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Abstract: In this study, the resistance to corrosion of niobium-doped tin dioxide (Nb-doped SnO2, NTO)
and antimony-doped tin oxide (Sb-doped SnO2, ATO) supports has been probed for proton-exchange
membrane fuel cell (PEMFC) application. To achieve this goal, ATO or NTO supports with loose-tube
(fiber-in-tube) morphology were synthesized using electrospinning and decorated with platinum
(Pt) nanoparticles. These cathode catalysts were submitted to two different electrochemical tests,
an accelerated stress test following the EU Harmonised Test Protocols for PEMFC in a single cell
configuration and an 850 h test in real air-breathing PEMFC systems. In both cases, the dissolution of
the doping element was measured either by inductively coupled plasma mass spectrometry (ICP–MS)
performed on the exhaust water or by energy dispersive X-ray spectrometry (X-EDS) analysis on
ultramicrotomed membrane electrode assembly (MEA), and correlated to the performance losses
upon ageing. It appears that the NTO-based support leads to lower performances than the ATO-based
one, mainly owing to the low electronic conductivity of NTO. However, in the case of ATO, dissolution
of the Sb doping element is non-negligible and represents a major issue from a stability point-of-view.

Keywords: proton-exchange membrane fuel cell; durability; degradation mechanism; metal oxide
support; antimony-doped tin oxide; niobium-doped tin oxide; loose tube

1. Introduction

Because it is easily stored and transported, dihydrogen (H2) is an excellent energy carrier with an
energy density of 33 kWh kg−1, which is 3-fold and 2.5-fold those of diesel and methane, respectively.
Used in a fuel cell, H2 produces electrical energy and releases only water. However, in proton-exchange
membrane fuel cells (PEMFCs), the ideal fuel cell technology for transportation applications, the high
electrochemical potential, presence of water and oxygen, acidic pH, and production of free radicals
during cathodic reaction favor the degradation of carbon-supported Pt or Pt alloy nanoparticles
(NPs). Studies in real-life PEMFC operating conditions [1] or in conditions simulating PEMFC
cathode operation [2,3] have shown that (i) platinum (Pt) and Pt alloy NPs are corroded via direct
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electrochemical oxidation (Pt→ Pt2+ + 2 e−) or via a coupled electrochemical–chemical dissolution
(Pt + H2O→ PtO + 2 H+ + 2 e− followed by PtO + 2 H+

→ Pt2+ + H2O). Moreover, due to variation
of the electrochemical potential between idling and load conditions, dissolution of Pt may occur
continuously [4–7]. Dissolution of Pt preferentially leads to an increase in the size of the NPs via
the so-called “3D Ostwald ripening”, where the dissolved Ptz+ species redeposit onto the largest
NPs or into the ionomer and proton-exchange membrane (PEM) [1]. In the latter case, the Pt NPs
are not only electrochemically inactive but boost the degradation of the PEM [1,8]. High surface
area carbons used as supports are also prone to corrosion in PEMFC cathode operating conditions,
and the extent of degradation essentially depends on the PEMFC operating temperature [9–17], relative
humidity [3,10,18,19], current density/potential [17,20], and duration of operation [20–23]. In stationary
operation, there is formation of oxygen-containing carbon surface groups, such as alcohols, quinones,
or carboxylic acids [24]. These groups have antagonistic influences: on the positive side, they share
electron density with the Pt NPs via their oxygen atoms [25–31] and thus facilitate their resistance to
sintering [14,32,33]; on the negative side, the presence of Pt NPs speeds up the carbon oxidation reaction
(COR) kinetics by assisting the complete oxidation of these carbon surface groups into CO2 [24,34,35].
Specifically, water dissociation at the Pt NPs at ca. 0.6 V vs. the reversible hydrogen electrode
(RHE) accelerates electrooxidation of the oxygen-containing carbon surface groups [9,10,19,24,32,34].
In addition, during periods where the cathode undergoes reducing conditions (e.g., upon H2 crossover
from anode to cathode at stops [16]), the carbon support may depassivate, which facilitates the
migration, agglomeration and, ultimately, coalescence of the Pt NPs [33]. However, the worst scenario
occurs during startup/shutdown (SU/SD) of the PEMFC or in fuel starvation conditions, during which
the potential of the cathode reaches as high as 1.6 V vs. RHE [13,36,37]. These conditions facilitate
the collapse of the porous structure of the electrode and the detachment of the Pt-based NPs from the
support, and the remaining carbon domains become less electron-conducting due to transformation of
graphitic carbon domains (sp2 hybridization) into amorphous carbon (sp3 hybridization).

Different materials strategies have been introduced to prevent the adverse effects of COR in
operating PEMFC cathodes. A carbon-based strategy consists of using more graphitic supports, such as
carbon nanotubes (single-wall or multi-wall) or thermally annealed carbon-based supports, but it will
only delay and not solve the COR issue. Another strategy consists of using transition metal-based
supports, and Sasaki et al. [38] have shown that six metal oxides (MOx) can be viable alternatives
to carbon blacks at a PEMFC cathode: MoO3, Nb2O5, TiO2, SnO2, Ta2O5, and WO3. Nevertheless,
MOx can be considered as insulators when their band gap exceeds 1 eV, and MoO3, Nb2O5, TiO2,
SnO2, Ta2O5, and WO3 feature 3.2-3.4-3.2-3.2-3.5-4.3 and 2.7 eV band gap, respectively. This leads to
electrical conductivity values comprised between 10−11 S cm−1 and 10−7–10−6 S cm−1 for SnO2, Ta2O5,
and Nb2O5 [39,40]: thus, doping becomes a prerequisite for forming a degenerate semi-conductor
(i.e., featuring a number of mobile charge carriers in the range ~1019 cm−3) and enables sufficient
electronic conductivity for practical use of these materials in PEMFC cathodes. For doping to be
efficient, the heteroatom must feature a higher number of valence electrons than the atom to which it is
substituted. In addition, the introduced heteroatom must have an ionic radius close to the M atoms in
the MOx. Based on these requirements, Nb, Ta, and Sb appear to be appropriate substitutes for Ti or
Sn atoms in the respective MOx [41]. The efficiency of doping may also be checked experimentally,
e.g., the specific surface area of Pt NPs deposited onto MOx increases from 15–20 m2 g−1 on undoped
tin oxide (SnO2) support [42–45] to 20–80 m2 g−1 upon doping [46–60]. The electrocatalytic activity
towards the oxygen reduction reaction is also influenced by the electronic conductivity of the MOx

support: Takasaki et al. [42] observed a 60% increase in mass activity toward the oxygen reduction
reaction (ORR) between a Pt/SnO2 and Pt/Sn0.95Sb0.05O2 catalyst. Nevertheless, the lack of resistance
to corrosion of the doped MOx casts doubts on their long-term viability. For SnO2, one of the most
promising MOx for application in a PEMFC cathode, Kakinuma et al. [61] reported no leaching of the
doping element (Nb or Sb) from Pt/Sn0.96Nb0.04O2-δ and Pt/Sn0.96Sb0.04O2-δ catalysts after a 3-week
exposure in H2SO4 at T = 80 ◦C under reducing (H2 bubbling) or oxidizing (air bubbling) conditions.
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However, Sn2+ species were detected for the two doped MOx. Similar results were reported by
Senoo et al. [52] for Ta- or Nb-doped SnO2-δ. Using Sn0.95Sb0.05O2 support calcined at 550 ◦C for
2 h or 10 h, Fabbri et al. [51] reported that the antimony (Sb) distribution influences the long-term
resistance of antimony-doped tin oxide (Sb-doped SnO2, ATO); after 1000 cycles between 0.05 < E
< 1.6 V vs. RHE, the 2 h-calcined support had a homogeneous composition identical to its initial
state, while the 10 h-calcined support had lost nearly 100% Sb. Using inductively coupled plasma
mass spectrometry (ICP–MS), Cognard et al. [56,57] confirmed that Sb and Sn atoms both dissolve
from the ATO support, adsorb onto Pt, and therefore poison the Pt catalytic sites, with the process
being accelerated during excursions to low electrode potential, e.g., during kinetic measurements
and electrochemical characterizations [57]. Using ex situ and in situ electrochemical characterization
coupled with probe spectroscopic techniques, Jiménez-Morales et al. [59] evidenced that Sb leaching
from ATO fiber-in-tubes was the origin of the instability of this material at potentials E < 0.5 V vs. RHE
and E > 2.0 V vs. RHE. The loss of the doping agent compromises the support electrical conductivity
and deactivates the catalyst active sites, leading to performance decrease. This short literature review
shows that MOx supports hold promise, but also that more work is required to probe their interest
(or not) for usage as Pt NPs support in PEMFC cathodes.

In this study, we probe the resistance to corrosion of niobium-doped tin dioxide (Nb-doped SnO2,
NTO) and ATO supports in air-breathing PEMFC systems. Toward this goal, we synthesized ATO
or NTO supports with loose-tube (fiber-in-tube) morphology using electrospinning, decorated them
with Pt NPs, and operated them following two different tests (an accelerated stress test based on the
“EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive
Applications”, and a long-term test in planar fuel cell configuration).

2. Materials and Methods

2.1. Synthesis of Pt/ATO and Pt/NTO

SnO2 materials doped with Sb or Nb were prepared by electrospinning followed by thermal
treatment according to a previously published procedure [53,62]. Briefly, a solution containing
the inorganic precursors and carrier polymer was prepared 0.10 g of SbCl3 (99%, Sigma-Aldrich,
St. Louis, MO, USA) or 0.06 g of NbCl5 (98% min., Merck, Darmstadt, Germany), 0.78 g of
SnCl2 (98%, Sigma-Aldrich), and 0.80 g of polyvinylpyrrolidone (average Mw~1,300,000, Aldrich)
in a mixture of 3.1 mL of N,N-dimethylformamide (98% min., Fluka) and 5.7 mL of absolute
ethanol (puriss., Sigma-Aldrich). This was stirred overnight and electrospun on a rotating drum
(Linari Biomedical, Pisa, Italy). The electrospinning was performed at T = 20 ◦C with an applied
voltage of 15 kV (high voltage power supply Spellmann CZE1000R), where the distance between needle
and collector was fixed at 10 cm and the flow rate at 0.3 mL h−1 (syringe pump, KD Scientific, Holliston,
MA, USA). To remove the carrier polymer and to allow the formation of inorganic fiber-in-tubes,
the as-prepared fibers were submitted to calcination at T = 600 ◦C for 4 h in air with a heating rate of
5 ◦C min−1.

The doping level (5 at.% Nb for NTO and 10 at.% Sb for ATO) was chosen to reach the
maximum electronic conductivity. The obtained supports were catalyzed with Pt NPs synthesized by a
microwave-assisted polyol method [63]. In this method, a solution of 133 mg of hexachloroplatinic acid
(H2PtCl6 6H2O, 99.9% Alfa Aesar) in 95 mL of ethylene glycol (EG, 99.8%, Sigma Aldrich) was prepared
and its pH adjusted to 11.4 with a 1 M NaOH solution (98%, Sigma Aldrich) in EG. This solution
was heated to T = 120 ◦C for 6 min in a microwave reactor (MiniFlow 200SS, Sairem, Lyon, France)
operated at a power of 200 W. The pH of the as-prepared Pt NP suspension was adjusted to 2 using 1 M
H2SO4 (95–98%, Sigma Aldrich) in EG, then 60 mg of the doped SnO2 fiber-in-tubes were added and
the mixture left under stirring for 24 h. The doped SnO2-supported Pt nanoparticles were recovered
by filtration and washed with Milli-Q water and ethanol. They were first dried at T = 80 ◦C for 24 h,
then heated at T = 160 ◦C in air for 1 h to remove any traces of EG from the NP surface.
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The amount of Pt supported on the SnO2-based supports was assessed by X-ray fluorescence
(XRF) with a PANalytical Axios Max spectrometer fitted with a Rh (4 kW) tube, equipped with a LiF200
crystal and Omnian software. Samples were prepared by grinding 50 mg of each electrocatalyst with
25 mg of cellulose. The resulting powder was then placed in the center of a cavity containing H3BO3

(the matrix) and subsequently pressed to obtain a 32 mm-diameter pellet with scanned surface of
ca. 1.1 cm2. The same protocol was used to prepare seven standards from 15 to 45 Pt wt.%. using Pt
black (Alfa Aesar, Haverhill, MA, USA) and ATO or NTO to obtain calibration lines. The Pt loading
evaluated by XRF was 33 wt.% on NTO and 37 wt.% on ATO.

2.2. Accelerated Stress Test—EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell
Configuration for Automotive Applications

2.2.1. Preparation of Membrane Electrode Assemblies (MEAs) with Pt/ATO and Pt/NTO

A catalyst ink was prepared with 7.6 mg of Pt/ATO (8.5 mg of Pt/NTO), 36.4 µL (or 41.2 µL) of a
5 wt.% Nafion® EW1100 solution (Sigma-Aldrich), 1.5 mL (or 1.7 mL) of water, and 4.5 mL (or 5.0 mL)
of ethanol. After 10 min ultrasonication, it was sprayed onto an 8 cm2 Teflon sheet placed over a
heating pad at T = 80 ◦C. The prepared catalyst layer with a loading of 0.35 mg Pt cm−2 was transferred
onto the Nafion® 212 membrane (Ion Power), previously treated in acid as detailed elsewhere [54]
by hot-pressing at T = 140 ◦C for 90 s at 18.8 MPa to produce a catalyst coated membrane. Finally,
the anode (a gas diffusion electrode Baltic Fuel Cell, with platinum loading of 0.5 mg cm−2) and the
gas diffusion layer (Sigracet 10 BC) were hot-pressed under the same conditions to obtain the MEA.

2.2.2. Description of the Accelerated Stress Test

The MEAs were mounted in single fuel cell hardware, and polarization curves were recorded
in galvanostatic mode under H2/O2 (stoichiometry 1.5/2, 2 bar absolute pressure) after overnight
conditioning at j = 0.4 A cm−2 at 100% RH and T = 80 ◦C. The MEAs were then cycled in on/off

conditions: during the “on” phase, a load of j = 1.5 A cm−2 was applied to the cell, whereas during
the “off” phase, the load was set to j = 0, with the cell voltage (U) being recorded during the “on”
phase. The protocol was applied after measuring the beginning of test (BoT) stable average current
density at U = 0.65 V, considered as 100% current density of the on/off profile. The current density
was then increased to j = 1.5 A cm−2. This value was maintained for 30 min and then decreased to the
initial current density where the cell voltage was measured. Afterwards, the load was disconnected
and the reactant supply at the cell inlet stopped without purging until the cell cooled down to room
temperature. These conditions were held for 30 min, after which the initial operating conditions were
reset. The cycle was repeated until the cell voltage at the recorded current density had decreased by
10% of its initial value (in practice, the end of test, EoT, was reached after 35 cycles, which corresponds
to 56 h). Polarization curves were measured (and compared) at BoT and EoT.

To identify and quantify any element leaching from the supported catalyst, the cathode exhaust
water was collected and analyzed (a total amount of 2 L of exhaust water was collected at EoT). Aliquots
(20 mL) were withdrawn every 5 on/off cycles; any solid phase was dissolved by adding 1.0 mL of
aqua regia, and the obtained solutions were analyzed by ICP–MS (Agilent 7900).

2.3. Test in Planar Fuel Cell Configuration

2.3.1. Preparation of MEAs with Pt/ATO and Pt/NTO

The Pt/ATO and Pt/NTO cathode catalyst inks were prepared by mixing the catalyst powders
with a 20 wt.%. Nafion® emulsion (DuPont de Nemours), water, and ethanol. The quantities of each
ink constituent was calculated so that the resulting ink contained 1.5 wt.% of solid matter; the Nafion®

content in the solid matter was 15 wt.% and the ratio of ethanol to water in the solvent was 60:40.
The Pt/C (Tanaka TEC10E70TPM) anode catalyst ink was prepared by mixing the catalyst powder with
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a 20 wt.%. Nafion® emulsion (DuPont de Nemours), water, and ethanol. The quantities of each ink
constituent was calculated so that the resulting ink contained 7 wt.% of solid matter, the Nafion content
in the solid matter was 23 wt.%, and the ratio of ethanol to water in the solvent was 60:40. The ink
homogenization process consisted of 1 h of ultrasonication followed by 15 min of stirring at 2000 rpm.

Coating of the Nafion® NR212 membrane (DuPont de Nemours) was carried out with a SonoTek
ExactaCoat spraying system equipped with an Accumist nozzle and syringe pump. The membrane
was held under vacuum at T = 80 ◦C. The coating area was a series of eight cells of dimensions
6 × 1.5 cm2 (distance between separate cells 0.20 cm). The Pt loadings for the anode and cathode
sides were programmed for 0.5 and 1.0 mg cm−2, respectively. Real Pt loadings were verified by mass
measurements and were 0.80 and 0.95 for Pt/ATO and Pt/NTO cathodes, respectively.

Eight pairs of Freudenberg (IX92 CX316) gas diffusion layers (GDLs) were hot-pressed on the anode
and cathode sides of the catalyst coated membranes at T = 140 ◦C and 60 kg cm−2 with a thermoplastic
elastomer gasket material. The PACRETE assembly process for connecting the 8 individual cells
in series is patented by PaxiTech and consists of connecting the anode of one pair of electrodes to
the cathode of the adjacent pair of electrodes with a metal-coated nonwoven material supplied by
Pragma Industries.

2.3.2. Description of the Test

The PaxiTech 8PE PACRETE fuel cell is an air-breathing system that operates at atmospheric
pressure on the air side and in dead-end mode on the hydrogen side. It was supplied with hydrogen at
0% RH and 1.5 bar. The water produced by the FC is eliminated as water vapor. Electrochemical tests
were carried out in an environmental test chamber (Climats) at 25 ◦C and 30% RH.

The specifications for the operation of an 8PE PACRETE fuel cell are 5 W peak power and 3 W
nominal power and are operated at a “high” voltage, between 0.65 < U < 0.75 V per cell (i.e., 5.2 < U <

6 V for 8PE system).
The electrochemical tests were carried out using a BioLogic VS.P potentiostat coupled with

a BioLogic VMP-3B5 multichannel potentiostat. The test profile consisted of measuring the open
circuit voltage for a 5 min period, a chronoamperometry at U = 5.2 V (U = 0.65 V cell−1) for 30 min,
a polarization curve in galvanostatic mode and a chronoamperometry at U = 6 V (U = 0.75 V cell−1) for
30 min. This test protocol was cycled for 850 h. The hydrogen volume was purged once a day.

2.3.3. Postmortem Characterization of MEA

In order to shed light on possible heterogeneities of ageing within the thickness of the MEA,
thin slices of MEA obtained by ultramicrotomy were further observed by transmission electron
microscopy (TEM). Ultramicrotomed samples were prepared by embedding small pieces (1 cm2) of the
fresh and aged MEA in Epoxy® resin. The slicing of the samples was carried out with an ultramicrotome
(Leica® EM UC6) equipped with a (Diatome® ultra 35◦) diamond knife, so that 70–90 nm-thick slices
were obtained. Each ultramicrotomed slice of fresh/aged MEAs was then immobilized on a TEM
copper grid baring a Lacey carbon membrane (200 mesh, Lacey formvar/carbon, Ted Pella). The TEM
observations were performed with a Jeol 2010 microscope operated at 200 kV; its point-to-point
resolution was 0.19 nm. Ten different zones were analyzed by energy dispersive X-ray spectroscopy
(X-EDS) to determine the average M/(M + Sn) at.% ratio, with M the doping element (Sb or Nb).

3. Results and Discussion

3.1. Accelerated Stress Test—“EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell
Configuration for Automotive Applications”

Pt-catalyzed ATO and NTO loose tubes were submitted to the accelerated stress test (AST),
implying on/off cycles and low potentials described in the “EU Harmonised Test Protocols for PEMFC
MEA Testing in Single Cell Configuration for Automotive Applications” of the Fuel Cells and Hydrogen
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Joint Undertaking (FCHJU) [64]. This protocol, implemented specifically for Pt/C, aims at stressing the
fuel cell core components by instantaneous and alternating phases of “on” and “off” loads leading to
frequent changes in pressure and temperature. Moreover, due to the polarization at a rather high current
density of j = 1.5 A cm−2, this test stresses the cathode to relatively low voltage regimes. The complete
characterization of the Pt/ATO electrodes degradation upon this AST is reported elsewhere [59],
while the present work focuses on the comparison of the differently doped supports ATO and NTO in
a range of operating conditions.

The performance of the MEAs comprising a Pt/ATO and Pt/NTO cathode catalyst layers before
and after completion of the accelerated stress test is depicted in Figure 1. The two I–V curves presented
open circuit voltage of U = 0.97 V and were similar at very low current density, in agreement with the
similar ORR activity observed ex situ [65]. At higher current density, the MEA comprising the Pt/NTO
cathode showed high ohmic drop, which may be attributed to the lower electronic conductivity of the
NTO support (the electronic conductivities of Pt/ATO and Pt/NTO were determined from resistance
measurements at T = 20 ◦C and were 1.02 and 0.02 S cm−1 respectively) [54]. At j = 0.6 A cm−2,
this assembly reached a power density of P = 0.37 W cm−2 (vs. P = 0.43 W cm−2 for the MEA comprising
ATO), while the maximum of P = 0.6 W cm−2 was reached at j = 1.4 A cm−2 (vs. P = 0.82 W cm−2

at j = 1.8 A cm−2 for the MEA comprising ATO). The results for Pt/ATO-based MEAs are consistent
with those obtained by Dou et al. [66], but in contrast with Kakinuma et al. [67], who reported lower
performance compared to Pt/NTO-based MEAs. This outcome was ascribed to Pt poisoning by Sn
dissolution/reprecipitation occurring for the Sb-doped oxide at low potential: by operating at cell
voltages higher than U = 0.4 V, the performance was inversed and higher for Pt/ATO-based MEA as in
the present work.
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Figure 1. Polarization curves of membrane electrode assemblies including cathodes with Pt/ATO
and Pt/NTO (0.35 mg Pt cm−2) recorded under H2/O2 (stoichiometry 1.5/2.2 bar absolute pressure) at
T = 80 ◦C and 100% RH before (BoT) and after 35 AST cycles (EoT).

After the AST, the open circuit voltage (OCV) recorded for both MEAs was unchanged as well
as the I-V curve at low current density, demonstrating insignificant degradation of the cathode
electrocatalytic activity. However, for j ≥ 0.4 A cm−2, the performance of the Pt/NTO-based MEA
slightly decreased, while that of the Pt/ATO-based MEA dramatically diminished, with a drop of 0.12 V
at j = 1.5 A cm−2. This significant performance degradation for the assembly comprising ATO was
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already reported and explained with the instability of this support, which leaches its Sb dopant in low
potential conditions [59].

To assess the possible leaching of the doping agent or of other components of the two cathodes,
the systematic elemental analysis of the corresponding exhaust water was performed during the AST
for 35 cycles: the elements composing the cathode materials (Sn, Nb, Sb, Pt) were analyzed by ICP–MS
at every 5 cycles.

For the Pt/NTO cathode (Figure 2a), leaching of Sn and Pt occurred (at EoT 5.2 and 5.3 µg L−1,
respectively), while no significant Nb was detected (0.4 µg L−1). In the case of the Pt/ATO cathode
(Figure 2b), significantly lower amounts of Sn and Pt were detected (at EoT 0 and 0.8µg L−1, respectively)
but, as already mentioned, a high concentration of Sb (7.1 µg L−1) was found in the exhaust water.
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Figure 2. ICP–MS analysis of the selected elements (Sn, Nb, Sb, Pt) detected in the water recovered at 
the cathode side during start/stop cycling AST for Pt/NTO (a) and Pt/ATO-based MEAs (b). 

The preferential leaching of Sb vs. Nb can be explained by thermodynamic calculations, that 
show that in the AST conditions (pH 0 and potential around 0.4 V vs. RHE), niobium is present in its 
stable form (Nb2O5), while antimony can be present as soluble species (Sb2O3, Sb2O5, and SbO+) [68]. 

3.2. Test in Planar Fuel Cell Configuration 

Figure 3 shows the power at U = 0.65 V cell−1 as a function of time for the Pt/ATO and Pt/NTO 
cathodes operated in the PEMFC air-breathing system. The activation time for the Pt/ATO fuel cell 
system was very long, which is normal for this type of air-breathing system operating at room 

Figure 2. ICP–MS analysis of the selected elements (Sn, Nb, Sb, Pt) detected in the water recovered at
the cathode side during start/stop cycling AST for Pt/NTO (a) and Pt/ATO-based MEAs (b).
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The preferential leaching of Sb vs. Nb can be explained by thermodynamic calculations, that show
that in the AST conditions (pH 0 and potential around 0.4 V vs. RHE), niobium is present in its stable
form (Nb2O5), while antimony can be present as soluble species (Sb2O3, Sb2O5, and SbO+) [68].

3.2. Test in Planar Fuel Cell Configuration

Figure 3 shows the power at U = 0.65 V cell−1 as a function of time for the Pt/ATO and Pt/NTO
cathodes operated in the PEMFC air-breathing system. The activation time for the Pt/ATO fuel cell
system was very long, which is normal for this type of air-breathing system operating at room
temperature and pressure. Activation was non-existent for the Pt/NTO system. The performances
were very low, and neither fuel cell system attained the nominal power of P = 3 W. The aim of these
tests was to check the feasibility and durability of the cathode catalyst materials Pt/ATO and Pt/NTO.
Better performances would probably have been observed if, prior to these tests, optimization studies
of both the ink compositions and the catalyst coating parameters had been carried out, which has not
been feasible for the amount of catalyst synthesized for these tests.
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Figure 3. Chronoamperometry at U = 0.65 V for a PEMFC air-breathing system with Pt/ATO and
Pt/NTO cathode catalysts.

A decrease in the PEMFC performances is reported with time but at a degradation rate that
was acceptable for these systems. Both Pt/ATO and Pt/NTO- based systems continued to operate at
the end of the test after 850 h of continuous operation. Although the performances reached were
lower-than-expected with these catalysts, they nevertheless demonstrate that MOx support can
be employed with (some) success in real self-breathing PEFMC devices, even though a wealth of
optimization would be desired to reach state-of-the-art performances (and obtaining these was beyond
reach in this study). More than optimizing MEAs, we evaluated the catalysts post-tests.

Figure 4 displays representative TEM images obtained from ultramicrotomed thin slices of pristine
and aged MEA. Observations have been made at both the PEM/cathode and cathode/GDL interfaces.
The pristine MEAs are morphologically homogeneous; the Pt NPs synthesized by the polyol method
are relatively well-dispersed on the ATO and NTO loose-tube supports. After ageing, it appears that
the catalyst has significantly changed, particularly at the PEM/cathode interface. At this interface
and whatever the nature of the dopant element, the loose-tube morphology of the oxide support is
(at least partially) lost. Furthermore, classical Pt degradation mechanisms take place in this region.
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A pronounced aggregation of Pt NPs and a growth in size are noteworthy. These results can be
explained by considering that a high H2 concentration (coming from the anode side) is present at
the PEM/cathode interface, which consequently increases the probability for Ptz+ ions produced
by Ostwald ripening to be reduced, thereby favoring the NP growth and aggregation via particle
necking. These results are in agreement with previous ones obtained for Pt and Pt–Co supported on
carbon [69–73]. By contrast, the cathode/GDL interface appears to be unaffected and resembles pristine
materials, probably because Ptz+ ionic species produced close to the GDL (if any) are more prone to be
washed by the water formed in the catalytic layer and to leave the cell. It is also important to have
in mind that the local current density in the cathodic region located close to the GDL is smaller with
respect to that located near the PEM, because of the longer ion path in the former region. Therefore, it is
not surprising to note that the regions close to the GDL are more preserved than the ones neighboring
the PEM.
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Figure 4. Representative TEM characterization of ultramicrotomed pristine/aged MEA to unravel
morphological heterogeneities of ageing within the Pt/ATO and Pt/NTO cathode thickness.

To go further, X-EDS analyses were performed to monitor the extent of dissolution of the doping
element (Sb or Nb). Figure 5 displays the [dopant/(dopant+Sn)] at.%. ratio of the fresh and aged Pt/NTO
and Pt/ATO cathode catalysts. Interestingly, the value of doping level initially targeted to maximize the
electronic conductivity (5 at.%. Nb for NTO and 10 at.%. Sb for ATO) is very close to the one measured
on the pristine electrocatalysts, showing that X-EDS analysis on MEAs is sufficiently reliable for such
measurements. After 850 h of operation in PEMFC air-breathing system, the behaviors of NTO and
ATO supports are different. In terms of dopant dissolution, NTO support appears to be more stable,
since no change in the doping atomic content is reported for both PEM/cathode and cathode/GDL
interfaces. For the ATO support, it has to be noted that Sb dissolution is more pronounced at the
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PEM/cathode interface following the morphological degradation on the Pt/ATO catalyst described
previously. Despite the strongly different operating conditions, these results are in agreement with
the ICP–MS measurements made after the AST presented in the first part on this study, showing very
minor dissolution of Nb compared to Sb. Here again, thermodynamic considerations on the stability of
Nb oxide vs. Sb soluble oxide in the pH and potential conditions allow to rationalize this trend. At this
stage, bridging post mortem analyses and performance losses are obvious, since the better stability of
the Nb doping element translates into better performance stability. Summing up, the initially poor
performance of Pt/NTO support (with respect to Pt/ATO) is due to the lack of electronic conductivity
(1.02 vs. 0.02 S cm−1 for Pt/ATO and Pt/NTO, respectively) but Pt/NTO appears to be more durable in
operation, in agreement with the very stable doping level of this support.Energies 2020, 13, x FOR PEER REVIEW 10 of 14 
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4. Conclusions

The present study explores the effect of the nature of the doping element (niobium and antimony
tin oxide, NTO and ATO respectively) on the PEMFC activity and stability. Two different protocols for
ageing have been applied to Pt/NTO and Pt/ATO catalyst based on Pt NPs synthesized by the polyol
method and deposited on doped tin oxide loose-tubes morphology. The first one is an accelerated
stress test derived from the “EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell
Configuration for Automotive Applications”, and the second one is a specific real PEMFC test in
planar air-breathing system which has lasted 850 h. Even if the operating conditions of both tests are
fully different, the conclusions regarding the performances and durability of the catalyst materials
are close. Notably, this study highlights the greater performances of Pt/ATO cathodes compared to
Pt/NTO ones due to a lower electronic conductivity of the NTO support. In terms of stability and
following thermodynamically considerations, antimony is more prone to dissolution than niobium in
the harsh environment of a PEMFC cathode, as has been demonstrated by ICP–MS carried out in the
exhaust water after operation and by X-EDS measurements on ultramicrotomed MEA.
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