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Abstract: Targeting the application of medium and heavy vehicles, a hydraulic electric hybrid
vehicle (HEHV) was designed, and its energy management control strategy is discussed in this
paper. Matlab/Simulink was applied to establish the pure electric vehicle and HEHV models, and
backward simulation was adopted for the simulation, to get the variation of torque and battery state
of charge (SOC) through New York City Cycle of the US Environmental Protection Agency (EPA
NYCC). Based on the simulation, the energy management strategy was designed. In this research,
the rule-based control strategy was implemented as the energy distribution management strategy
first, and then the genetic algorithm was utilized to conduct global optimization strategy analysis.
The results from the genetic algorithm were employed to modify the rule-based control strategy to
improve the electricity economic performance of the vehicle. The simulation results show that the
electricity economic performance of the designed hydraulic hybrid vehicle was improved by 36.51%
compared to that of a pure electric vehicle. The performance of energy consumption after genetic
algorithm optimization was improved by 43.65%.

Keywords: hydraulic hybrid vehicle; NYCC driving cycle; optimization; genetic algorithm

1. Introduction

The increasing demand for fossil fuels in different fields since the Industrial Revolution has led
to increasing global CO2 emission and worsening global warming. Among all CO2 emission, the
emission of means of transportation is only second to the industry. Now, the passenger vehicles all
develop toward alternative energy, whereas the medium and heavy vehicles for goods transportation
are still using gasoline or diesel engines as the main power source. With global warming and increasing
stringent laws and regulations, they will definitely develop toward the same clean energy as the
passenger vehicles. According to Navigant Research, the market survey company, hydraulic hybrid
vehicles seldom known and underestimated in significance will gain a position in the heavy-duty truck
market, and even can be expected to apply to the next generation of vehicles. Therefore, hydraulic
electric hybrid vehicles (HEHV) will be the first choice for medium vehicles, heavy vehicles, and
common carriers. With the DSHplus software simulation, Sokar [1] compared the fuel economy of
the hydraulic transmission vehicles and hydraulic hybrid vehicles in urban and highway driving
cycles. Chen [2] compared the energy consumption of different hydraulic hybrid configurations,
and it showed the HEHV could have better energy efficiency over the pure EV system. The energy
optimization can be divided to hardware optimization and control strategy optimization. As for
hardware optimization, Ramakrishnan et al. [3] proposed the study on influence of system parameters
in hydraulic system on the overall system power and established the series hydraulic hybrid power
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vehicle with LMS AMESim software. Change of size of accumulator and hydraulic motor/pump
and internal pressure greatly improves the output power of the whole system, which also reduces
the fuel consumption and pollution of the hydraulic hybrid vehicles. The energy control strategy
can be divided into two categories [4]: (1) rule-based strategy and (2) optimization-based strategy.
For optimization strategy, Lu et al. [5] introduced the weighted-sum method and no-preference method
to solve the multi-objective optimization problem of plug-in electric vehicles, and it was validated with
ADVISOR software. Zeng et al. [6] proposed a different strategy, Equivalent Consumption Minimum
Strategy (ECMS), to solve the optimization problem of PHEV, and the Simplified-ECMS strategy could
effectively shorten the calculation time. Wang et al. [7] applied the Dynamic Programming for PHEV
and received an approximately 20% improvement in fuel economy.

The rule-based control, featuring a smaller amount of calculation, is adopted by many studies, to
design the energy management strategy. Yu et al. [8] developed a simulation model and rule-based
control strategy for extended-range electric vehicle (E-REV) and showed that a small engine can be used
to reduce the weight of vehicle and batteries of E-REV. Gao et al. [9] proposed two control strategies,
thermostat and power follower. With dynamic programming, it showed that the thermostat control
strategy optimized the operation of the internal combustion engine, and the power follower control
strategy minimizes the battery-charging and -discharging operations. Konev et al. [10] developed a
control strategy for series hybrid vehicle. The control strategy was to ensure gradual operation of the
motor along the steady-state Optimal Operating Points Line (OOP-Line) in the engine speed–torque
map, which could improve the efficiency of series hybrid vehicle. Liu et al. [11] developed a control
strategy for a series hybrid vehicle which included two parts, constant SOC control, and driving-range
optimization. Comparing to thermostat control strategy, the constant SOC control could have a
longer driving range. Li et al. [12] proposed a fuzzy logic energy-management system, using the
battery working state, which ensured that the engine would operate in the vicinity of its maximum
fuel-efficiency region. The rule-based design is fast and easy and can be readily applied to real
vehicle-control strategy. However, the rule-based control strategy is simple, so it cannot provide
optimal power management to HEV in real time. Therefore, an optimization algorithm is required for
rule-based control to improve the energy efficiency. Ho and Klong [13] introduced an optimization
algorithm for series plug-in hybrid electric vehicles by utilizing the genetic algorithm (GA), which
could determine the optimal driving patterns offline. Xu et al. [14] developed a fuzzy control strategy
for parallel hybrid electric vehicle. The control strategy was adjusted with GA. It was verified that GA
could effectively improve the efficiency of the engine and fuel consumption. Kaur et al. [15] proposed
a control strategy to control the speed of a hybrid electric vehicle. The controller, which was using
GA, could improve fuel economy and reduce pollution. Hu and Zhao [16] applied an adaptive based
hybrid genetic algorithm to optimize the energy efficiency of parallel hybrid electric vehicles and
presented the effectiveness of the hybrid genetic algorithm.

Therefore, global optimization, together with rule-based control method, are selected in this paper
for medium and heavy vehicles in fixed driving route, to adjust the rule-based control strategy and
improve the electricity economic performance of vehicles. The optimization approach selected in
this paper is genetic algorithm (GA). With global optimization ability and probability optimization
approach, GA can automatically obtain and instruct the optimized search space and adaptively adjust
the search direction without the need of clear rules.

2. Modeling

In this study, Matlab/Simulink serves as the main simulation program, and backward simulation
is used to establish the model. In order to compare the difference between an HEHV and a pure
electric vehicle, subsystem models of the electric system are established, including models of electric
motor, generator, and lithium ion battery. The subsystem models of hydraulic system include variable
hydraulic motor/pump and accumulator models. The whole vehicle model can be divided into
following subsystem models: (1) driver model; (2) vehicle dynamic model; (3) tyre and drive model;
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(4) power component element; and (5) energy storage component model. Driving cycle of the EPA
NYCC is employed in this study to get the vehicle driving force, and then gear ratio of the transmission
system is adopted to calculate the torque and speed needed for the motor. In HEHV, the electric motor
does not function as the regenerative brake; rather the hydraulic pump is used for energy recovery.
This is introduced in the following.

2.1. Driver Model

The EPA NYCC driving cycle for testing, as shown in Figure 1, is employed in this model. The total
driving time is 599 s. The stop time accounts for 35.08% of the total driving time. The maximum speed
and the average speed are 44.6 and 11.4 km/h, respectively.
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Figure 1. United States Environmental Protection Agency New York City Cycle (US EPA NYCC)
driving cycle.

2.2. Vehicle Dynamic Model

A vehicle dynamic model is applied to respond to the driving tractive effort and resistance needed
for the simulation vehicle. The resistance included rolling resistance (Rr), aerodynamic resistance (Ra),
grading resistance (Rc), and acceleration resistance Rs. The tractive effort for driving needed by the
vehicle can be obtained with a vehicle dynamic model, which can be represented by Equation (1).
The detailed calculation of resistance will be introduced in the following:

Ft = Rr + Ra + Rc + Rs (1)

2.2.1. Rolling Resistance

During vehicle traveling, interaction force is produced in both radial and axial directions in the
area where the wheels make contact with the ground, and there is also deformation between the tyre
and the ground. The deformation process will be accompanied by a certain energy loss, regardless of
whether or not it is in tyre or ground. This energy loss is the cause of rolling resistance during wheel
turning. The rolling resistance can be represented by Equation (2), where µr is the rolling resistance
coefficient, and W is the vehicle weight:

Rr = Rr,A + Rr,B = µr·W (2)

2.2.2. Aerodynamic Resistance

The aerodynamic resistance can be represented by Equation (3) as follows, where CD is the
aerodynamic resistance coefficient, ρ is the air density, Af is the front area of the vehicle, v is the vehicle
speed, and vw is the wind speed.
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Ra = CD·
ρ

2
·A f ·(v− vw)

2 (3)

2.2.3. Grading Resistance

During climbing, grading resistance is produced due to the influence of the vehicle weight. During
downhill, this resistance becomes the driving force instead. It can be represented by Equation (4),
where θ is the slope angle:

Rc = Wsin(θ) (4)

2.2.4. Acceleration Resistance

The vehicle driving state covers the acceleration and deceleration for most of the time, except on
highways, where it is fixed-speed driving. The required force for acceleration can be represented by
Equation (5), where a is the acceleration, and g is the gravity acceleration:

Rs = W·
a
g

(5)

2.3. Tyre and Drive Model

Vehicle dynamics is used to analyze the vehicle tyre model. The angular speed (ωdrive) and the
torque (Tdrive) of its transmission shaft can be represented by Equations (6) and (7), where GR is the final
transmission gear ratio, r is the tyre radius, ηfd is the transmission efficiency, and Ftire is the tyre force.

ωdrive = GR·
60

2π·r
·v (6)

Tdrive = Ftire·r·
η f d

GR
(7)

2.4. Electric Motor Model

A 150 kW permanent magnetic motor was applied in this study. An efficient map of the motor
was reproduced from Autonomie simulation software. In simulation, the motor efficiency can be
obtained from a 2D look-up table through the efficiency curve shown in Figure 2, based on the motor
torque and speed.Energies 2020, 13, x FOR PEER REVIEW 5 of 17 
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2.5. Variable Hydraulic Motor/Pump Model

Axial slope plate plunger type of hydraulic motor/pump is applied in this study, and its efficiency
is obtained through a look-up table, as shown in Figure 3. The fluid flow rate (QP/M) and output torque
(TP/M) are calculated according to Equations (8) and (9), where DP/M is the maximum hydraulic motor
displacement, N is the hydraulic motor speed, Sp is the plate angular position, ηvP/M is the volumetric
efficiency, ∆PP/M is the pressure difference at the entry and exit, and ηtP/M is the mechanical efficiency.

QP/M = DP/MNSp/(1000ηvP/M) (8)

TP/M = (SP∆PP/MDP/MηtP/M)/63 (9)
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2.6. Battery Model

The battery used in this study was a lithium ion battery. An RC circuit design was applied, as
shown in Equation (10), where Vt is the battery terminal voltage, Voc is the battery open-circuit voltage,
Ibat is the output current, and Rint is the internal resistance.

Vt = Voc − Ibat·Rint (10)

Since the terminal voltage and the current can be measured, output of battery power Pbat can be
received from Equation (11).

Pbat = Ibat·Voc (11)

Equation (12) can be obtained by substituting Equation (10) to Equation (11).

Ibat =
Vt −

(
Vt

2
− 4·Rint·Pbat

)0.5

2Rint
(12)

The battery SOC is expressed by the capacity ampere hour. Since SOC changes with the current
charging and discharging, SOC can be obtained from Equation (13), where SOCint is the initial value of
the battery.

SOC = SOCint −

∫ t
0 Ibatdt

Ah
(13)
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2.7. Accumulator Model

For the accumulator model, the influence due to temperature change was not considered in this
study, so the gas-state change is set to be adiabatic process (rapid change, n = 1.4). The relationship
between the pressure and volume is shown in Equations (14) and (15), during actual expansion and
compression of gas.

PVn = C (14)

where P is pressure, V is volume of container area, and C is a constant value.

P0Vn
0 = P1Vn

1 = P2Vn
2 = C (15)

where P0 is initial pressure, P1 is the maximum activate pressure of accumulator, P2 is the minimum
activate pressure of accumulator, V0 is the total volume of accumulator, V1 is the volume of air in
accumulator when the pressure is P1, and V2 is the volume of air in accumulator when the pressure is P2.

The boundary movement work, Wb, of the accumulator can be expressed by Equation (16).

Wb =

∫ 2

1
PdV = P1V1 ln

P1

P2
(16)

The inlet/outlet fluid, Vf, of the accumulator can be expressed by Equation (17).

V f = V1
′
−V2

′

= (V0 −V1) − (V0 −V2) = V2 −V1 = P0
1
n V0

{(
1

P2

) 1
n
−

(
1

P1

) 1
n

}
=

(P0
P1

) 1
n V0

{(P1
P2

) 1
n
− 1

}
(17)

The accumulator SOC is expressed by the volume. Since the SOC changes with the volume flow
rate, the accumulator SOC can be expressed by Equation (18).

SOC = SOCint −

∫ t
0 Qdt

V f
(18)

2.8. Vehicle Configurations

Two vehicles configurations were applied in this study for energy-efficiency comparison.
The electric vehicle (EV) configuration is shown in Figure 4, and the HEHV configuration is presented
in Figure 5.Energies 2020, 13, x FOR PEER REVIEW 7 of 17 
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3. Optimization Control Strategy

In this study, genetic algorithm (GA) was applied as the optimization function. The rule-based
control was taken as the energy management strategy of HEHV first, and the simulation result
was compared with the pure-electric-vehicle model. Then, the selected optimization approach was
implemented for global optimization. From those results, together with a rule-based control approach,
the optimal electricity economic performance was obtained.

The global optimization calculation was made by genetic algorithm. The objective of GA
optimization was to minimize electricity consumption, and the objective function was set to be the
reciprocal of the lithium ion battery’s state of charge, SOL Li, as shown in Equation (19). The setting
of objective function in GA could correspond to the fitness function, as shown in Equation (20).
Parameters of GA set in this study are shown in Table 1.

cost = min (1/
∑

(SOC Li)) (19)

Fitness = 1/cost (20)

Table 1. Parameter settings of genetic algorithm (GA).

Gene Length 20 Bits (10 Bits for Both Acceleration and Accumulator SOC)

Group number 50
Algebra 40

Mating rate 0.9
Mutation probability 0.01

Two design variables (vehicle acceleration and accumulator SOC) were applied to judge the time
to use the hydraulic system in control strategy. The thresholds of vehicle acceleration and accumulator
SOC were set as selected variables x and y for optimization, respectively. If the vehicle acceleration
was higher than the acceleration threshold and the accumulator SOC was higher than the accumulator
threshold, the hydraulic pump provided the required power for vehicle acceleration. If the vehicle
acceleration was lower than the acceleration threshold and the accumulator SOC was lower than the
accumulator threshold, the electric motor provided the required acceleration power. If the vehicle
acceleration was higher than the acceleration threshold and the accumulator SOC was lower than the
accumulator threshold, the electric motor provided the major portion of required acceleration power.
Some other detailed judgements of applying hydraulic pump and the overall control flow are shown
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in Figure 6. To prevent the calculation of variables x and y from exceeding the maximum component
scope, the setting constraints of the variables are shown in the constraint Equations (21) and (22).

0 < x ≤ 1(vehicle acceleration constraint) (21)

0 ≤ y ≤ 0.4(accumulator constraint) (22)
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Figure 6. Control flow of genetic algorithm.

The fitness function was adapted to judge whether the solution of GA was suitable for the overall
response of the hydraulic system. Values of acceleration threshold x and accumulator threshold y
were recorded each time the GA was simulated. After the algorithm completed the iteration set of
simulation, its fitness performance was looked up to ensure the value of fitness function was reasonable.
The number of mutations and whether the optimization was convergence were checked during the
operation of GA. In this study, the convergence of GA was judged by the difference of fitness values
between the final four generations. If each difference was smaller than 1%, the optimization reached
the convergence. From the solution of optimal fitness value, the recorded variables x and y were
selected as the optimal set threshold. This set of variables could be implemented in rule-based control
algorithm for real-time simulation and improve the energy consumption. With the implement of
genetic algorithm, the rule-based control algorithm for real-time simulation could achieve the energy
performance close to optimization.

The thresholds of vehicle acceleration and accumulator SOC calculated from the genetic algorithm
were 0.9 and 0.1, respectively. The diagram of control strategy was modified, as shown in Figure 7.
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4. Results

The vehicle parameters of the simulated vehicle are presented in Table 2. The mass of vehicle
includes the gross weight, which is 7200 kg, and 20 passengers, which is 1600 kg.

Table 2. Vehicle parameters.

Parameter Symbol Unit Value

Vehicle mass W kg 8800
Wheelbase cm 378

Wheel track cm 168
Front area A f m2 5.4

Aerodynamic drag coefficient CD 0.28
Rolling resistance coefficient µr 0.008

Tire radius r m 0.334
Air density ρ kg/m3 1.225

Gravitational acceleration g m/s2 9.81
Final reduction gear ratio GR 11.5
Hydraulic system weight kg 200

In this section, simulation results of the pure electric vehicle and HEHV are compared, and that of
the HEHV with optimized energy management strategy is explored. With the energy consumption of
the NYCC driving cycle as the analysis basis, the difference of component performance is discussed.
Firstly, the pure electric vehicle was established based on the set subsystem model, and it was taken as
the basic model. Then the HEHV model was established based on the hydraulic components (hydraulic
motor/pump and accumulator), and the rule-based control strategy was applied for the energy
management of the power system. Finally, the rule-based control strategy was improved based on the
results from the genetic algorithm, to get the HEHV with optimization energy management strategy.

4.1. EV vs. HEHV (Rule-Based)

This section compares the difference between the EV and HEHV and presents the causes of the
differences. The operating points of the EV electric motor are presented in Figure 8, and those of
HEHV electric motor are show in Figure 9. It is obvious that the HEHV electric motor does not work at
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heavy load and low speed, so it was replaced with a hydraulic motor/pump. Therefore, the operating
efficiency points concentrate on the high-efficiency region, and the HEHV features better electricity
economic performance than the pure electric vehicle.
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Table 3 shows the electricity economic performance of the EV and HEHV (rule-based). Since a
hydraulic motor functions as the drive at the HEHV’s low speed, the use of an electric motor in the
low-efficiency zone is reduced, and the electricity is optimized. The electricity economy of the HEHV
has 36.5% improvement over that of EV.

Table 3. Comparison of electricity economic performance between the EV and HEHV (rule-based).

Energy Consumption (kWh) Electricity Economy (kWh /km)

Electric Vehicle (EV) 0.63 0.334
Hydraulic Electric Hybrid Vehicle,

HEHV (Rule-Based) 0.40 0.212

Percent difference +36.5% +36.5%

4.2. HEHV (Rule-Based) vs. HEHV (GA)

This research had taken the genetic algorithm (GA), together with rule-based control, to perform
global optimization, and it got the optimal electricity economic performance. In this section, the HEHV
with original rule-based control is compared with the HEHV with modified rule-based control based on
the genetic algorithm optimization. The distribution of operating points of the HEHV (rule-based) and
HEHV (GA) electric motors is presented in Figures 12 and 13, respectively. The distribution suggests
that the operating points of the electric motor after being modified for optimization concentrate more
on the high-efficiency region.Energies 2020, 13, x FOR PEER REVIEW 12 of 17 
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To understand the motor-use state, the power is compared in this paper, as shown in Figure 14.
The usage rate of the electric motor after optimization is less than the original rule-based control
strategy, so that better electricity economic performance is reached.
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The reason why the electric-motor-usage rate after optimization is less can be explained with the
help of a comparison of hydraulic motor power, as shown in Figure 15. It is found that the HEHV after
optimization uses more hydraulic energy than the original control strategy.Energies 2020, 13, x FOR PEER REVIEW 13 of 17 
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As suggested by the comparison of operating-point distribution of hydraulic motor/pump of two
control strategies (Figure 16) and state of accumulator use (Figure 17), there are more operating points
for the hydraulic motor/pump after optimization than for the original strategy, and they tend to be
in the high-efficiency zone. The accumulator is applied more completely due to the wider range of
applications for the hydraulic motor/pump.
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The analysis above indicates that the electricity economic performance of the HEHV after
optimization is more improved. Figure 18 shows the battery SOC comparison of the EV and HEHV
(Rule based) and HEHV (GA). It is clear that the HEHV after optimization is more improved than the
HEHV with original strategy.

The electricity economic performance of the HEHV (rule-based) and HEHV (GA) is drawn in
Table 4. Table 5 shows the percentage improvement of electricity in this study. The HEHV with original
rule-based control shows 36.5% improvement over the EV, and the HEHV with modified rule-based
control has 43.7% improvement.
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Table 4. Comparison between electricity economic performances.

Power Consumption (kWh) Electricity Economy (kWh/km)

Hydraulic Electric Hybrid Vehicle,
HEHV (Rule-Based) 0.40 0.212

Hydraulic Electric Hybrid Vehicle,
HEHV (GA) 0.355 0.188

Percent difference +11.3% +11.4%

Table 5. Electricity improvement percentage.

Percent of Improvement

Electric Vehicle (EV) −

Hydraulic Electric Hybrid Vehicle, HEHV (Rule-Based) 36.5%
Hydraulic Electric Hybrid Vehicle, HEHV (GA) 43.7%

5. Discussion

This research mainly targeted the medium and large trucks for energy efficiency, and a hydraulic
hybrid electric powertrain system was proposed to apply on the medium duty vehicle for energy
efficiency. SimuLink simulation models of the EV and HHEV were built to evaluate the efficiency of
the HHEV system. Compared to the EV system, the HHEV system had better energy efficiency, but the
control algorithm was not optimized. To improve the efficiency, the genetic algorithm was implemented
to achieve the optimized energy efficiency. Since GA was a global optimization algorithm which
required longer CPU time for calculation and was not suitable for real-time control, the result of design
variables of GA was required to apply on the real-time control strategy, rule-based control. In this
research, two design variables of GA, thresholds of vehicle acceleration and hydraulic accumulator
SOC, were optimized. These two optimized variables were applied in the HHEV simulation. From the
simulation result, Tables 4 and 5, the rule-based model with GA could further improve the energy
efficiency. The simulation results show that the electricity economic performance of the designed
hydraulic hybrid vehicle was improved by 36.5% when compared to that of pure electric vehicle.
The performance of energy consumption after genetic algorithm optimization was improved by 43.7%.

6. Conclusions

In this study, HEHV energy management strategy was applied, and Matlab/Simulink simulation
program was utilized to establish a backward simulation model, to simulate the large-vehicle energy
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consumption. Movement situation of power components, SOC of energy storage components, and
overall electricity economic performance of the pure electric vehicle and HEHV were obtained with
the NYCC driving cycle. The following results can be achieved after simulation in this study:

• In the performance analysis of the pure electric vehicle, the electricity consumption of the set
driving cycle is 0.334 kWh/km, and this is taken as the basic model for future comparison.

• In HEHV analysis (rule-based control), the electricity economic performance after simulation of
the set driving cycle is 0.212 kWh/km, which is greatly improved than 0.334 kWh/km of pure
electric vehicle, saving 36.5% of electricity. This is mainly because the hydraulic motor/pump in
the pumping mode (energy recovery state) is more able to absorb, recover, and store the vehicle
kinetic energy than electric motor, and the hydraulic motor/pump also avoids the application of
electric motor at low speed.

• In the HEHV optimization analysis (genetic algorithm), 11.3% and 43.7% of electricity can be
saved as compared with the HEHV (rule-based control) and pure electric vehicle, respectively.

• Through the HHEV simulation, the genetic algorithm was able to improve the energy efficiency of
the HHEV by adjusting the chosen design variables of control strategy.
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Nomenclature

Af front area of the vehicle
Ah battery capacity (ampere hour)
CD aerodynamic resistance coefficient
DP/M maximum hydraulic motor displacement
Ft vehicle tractive effort
Ftire tyre force
GR final transmission gear ratio
Ibat battery output current
N hydraulic motor speed
P accumulator pressure
Pbat battery power
QP/M hydraulic pump fluid flow rate
Ra aerodynamic resistance
Rc grading resistance
Rint battery internal resistance
Rr rolling resistance
Rr,A front wheel rolling resistance
Rr,B rear wheel rolling resistance
Rs acceleration resistance
Sp hydraulic pump plate angular position
SOC state of charge
SOCint initial value battery state of charge
SOL Li lithium ion battery SOC
Tdrive tyre torque
TP/M hydraulic pump torque
V volume of accumulator container area
Vf accumulator inlet/outlet fluid
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Voc battery open circuit voltage
Vt battery terminal voltage
W vehicle weight
Wb accumulator boundary movement work
a vehicle acceleration
g gravity acceleration
r tyre radius
vw wind speed
ηfd transmission efficiency
ηtP/M hydraulic pump mechanical efficiency
ηvP/M hydraulic pump volumetric efficiency
θ road slope angle
µr rolling resistance coefficient
ρ air density
ωdrive tyre angular speed
∆PP/M hydraulic pump pressure difference at the entry and exit
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