability distribution functions [12,17], cubic spline interpolating polynoms [29]. As an
alternative, Franquet et al. [30] propose to solve an inverse identification problem to identify parameters
of a thermodynamical model of the sample’s heat capacity. In the same way, DSC heat capacity data given
as heat flow-temperature curve can be considered for the source-based methods [31–34].

It is noted that all aforementioned contributions implement static phase transition models
which are independent of the applied heating or cooling rate [12]. However, heat capacity data,
such as generated by DSC, is highly sensitive to the applied heating and cooling rates and the
sample mass [23,35]. PCM phase transition behavior is also scale dependent [35,36]. A direct
strategy to account for this is the consideration of different phase transition models depending
on the direction and rates of temperature changes in the studied application, e.g., [12,17,18,37].
Moreover, various extensions of the numerical methods have been proposed in order to account
for (subcooling) supercooling phenomena, e.g., combining enthalpy curves for (super-)cooling with
kinetic models for crystal growth [38,39], using punctionally negative apparent heat capacities to
mimic the temperature growth in a recrystalling material [40], and considering an internal heat source
in the PCM which is activated at a defined (supercooled) temperature [41].

Phase fraction–temperature curves can be generated by baseline construction [42,43]. This method
is usually applied for the analysis of thermal events in DSC heat capacity data, where the events
are characterized by a peak in the recorded signal in a specific temperature range. These events
can be e.g., thermoplastic melting or crystallization, or thermoset curing [44]. DSC heat capacity
data represents overall (apparent) heat capacities. The net effect of thermal events is obtained after
substraction of the baseline from the recorded overall heat capacity [42,44,45]. Different alternative
approaches exist for baseline construction: formal methods, e.g., using straight lines or sigmoidal
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curves, and methods with a physico-chemical assumption on the change of the heat capacity during
transition, e.g., using exponential curves [42,43]. The (tangential) area-proportional baseline method
uses an iterative numerical integration algorithm to evaluate decomposition reactions and generate
conversion-temperature curves [46]. The application to PCM heat capacity data for identification of
baseline and phase fraction curves was demonstrated e.g., by Diaconu et al. [47].

In this contribution, an alternative method for identification of phase fraction–temperature curves
from heat capacity data of solid–liquid PCM is proposed. The curves are indirectly recovered from the
shape of the measured (overall) peak signals. The proposed method uses the same assumptions as the
area-proportional baseline method. However, while the area-proportional baseline method calculates
discrete signals, the proposed method generates smooth functions:

• The proposed method has the following advantages over the above described methods
for the identification of enthalpy–temperature, apparent heat capacity–temperature, or heat
flux–temperature curves: It generates phase fraction–temperature curves represented by smooth
functions which accurately adapt to the shape of the measured peak signals, i.e., no prior
assumptions need to be taken on the curve shape. They predict the degree of conversion of
the phase transition process, and are consistent with the two-phase apparent heat capacity
modeling approach. Thus, they are especially suited for the efficient numerical solution of heat
transfer problems in solid–liquid PCM.

• In contrast to most of the previous works on the determination of PCM thermophysical properties,
this contribution includes a critically evaluation of the predictive performance of the identified
phase transition functions when used for simulation of a thermal energy storage with PCM.
Results are presented for heat capacity data of RT35HC and RT44HC from Rubitherm GmbH
(Berlin, Germany) generated by DSC and 3-layer-calorimetry. The derived functions are validated
for melting experiments in a compact extended surface aluminium heat exchanger (HEX).
The models identified from DSC data show a poor fitting. However, good results are obtained for
data from 3-layer-calorimetry.

• Because of these promising results, the proposed method is applied to melting data from
3-layer-calorimetry of all 44 available Rubitherm RT paraffins. The computer code of the derived
phase fraction–temperature, apparent heat capacity–temperature and enthalpy–temperature
curves is provided in the supplementary information.

The remainder of this paper is structured as follows. Section 2 introduces the methods to produce heat
capacity data. The two-phase apparent heat capacity model and the area-proportional baseline method
are reviewed. The latter uses numerical integration of heat capacity data and generates discrete signals.
In Section 3, an alternative method is proposed which is based on spline interpolation and generates
smooth functions. In Section 4, both methods are applied to heat capacity data of two commercial
PCM for which data are available from DSC and 3-layer calorimetry. The identified curves are used for
the numerical modeling of heat transfer in a compact HEX filled with PCM. Details on the predictive
performance of the models and numerical aspects of their implementation are given. Finally, Section 5
gives a discussion and conclusions.

2. Materials and (Established) Methods

2.1. Specific Heat Capacity Measurements

Heat capacity data were generated by heat flow differential scanning calorimetry (hf-DSC) using
a NETZSCH DSC 404C (Erich Netzsch GmbH & Co. Holding KG, Selb, Germany) and following
the procedures described in the IEA SHC TASK 42/ECES Task 29 [48]. The sample mass of RT35HC
was 11.99 mg and of RT44HC was 11.73 mg. Aluminum crucibles (25 µL) with pierced lids were
used, and a helium atmosphere was applied (gas flow 50 mL/min). Data was collected at a constant
temperature rate of 0.1 K/min after preheating of the samples to the maximum set temperature.
This relatively low rate was chosen in order to reduce the thermal gradients in the sample and the



Energies 2020, 13, 5149 4 of 20

DSC apparatus. Accordingly, the smearing of the recorded peak signals was also reduced and almost
uniform sample temperature and equilibrium conditions can be assumed. The heat capacity data
are stored as “continuous” data, sampled on small intervals of 0.002 K. For the determination of ∆ht,
the area proportional baseline method was applied and the peak area was numerically integrated.
The following values were found: 224.9 J/g for RT35HC and 229.8 J/g for RT44HC. For validation,
data were also collected at 1.0 and 10.0 K/min. The maximum relative difference between the three
results for ∆ht is 0.51% (RT35HC) and 0.33% (RT44HC), which highlights the accuracy of the DSC
measurements. To obtain accurate results for the specific heat capacities outside the phase transition
temperature range, experiments were conducted at an increased temperature rate of 20 K/min using
three samples with masses ranging from 20.30 to 21.33 mg. It is noted that in this contribution solid
and liquid heat capacities are assumed constant. The following values are used 2.6 J/(g·K) (solid) and
2.8 J/(g·K) (liquid). Similar values are found in literature for commercial paraffin waxes, see e.g., [6,8].

In addition, heat capacity data were considered as given in the PCM datasheet provided by
Rubitherm GmbH (Berlin, Germany). These data were generated by 3-layer-calorimetry [49,50].
In addition, 3-layer-calorimetry measures the heat flux in/out of the sample via a calibrated resistance.
In contrast to hf-DSC, rather large sample sizes are used in order to get more representative results
for inhomogeneous systems, see Vidi et al. [51] for details. Moreover, the temperature rate and heat
fluxes are not constant during the measurement procedure. They depend on the material properties
of the sample. The realized heating and cooling rates are well below 0.1 K/min [52]. According to
recommendations by Mehling and Cabeza [53], the heat capacity data collected by 3-layer-calorimetry
are given as stored heat in 1.0 K intervals.

2.2. The Two-Phase Rate-Independent Apparent Heat Capacity Model

For mixtures and technical-grade PCMs, the solid–liquid phase change occurs within a specific
temperature range. Within this range, it is assumed that the structure of the PCM can be approximated
by two coexisting phases, a solid and a liquid phase [11]. Accordingly, phase transitions can be
modeled by one characteristic parameter:

ξ =
ml

ml + ms (1)

where ξ ∈ [0, 1] is the (liquid mass) phase fraction, and ms and ml are the masses of solid and liquid
phase, respectively. It is assumed that the phase fraction is a function of temperature alone: ξ = ξ(T).
It is further assumed that the phase transition function ξ(T) monotonously increases with rising
temperature and that it realizes a smooth transition from ξ = 0 (completely solid phase) to ξ = 1
(completely liquid phase).

Following the two-phase modeling approach, the apparent (or effective) heat capacity is modeled
by a linear superposition of terms for solid (cs

p) and liquid (cl
p) heat capacity as well as the phase

transition enthalpy (∆h) [11]:

c̃(T) = ξ (T) cl
p(T) + (1− ξ (T)) cs

p(T) +
dξ(T)

dT
∆ht (2)

where ξ(T) is the temperature-dependent phase transition function and dξ/dT is its derivative.
Because the function depends on temperature alone, Equation (2) is a rate-independent model which
assumes that solid and liquid phase are always in equilibrium.

2.3. Area-Proportional Baseline Method for Identification of Phase Fractions as Discrete Signals

Following the two-phase apparent heat capacity modeling approach the data from the
measurement procedures in Section 2.1 represent apparent specific heat capacities, as defined in
Equation (2). Within the phase transition temperature range, the contributions from the solid and
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liquid heat capacities (in the following referred to as baseline) and the phase transition enthalpy are
not determined individually.

In the area-proportional baseline method, the heat capacity of the system (the baseline) is assumed
to change continuously from the level at the start of the transition to the level at the end of the transition.
This change is assumed to be proportional to the degree of conversion [42,44]. For solid–liquid
transitions, the degree of conversion is defined by the (liquid mass) phase fraction ξ, see Equation (1).
(Note that in DSC analysis ξ is often also referred to as degree of conversion or phase change progress
parameter, see e.g., [42,44].) The area-proportional baseline method computes the gradual change
in ξ during the transition, i.e., from zero to unity. The result is a phase fraction–temperature curve.
This curve defines the course of the heat capacity change in the region of the peak (the baseline).

It is assumed that the DSC data are corrected for the instrumental baseline and internal delays
and is given as function of temperature [44]. The following definitions are used for the baseline cBL(T)
and the phase fraction ξ(T) [46]:

cBL(T) = ξ(T) cl
p(T) + (1− ξ(T)) cs

p(T) (3a)

ξ(T) =

∫ T
a (c̃(τ)− cBL(τ)) dτ∫ b
a (c̃(τ)− cBL(τ)) dτ

(3b)

where the variables a and b denote the limits of the phase transition temperature range. In the
“tangential” area-proportional baseline method, the heat capacities cl

p and cs
p are modeled by linear

functions of the temperature:

cs
p(T) = ps

0 + ps
1 · T (4)

cl
p(T) = pl

0 + pl
1 · T

The linear functions (and their coefficients ps
0, ps

1, pl
0, pl

1) are determined by tangents at the left
and right end of the DSC curve (after cutting the part from a to b) [46]. The baseline construction is
performed by numerical integration of Equation (3b) and inserting the result in Equation (3a). To this
end, c̃, cBL, and ξ are considered as discrete signals sampled at temperatures Ti with i = 0, · · · , nI such
that a = T0 < T1 < · · · < TnI−1 < TnI = b. As cBL is a function of ξ which is a function of the unknown
cBL, Equations (3a) and (3b) must be solved iteratively. The iterations are initialized approximating cBL
by a linear interpolation between cs

p(a) and cl
p(b). Based on this first approximation, cBL is updated.

The procedure is repeated until a suitable convergence criterion is fulfilled (see [44,46] for details).
It is interesting to note that the baseline in Equation (3a) is defined (in the same way

as in Equation (2) by contributions of terms for liquid (cl
p) and solid (cs

p) heat capacities.
Inserting Equation (3a) in Equation (2) yields:

dξ(T)
dT

=
c̃(T)− cBL(T)

∆ht
(5)

and after integrating from a to T the same expression as in Equation (3b) is obtained:

ξ(T)− ξ(a) =

∫ T
a c̃(τ)− cBL(τ) dτ

∆ht
(6)

with ξ(a) = 0 and ∆ht =
∫ b

a
(c̃(τ)− cBL(τ)) dτ

It can be concluded that the definition of ξ in Equation (3b) is consistent with the model for the
apparent specific heat capacity c̃ in Equation (2). Thus, the results of the numerical integration method
(i.e., the discrete signals cBL and ξ) are also consistent with the two-phase model in Equation (2).
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3. Proposed Method for Identification of Smooth Phase Transition Functions

An alternative method based on piecewise spline interpolation is presented which generates
continuous phase transition functions from heat capacity data. The method is also consistent with
the model for c̃ in Equation (2). As in Section 2.3, it is assumed that there is a clear start and end of
the phase transition defining the phase transition temperature range, and that the (single phase) solid
and liquid specific heat capacities are constant. Moreover, conditions are formulated such that the
interpolation method yields a three times continuously differentiable (C3 smooth) transition function.
Accordingly, using the transition function and its derivative with Equation (2), the model for c̃ is then
twice continuously differentiable (C2 smooth).

The method is derived and exemplarily illustrated for RT35HC heat capacity data as provided by
Rubitherm GmbH. Note that, while the data are given as partial enthalpies ∆hi(Ti), these values are
(approximately) taken here as apparent specific heat capacities: c̃i(T) ≈ ∆hi(Ti)/∆T. This is reasonable
as the specific partial enthalpies are defined for relatively small temperature intervals of ∆T = 1 K.

3.1. Identification of Solid and Liquid Heat Capacities and the Phase Transition Temperature Range

The heat capacity data are shown in Figure 1 and is defined over a temperature interval
[a, b], where a and b are the start and end of the phase transition temperature range, respectively.
The available data do not seem reliable for determining a and b as well as cs

p and cl
p (outside the

phase transition temperature range). Therefore, these quantities were chosen after best knowledge,
see Section 4.1 for a discussion of these issues in the context of DSC measurements. The values of the
transformed heat capacity data are also shown in Figure 1.

Figure 1. RT35HC heat capacity data for heating given as partial enthalpies. The original data are
transformed to apparent specific heat capacities. Moreover, the start and end of the phase transition
temperature range and constant solid and liquid properties cs

p and cl
p, respectively, are defined.

3.2. The Interpolation Model

Phase transitions ξ(T) are modeled using piecewise spline interpolating polynoms Sj(T):

ξ(T) = Sj(T) with Tj ≤ T ≤ Tj+1 and j = 0, · · · , nI − 1 (7)

where each interpolation interval is divided by the grid points Ti with i = 0, · · · , nI such that a =

T0 < T1 < · · · < TnI−1 < TnI = b. For the example in Figure 1 with a = 31 ◦C and b = 38 ◦C, nI = 7.
For each of the nI intervals the splines Sj(T) are defined as:

Sj(T) =
nO,j

∑
k=0

pj,k · (T − Tj)
k (8)
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where nO,j is the polynomial order and pj,k are the unknown polynomial coefficients. The splines are
defined by the following conditions:

• 2nI interpolation conditions:

Sj(Tj) = ξ j (9a)

Sj(Tj+1) = ξ j+1 with j = 0, · · · , nI − 1

It is noted that, in Equation (9), it is assumed that ξ(T) is directly measured at points Ti with
i = 0, 1, · · · , nI with the corresponding values ξ0, ξ1, · · · , ξnI . As discussed before, this is not true.
A proper transformation of Equation (9) is proposed in the next section which replaces the values ξ j by
caloric measurements.

• 3nI − 3 conditions for the differentiability at the inner grid points:

S′j(Tj+1) = S′j+1(Tj+1) (9b)

S′′j (Tj+1) = S′′j+1(Tj+1)

S′′′j (Tj+1) = S′′′j+1(Tj+1) with j = 0, · · · , nI − 2

where S′, S′′ and S′′′ denote the first, second, and third derivative of S, respectively. Note that the
conditions in Equation (9b) account for the differentiability of the spline interpolation in the phase
transition temperature range.

• 6 boundary conditions at the start (T0) and end (TnI ) of the transition region:

S′0(T0) = S′′0 (T0) = S′′′0 (T0) = 0 (9c)

S′nI−1(TnI ) = S′′nI−1(TnI ) = S′′′nI−1(TnI ) = 0

The conditions in Equation (9c) account for the differentiability at the start and end of the phase
transition temperature range. All interpolation conditions in Equations (9a) to (9c) add up to 5nI + 3.
Fourth order (nO = 4) splines with (nO + 1) · nI = 5nI coefficients pj,k do not provide sufficient
degree of freedom to account for all 5nI + 3 interpolation conditions. Therefore, the order of three
splines is increased by one. Good results were found for the splines of the first and the last interval
(nO,0 = nO,nI = 5), and a spline of an interval close to the peak of the measured apparent specific
heat capacity.

For this variable order spline interpolation, the 5nI + 3 conditions in Equations (9a) to (9c)
constitute a linear equation system whose solutions are the unknown 5nI + 3 coefficients pj,k.

3.3. Identification of Polynomial Coefficients

In the previous section, it was assumed that ξ(T) is directly measured, see Equation (9a). In this
section, this assumption is dropped and the measured heat capacity data are considered. These data
are the values c̃0, c̃1, · · · , c̃nI , taken at points Ti with i = 0, 1, · · · , nI as shown in Figure 1. Equations (2)
and (7) yield:

c̃(T) = Sj(T) cl
p + (1− Sj(T)) cs

p + S′j(T)∆ht with Tj ≤ T ≤ Tj+1 and j = 0, · · · , nI − 1 (10)

For constant thermo-physical properties cl
p, cs

p, ∆ht, the apparent specific heat capacity c̃ is a linear
function of the splines Sj(Tj) and their first derivatives S′j(Tj):

c̃(T)− cs
p =

(
cl

p − cs
p

)
· Sj(T) + ∆ht · S′j(T) (11)
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The conditions in Equation (9a) can now be replaced by:

• 2nI interpolation conditions:

(
cl

p − cs
p

)
· Sj(Tj) + ∆ht · S′j(Tj) = c̃j − cs

p (12)(
cl

p − cs
p

)
· Sj(Tj+1) + ∆ht · S′j(Tj+1) = c̃j+1 − cs

p with j = 0, · · · , nI − 1

where c̃j denotes the measured values taken at Tj, with c̃(Tj). and Tj corresponds to grid point Tj in
Equations (9a) and (9b).

The 5nI + 3 conditions in Equations (9b), (9c) and (12) constitute a linear equation system whose
solutions are the unknown 5nI + 3 coefficients pj,k. The values of cs

p, cl
p are directly defined by the

corresponding measurements taken at T0 and TnI :

cs
p = c̃0 (13)

cl
p = c̃nI

The remaining unknown variable is the phase transition enthalpy ∆ht. Figure 2a shows results
for the solution of the linear system defined by Equations (9b), (9c), (12) and (13) for different values
of ∆ht.

31 32 33 34 35 36 37 38
-400

-300

-200

-100

0

100

200

300

400

(a)

100 120 140 160 180 200 220 240 260 280 300
0

500

1000

1500

2000

(b)
Figure 2. Piecewise spline interpolation for the data given in Figure 1. (a) Identified interpolating
polynoms for different values of ∆ht. (b) Minimization of the arc length of the interpolated apparent
specific heat capacity (problem Equation (14)). Each value of ∆ht marked by a black dot corresponds to
one polynom in (a).

From the point of view of available data, the most reasonable interpolation is a curve for c̃ with a
minimum arc length L(c̃(T)). Thus, ∆ht can be calculated by minimization of L(c̃(T)) on the interval
[a, b], i.e., between the two points (T0, c̃0) and (TnI , c̃nI ). The minimization problem reads:

min
∆ht

L(c̃p(T)) (14)

with L(c̃p(T)) = lim
nS→∞

nS

∑
i=1

∣∣S(Ti)− S(Ti−1)
∣∣

Ti = a + i(b− a)/nS for i = 0, 1, · · · , nS

s.t. Equations (9b), (9c), (12) and (13)
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where the length of each line segment is approximated by

∣∣S(Ti)− S(Ti−1)
∣∣ ≈ ((Ti − Ti−1)

2 + (S(Ti)− S(Ti−1))
2
)0.5

(15)

and with nS being the sum of line segments, and with nS >> nI .
Figure 2b shows the computed arc length L(c̃(T)) as a function of ∆ht and the identified minimum

arc length for the RT35HC data. The interpolation result for the minimum arc length for the data given
in Figure 1 is shown in Figure 3.

(a)

0

0.2

0.4

0.6

0.8

1

31 32 33 34 35 36 37 38

-1.5

-1

-0.5

0

0.5

1

31 32 33 34 35 36 37 38

(b)
Figure 3. Spline interpolation, identified baseline and phase transition function for the data in Figure 1.
(a) Results are given for the minimum arc length with ∆ht = 205.5 kJ/kg (see Figure 2b). (b) The
transition function ξ(T) is a C3 smooth function, i.e., it is three times continuously differentiable on
T ∈ [−∞, ∞].

4. Results

4.1. Identification of Discrete Phase Fraction Temperature Signals

Results for the application of the area-proportional baseline method in Section 2.3 to heat capacity
data of RT35HC and RT44HC are shown in Figure 4. The data are generated by hf-DSC. For RT35HC,
one highly asymmetric peak is found in c̃. For RT44HC, two peaks are found, one major highly
asymmetric peak and a rather symmetric minor peak located at lower temperatures. The existence of
two peaks is not unusual for commercial technical grade paraffin waxes and mixtures. This phenomenon
can either be explained by multi-step phase transition, where transition at lower temperatures is the
solid–solid phase transition and the transition at higher temperatures is solid–liquid transition, or it
could be the result of a mixture of different compounds, having different chain lengths [8].

In order to reduce the influence of thermal gradients in the sample, the data are recorded at low
heating rates. Usually, heating rates well below 1 K/min are recommended [8]. However, at lower
heating rates, the signal-to-noise ratio decreases considerably and the influence of noise increases;
compare the results recorded at 1 K/min and 0.1 K/min in Figure 4a,b, respectively.
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Figure 4. Area-proportional baseline method applied to heat capacity data from hf-DSC. (a) RT35HC
data recorded at 1 K/min. (b) RT44HC data recorded at 0.1 K/min. The slopes of cs

p and cl
p at the

start and end of the phase transition temperature range are neglected. Baseline and phase fractions are
constructed as discrete signals by numerical integration. The sudden jump in the DSC signal on the left
around 15 ◦C is caused by a momentary deviation of the temperature controller from the programmed
heating rate.

In the second subfigures from above in Figure 4, it can be seen that the apparent heat capacity
shows a smooth transition from the initial baseline to the ascending slope of the peak instead of
a discontinuity. Therefore, the exact determination of the peak start (the limit a of the integral in
Equation (3b) is difficult. This issue is not unusual, see e.g., Hemminger and Sarge [42]. Consequently,
the slope of the baseline at the peak start is also difficult to estimate. For these reasons, in the same way
as e.g., in Diaconu et al. [47], the temperature dependencies of cl

p and cs
p in Equation (3a) are dropped

and constant values are used instead. Accordingly, ps
1 = pl

1 = 0 as originally proposed by Bandara [44].
The constructed phase fraction–temperature curves are shown in the third subfigures from above.
It can be seen for RT35HC and RT44HC that, although a relatively wide phase transition temperature
range is selected, the significant changes in the phase fraction take place in a much smaller temperature
range where the peak is located in c̃.

Figure 5 shows results for data generated by 3-layer-calorimetry. Because the heat capacity data
are given on a coarse grid, the resolution of the generated discrete signals is low. Note that there is no
clear indication for two peaks in the data for RT44HC. Moreover, similarly as for the data generated
by hf-DSC, there is no clear start and end of the phase transition temperature range and simplifying
assumption need to be taken for the values for cs

p and cl
p.
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Figure 5. Area-proportional baseline method applied to heat capacity data from 3-layer-calorimetry
for RT35HC (a) and RT44HC (b). The values of cs

p and cl
p at the start and end of the phase transition

temperature range were corrected. Baseline and phase fractions are constructed as discrete signals by
numerical integration.

4.2. Identification of Smooth Phase Transition Functions

Figure 6 shows results for the application of the spline interpolation method in Section 3. Note that,
for both PCM, the data from hf-DSC were recorded at 0.1 K/min (contrary to the data in Figure 4). Table 1
compares these results with results from the the area-proportional baseline method in Section 2.3.
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Figure 6. Identified consistent phase transition functions and corresponding apparent heat capacity
curves using spline interpolation for RT35HC (a) and RT44HC (b).

For the hf-DSC data recorded at 0.1 K/min, the spline interpolation uses a non-uniform grid with
50 (in case of RT35HC) and 65 (in case of RT44HC) points Ti and a ∆T varying between 0.05 K and
5 K. The relatively dense grid is chosen to capture the steep slopes around the peak maxima in the
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recorded data. Because of the relatively low heating rate and corresponding low signal-to-noise ratio,
there is a clear influence of noise in the DSC data. The influence of noise can be seen in the second
subfigure in Figure 4b and is especially pronounced for low values of the heat capacity data. The spline
interpolation uses an adaptive grid with relatively large steps in this temperature range to increase the
robustness against noise. It is noted that the baseline cBL(T) (and also the phase transition-temperature
curve ξ(T)) as computed by the area-proportional baseline method shows a certain robustness against
noise in the DSC peak signal. This is to be expected as cBL (and also ξ(T)) corresponds to the scaled
cumulative integral of the DSC peak. The integrand cancels the noise. The same is observed for
the value of ∆ht which is obtained by peak integration. However, using the discrete signal ξ(T) to
calculate c̃(T) the influence of noise does not vanish. The reason is that the peak in c̃(T) depends on
the derivative of ξ(T), see Equation (2).

The data collected by 3-layer-calorimetry are given on a coarse grid with eight (in case of RT35HC)
and seven (in case of RT44HC) values in the phase transition temperature range. The same grids are
used for both numerical integration and spline interpolation. Consequently, both methods yield exactly
the same values for the apparent specific heat capacity at the sampling points. From the differences
between values for ∆ht and the maximum differences between values for cBL reported in Table 1, it can
be seen that both methods yield almost identical results.

Table 1. Results from spline interpolation (SI) and from area-proportional baseline (numerical
integration, NI) method.

Range in ◦C Number of (Maximum) Relative
PCM Data From Phase Transition Grid Elements Difference in % (NI – SI)

For NI For SI ∆ht Baseline

RT35HC hf-DSC 28.0–35.2 3600 50 0.12 0.03
3-Layer-Calorimetry 31.0–38.0 8 8 0.11 2.75

RT44HC hf-DSC 30.0–43.3 6650 65 0.27 0.02
3-Layer-Calorimetry 39.0–45.0 7 7 1.38 1.26

4.3. Experimental Analysis of Heat Transfer with Phase Change

The applicability of identified phase fraction temperature curves is tested by comparison of
predicted and measured PCM temperatures in a small compact extended surface HEX filled with
RT35HC and RT44HC. The experimental setup is shown in Section 4.3. The HEX (Figure 7) is made
from aluminium by AKG Verwaltungsgesellschaft mbH (Hofgeismar, Germany). The internals consist
of two parallel liquid passages and three air passages. The liquid passages are extruded pipes,
each 1.8 mm thick and 45 mm long. The air passages are 10.4 mm thick and enclose the two liquid
passages, one air passage is located between the two liquid passages, see Figure 7 below.

Figure 7. Experimental setup for the characterization of the PCM phase transition behavior in a
compact extended surface HEX. The air passages are filled with PCM. Water flows through the two
liquid passages. Five PT100 temperature sensors are installed in the middle between the two liquid
passages to measure the temperatures in the PCM passage. Two PT100 are installed at the outer surface
of the two liquid passages.
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The air passage use offset strip fins (width 0.3 mm) of rectangular cross section with 2.4 mm rib
separation. The HEX is filled with 500 mL molten PCM (either RT35HC or RT44HC), see Figure 8.

Figure 8. Experimental tests with the thermally insulted HEX. The top plate is made from acryl glass.

Water is used as a heat transfer fluid. It is passed in concurrent flow at a relatively high flow rate
of >290 L/h measured by Emerson Micro Motion ELITE Coriolis Meter CMF025M with transmitter
2700 (Emerson Electric Co., Ferguson, Missouri, U.S.). Therefore, and because of the relatively small
amounts of heat transferred between water and PCM, constant water temperature is assumed in
both liquid passages in the HEX. Water temperature is controlled by a Julabo FP51-SL (Ultra-Low
Refrigerated-Heating Circulator) temperature control unit (Julabo Labortechnik, Seelbach, Germany)
with a maximum heating and cooling thermal power of 3 and 2 kW, respectively.

The PCM temperatures are measured by class A/0 ◦C, 3-wire PT 100 Ohm temperature sensors (Heinz
H. Meßwiderstände GmbH, Elgersburg, Germany). The measurement error is±0.15− 0.35 K. The sensors
are installed in one air passage as shown in Figures 7 and 8. The temperature at the liquid passage outer
surface is measured by PT 100 temperature sensors of the same accuracy, see Figure 7 for their position.

4.4. Heat Transfer Modeling and Model Validation

It is assumed that the heat transfer in the PCM domain in the HEX can be computed by solution
of a one-dimensional transient heat conduction problem with phase change (see [17] for details):

ρ c̃(T)
∂T(t, x)

dt
= λ

∂2T(t, x)
dx2 on 0 ≤ x ≤ L (16)

with T(t, x)|t=0 = T0(x) and T(t, x)|x=0 = TB(t),
∂T(t, x)

∂x

∣∣∣∣
x=L

= 0

where c̃(T) is modeled by different smooth phase transition functions as identified in Section 4.2.
These functions are shown in Figure 6, The values for cs

p = 2.6 J/(g·K), cl
p = 2.8 J/(g·K) and

∆ht = 224.9 J/g and 229.8 J/g for RT35HC and RT44HC, respectively. In Equation (16), λ and
ρ are the PCM’s thermal conductivity and density, respectively, and are assumed to be constant
with λ = 0.2 W/(m·K) and ρ = 770 kg/m3 (RT35HC) and ρ = 780 kg/m3 (RT44HC). The distance
between the two liquid passages is 10.4 mm. The five PT100 temperature sensors are installed at the
midpoint, at 5.2 mm. In order to account for the increased heat transfer surface area by the offset
strip fins, the PCM domain is reduced and defined from x = 0 mm to x = L = 0.95 mm. Initial and
boundary conditions are defined as follows: The mean PCM temperature measured at t = 0 is used
for T0(x). At x = 0 m, the values for TB(t) in the Dirichlet boundary condition are the mean values
of the recorded temperatures at the liquid passage outer surface. At x = L, the Neumann boundary
(symmetry) condition is considered.
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The model is implemented in MATLAB (MathWorks, Natick, MA, US) using a fixed grid spatial
discretization in x with six elements. A central difference scheme is used for the discretization of the term
for the conduction heat transfer. The results is a system of six ordinary differential equations (ODE’s)
whose solution yields the PCM temperatures for each element. The ODE’s are solved using MATLAB’s
ode15s solver with default absolute and relative error tolerance equal 1× 10−6 and 1× 10−3, respectively.

The model validation is done considering the mean of the five PCM temperatures measured
between the two liquid passages, see Figure 7. The recorded values are compared with model
predictions for the sixth (last) discrete element. The results are shown in Figure 9.

The recorded PCM temperatures are clearly affected by the characteristic peak shapes of
the apparent specific heat capacity c̃. The deviation of the RT35HC temperature from the water
temperature shows one increase followed by one decrease and occurs in the phase transition
temperature range defined by the peak in c̃ (between 34 ◦C and 37 ◦C). It is noted that, for higher rates,
this deviation is extended over a wider temperature range, and it ends later at higher temperatures.
However, this behavior is also predicted by the model. It can be concluded that the (static) model for c̃
can be reasonably applied for different heating rates between 0.25 K/min and 2 K/min without losses
in the prediction accuracy.

Both measured and predicted RT44HC temperatures are clearly affected by the two peaks in c̃.
The sharpness of the two peaks in c̃ derived from hf-DSC data leads to strongly pronounced responses
(sudden changes in the course of predicted PCM temperatures). These effects are less present in the
measured data. The phase transition model derived from 3-layer-calorimetry data fits the measured
PCM temperatures better. The same is observed for the predicted and measured RT35HC temperatures.
Table 2 reports the mean absolute and maximal differences between experimentally measured and
predicted PCM temperatures. These values support all discussed results.

Table 2. Mean absolute and maximal differences between experimentally measured and predicted
PCM temperatures in the HEX. Differences are calculated from the data shown in Figure 9.

Experiments With Phase Transition Functions Identified From
Temperature Rates hf-DSC 3-Layer-Calorimeter

in K/min

RT35HC Mean Absolute / Maximal Difference in K

0.25 0.15/0.79 0.06/0.26
0.5 0.27/1.13 0.09/0.29
1.0 0.45/1.52 0.18/1.58
2.0 0.85/2.41 0.37/1.76

RT44HC Mean Absolute / Maximal Difference in K

0.25 0.14/0.57 0.11/0.31
0.5 0.20/0.93 0.14/0.53
1.0 0.34/1.61 0.26/1.46
2.0 0.67/2.27 0.55/1.97
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Figure 9. Comparison of measured (exp.) and predicted (sim.) PCM temperatures in the HEX filled
with RT35HC (a,b) and RT44HC (c,d) for different heating experiments where the water temperature is
increased at different rates with 0.25 K/min, 0.5 K/min, 1.0 K/min, 2.0 K/min. Apparent specific heat
capacities are taken from Figure 6.

4.5. Performance of the Numerical Solver Using Either Discrete Signals or Smooth Functions

It is studied how the selection of either discrete signals (generated by numerical integration)
or smooth functions (generated by spline interpolation) for modeling c̃ affects the efficiency of the
numerical solution of the transient heat conduction problem in Equation (16). RT44HC is considered
and the simulation problem is adapted as follows: The initial temperatures are T0(x) = 41 ◦C.
At x = 0 m, the Dirichlet boundary condition is defined by a sinusoidal function TB(t) which
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oscillates around 41 ◦C with an amplitude of 10 K and 1 min period of oscillation. At x = L = 0.01 m,
the Neumann boundary condition is considered. 25 elements are used for the fixed grid spatial
discretization in x. The problem is solved from t = 0 min to 5 min. The discrete signals (generated by
the numerical integration method) cannot be directly used for modeling c̃. They are first transformed
into functions of a continuous argument (the temperature). This is realized by a table lookup with the
following three different interpolation options provided by MATLAB: “nearest” neighbor interpolation,
“linear” interpolation, and “pchip” piecewise cubic hermite interpolation.

The results are presented in Table 3. The reported solver statistics reflect the computational
effort for solving the problem. They are given as: the number of “successful steps”, the number of
“failed attempts”, the number of times the ODE model function was called to evaluate (“function
evaluations”), and the number of “solutions of linear systems” of the implicit solver.

Table 3. MATLAB’s ode15s solver statistics for the solution of the transient heat conduction problem in
Equation (16).

Numerical Integration
Solver Statistics Table Lookup Interpolation Method Spline Interpolation

Nearest Linear Pchip

Phase Transition Functions From hf-DSC Data

Successful Steps 401 493 483 390
Failed Attempts 260 345 336 264

Function Evaluations 5154 6448 6167 4985
Solutions of Linear Systems 1201 1507 1486 1188

Phase Transition Functions From 3-Layer-Calorimetry Data

Successful Steps 1109 598 683 314
Failed Attempts 742 493 605 223

Function Evaluations 12,315 8640 10,524 4442
Solutions of Linear Systems 3162 1957 2359 1009

For the phase transition functions from hf-DSC data, there is no clear differences between the
performance when using either discrete signals or smooth functions. However, for the phase transition
functions from 3-layer-calorimetry data, the computational effort is significantly lower when using
smooth functions.

This can be explained by the sharp peak in the DSC signal between 43 ◦C and 44 ◦C, see Figure 4b.
A possible explanation is that this sharp peak in c̃ makes the problem highly nonlinear and seems to
dominate the problem complexity. Accordingly, the differences between discrete signals and smooth
functions for c̃ do not lead to significant differences in the algorithm efficiency.

5. Discussion and Conclusions

The apparent heat capacity method is particularly suitable for the numerical modeling of heat
transfer in technical-grade and mixed solid–liquid PCM’s. For these materials, phase transitions
usually take place over an extended temperature range. In addition, sometimes more than one
characteristic peak might be found in the heat capacity data. This is the case for RT44HC where
two characteristic peaks could be clearly distinguished in DSC heat capacity data. These two peaks
could be either the result of being a mixture of different compounds with different chain length, or of
the possible occurrence of a solid–solid phase transition in addition to the solid–liquid transition.
The two-phase apparent heat capacity method uses simplifying assumptions and considers one
solid–liquid phase transition only. Corresponding phase transition models are defined by the following
material properties: solid and liquid heat capacities, the phase transition enthalpy, and the phase
fraction–temperature curve that defines the characteristic peak(s) in the apparent heat capacity curve.
It is often recommendable to determine these characteristics individually. e.g., data from different
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measurement techniques and procedures, as well as different specific heating rates and sample
volumes, might be used to determine the phase transition enthalpy, the heat capacities outside the
phase transition temperature range, or the peak location and shape. The apparent heat capacity model
accounts for an individual consideration of these properties.

The focus of this contribution is on the identification of phase fraction–temperature curves which
accurately describe the phase transition behavior (peak shape and location) of commercial paraffin
waxes filled in a compact HEX. The intended use case is the efficient numerical analysis of heat transfer
in a (from the practical viewpoint reasonable) temperature operating range where significant heat is
released or absorbed by the PCM.

PCM heat capacity data normally represent overall (apparent) heat capacities. Thus, the material
properties need to be indirectly recovered from the data. The area-proportional baseline method
generates phase fraction–temperature curves represented by discrete signals. These signals are
not smooth and affected by noise in the measured heat capacity data. Therefore, their use is not
recommendable for numerical modeling of heat transfer with differential equations. In contrast,
the proposed spline interpolation method generates three times continuously differentiable (C3 smooth)
phase transition functions. Derived apparent heat capacity and enthalpy models are C2 smooth.
Therefore, they are well suited for the efficient numerical solution of heat transfer problems in
PCM (and corresponding dynamic optimization problems solved by derivative-based algorithms).
This is confirmed by a simulation study. The statistics of the numerical solver show a significant
reduction of computational effort by a factor of two or three when using smooth functions instead
of discrete signals. It is noted that, for heat capacity data with very sharp peak signals (identified by
hf-DSC at low temperature rates of 0.1 K/min), no reduction in the computational effort is found.
These sharp peak signals make the simulation problem highly nonlinear and dominate its complexity.
However, as discussed below, the heat capacity data from hf-DSC is not suitable for fitting PCM
temperatures in a storage.

The splines adapt to the shape of the measured peak signals, i.e., no assumptions need to be
taken on the curve shape. The accuracy of the interpolation scheme depends on the number of grid
elements, the grid placement, and the peak shape. For RT35HC and RT44HC heat capacity data
generated by hf-DSC and 3-layer-calorimetry, the computed phase transition enthalpy and the baseline
are accurately determined. All errors are well below 3%.

The comparison between predicted and measured RT35HC and RT44HC temperatures in a
compact extended surface HEX reveals significant differences in the accuracy of heat transfer models.
If the models are linked with phase transition functions identified from hf-DSC data recorded at
0.1 K/min, the predictions strongly overestimate the characteristic features of the phase change,
i.e., the sharpness of the melting peaks for RT35HC and RT44HC. In contrast, good results are obtained
if the models are linked with functions identified from data from 3-layer-calorimetry. Here, the quality
of the fitting is comparable to previous results for RT64HC, see Barz et al. [17], where data from
3-layer-calorimetry were used to predict PCM temperatures in a compact HEX of a similar design as the
one used in this contribution. It can be concluded that, for the paraffin waxes RT35HC, RT44HC and
RT64HC (filled in a compact extended surface HEX), the phase change behavior during heating (with
moderate heating rates between 0.25 to 2.0 K/min) is well represented by the heat capacity data from
3-layer-calorimetry. Because of these promising results, the method is applied to melting data of
all 44 Rubitherm paraffins. The computer code and a documentation of the corresponding phase
transition models is provided in the supplementary information.

Finally, it is noted that all presented apparent heat capacity models are (temperature)
rate-independent and are identified from heat capacity data for complete melting experiments.
Further studies are conceivable which combine results from melting and solidification experiments at
different temperature rates and which are directed to the prediction of both complete and incomplete
phase transitions. This is especially interesting for the here considered solid–liquid PCM with a
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non-isothermal phase transition behavior, possibly with hysteresis, supercooling and varying phase
fraction–temperature relationship.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/19/5149/s1.
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