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Abstract: Airports, broadly spread world-wide, present continuously increasing energy demands for
heating and cooling purposes. Relocatable facilities within them could be built on recycling shipping
containers provided with the right insulation layer, to reduce the outstanding consumption of the
heating, ventilation and air conditioning systems (HVAC). This research focuses on studying the
effect of added insulation on the thermal performance of a construction in the scope of an airport
facility, based on a recycled shipping container. Passive heating and cooling insulation strategies
have shown good results in terms of energy savings. A series of simulations were performed along
six different Spanish airports locations, selected to represent several climate conditions. Temperature
evolution inside the container, and energy demands of the HVAC system were obtained to show
that the insulation provided by phase change materials (PCM) is performing better than traditional
insulation, or a raw container. Although there are slight behavior differences according to the climate,
PCM can increase inside temperature even with no HVAC under certain circumstances.

Keywords: insulation; standard shipping container; PCM; HVAC; airports

1. Introduction

The airside is an airport’s secured area, accessible only to the staff with the required access
credentials or to passengers after security clearance. In this area, a large infrastructure is needed to
make the airport functional. Among the facilities that usually exist in this area are the operations
control center, the hangars, cargo, flight catering, aircraft rescue and firefighting, ground support
equipment maintenance, storage, airport vehicle maintenance, constant current regulators (CCR) halls
(small substations at the end of the runways to control the ground lighting), etc. Many of these services
require solid and robust buildings with high-end construction requirements. However, there are other
facilities that, due to their own nature, can be adapted to other types of enclosures, with a lowered set
of requirements. These small airport facilities have other functionalities, their requirements are not as
extensive as in larger buildings and, additionally, they present different conditioning factors. In certain
small buildings, requirements are oriented to low installation and maintenance costs, high mobility,
capacity, resistance, etc., albeit under compliance with the applicable regulation [1].

Those use cases requiring small facilities could have their buildings replaced by recycled shipping
containers. A shipping container is a rectangular-shaped cargo container, and its main function is to
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transport goods inside it. Its dimensions are standardized to facilitate handling in cargo terminals and
the transport of goods over long distances, especially by sea. The materials used to manufacture the
containers are diverse depending on their suitability; however, the majority of the containers carried
by sea are made from two layers of steel or aluminum and polyurethane, many of them reinforced
with plywood to avoid humidity during transportation.

It is estimated that more than 300 million containers have fallen in disuse worldwide. Therefore,
new applications for these elements are being developed to allow their recycling. These recycled
and refurbished containers can be used as storage sheds, offices, houses, buildings, hotels, schools,
restaurants, churches or even shopping centers [2]. Even some companies have used the design of sea
containers as a base for building modules as field hospitals, ammunition warehouses, toilets and even
as water-treatment plants for the army [3]. The large number of empty containers in disuse around
the world has drawn the attention of many designers focused on minimizing resources extraction.
Moreover, many designers find in containers a suitable method for construction: they are modular in
shape, structurally strong and widely available [4].

The reuse of shipping containers as modules for construction is an alternative from the economic
and design points of view. The field of modular construction with this type of containers opened some
years ago, a new market that has not stopped growing until recently [3].

This trend began in the 1950s, when the first building made of sea containers was created by
Canadian company Steadman Industries, to solve the need to handle material loads in the Arctic.
Among their main advantages, we may highlight:

• Portability: They are designed to facilitate their mobility and transportation.
• Adaptability: Their weight and load capacity characteristics make them adaptable, with a small

base, to any terrain; they also show high structural performance as they allow vertical stacking of
other modules.

• Robustness and greater durability: These containers were built to withstand the marine
environment and the shocks and movements that occur during maritime transport.

• Effective use of space: The 20 TEU (twenty-foot equivalent unit) container can accommodate
approximately 33 m3 in only 15 m2; the 40 FEU (forty-foot equivalent unit) accommodates up to
67 m3 in less than 30 m2.

• Modularity: Due to their design, they are easily stackable. Therefore, with small modifications
or adaptations it is an excellent solution for modular architecture, being able to form in-line
constructions or increase height by stacking modules. Each container can be, for instance, a room
in a house.

• Configurable: They can be configured according to customer needs.
• Cost-effectiveness: The estimated 300 million disused containers in the world could be reused.

This means a reduction in overall installation and configuration time, as well as lower costs than a
traditional concrete structure. In addition, they could be factory-rebuilt and conditioned and then
taken to their destination, further reducing overall cost.

• Recyclability: The reuse of containers is beneficial to the environment as it drastically reduces
manufacturing materials, with significant savings in energy and CO2 emissions into the atmosphere.
Virtually maintenance free, shipping containers are initially designed to last for many years. They
are manufactured with a layer of insulation which, if properly treated, can be totally suitable for
use in a home, saving energy in heating and/or cooling [5].

On the other hand, the continuous growth in passengers at an airport implies that airport terminals
are continually making not only internal but also external changes to tackle this demand growth.
This increase is such that energy demands at an airport has reached the values of the highest energy
consumption centers per square kilometer in the world [6].

Over the last several decades, the consumption of energy has been dramatically increasing at
both national and global scales [7]. Energy consumption in an airport is distributed in lighting,
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air conditioning, ventilation and conveyance systems. There are huge areas with non-uniform air
conditioning and large glass surfaces to achieve good natural lighting, as well as for aesthetic design
criteria [8]. The energy consumption by the HVAC systems can exceed 40% of the total power
consumption [9]; excluding smaller systems they consume nearly all the natural gas used at an
airport [10].

Although large spaces are responsible for most of the energy consumption, there are also small
spaces in airports that all together can have a relevant consumption of energy. Some of these small
spaces could be based on standard shipping containers. These types of containers are manufactured
from sandwich type panels, whose outer layers are usually made of stainless steel, and between them
there is a polyurethane layer (PUR). Polyurethane is a rigid and lightweight foam made from sugar and
petroleum. It has an efficient thermal performance. Thanks to this foam, it absorbs vibrations, avoids
environmental humidity and adheres easily to any surface. Nevertheless, due to its high degree of
combustion, the use of this material is decreasing, despite having been one of the most used insulating
materials in the recent years [11].

PUR has reasonable insulating capabilities but, for applications where it is necessary to maintain
a certain degree of thermal comfort in the interior, it may be advisable to improve its insulating
capacity to reduce energy consumption due to air conditioning or heating. It is usual to place a layer
of insulating material in the inside and then another layer of plasterboard. This type of materials
helps reducing energy consumption, improve thermal comfort by reducing temperature variations or
fluctuations and condensation, prevent corrosion and protect against fire [12].

The most common insulating materials in containers refurbishing include [13,14]:

• Expanded polystyrene (EPS): This material derives from polystyrene; it is very versatile and easy
to shape. It is widely used in the building sector as it offers great thermal resistance without the
need for high thickness.

• Extruded polystyrene (XPS): It is a material with high mechanical performance and very similar
properties to those of EPS. The main difference between these two is the ability to be wetted, as it
does not rot. Waterproofing is the most characteristic feature of this material, since it facilitates
access to the reparation of the constructions. Due to its high density, it is manufactured in very
thin plates that allow optimizing the occupied volume.

• Mineral wools, both rock (SW) and glass (GW), are composed of inorganic stone materials
that intertwine their filaments to create a very lightweight compound that, in turn, offers great
protection and insulation. Due to this stony composition, these materials have a low degree of
combustion, which is why they are becoming the great substitute for PUR. In addition to their
thermal protection capacity, they also provide acoustic protection, a combination that has made
them the most widely used materials nowadays.

At present day, in the European inorganic fibrous materials market, glass wool and stone wool
account for 60% of the insulation materials [15]; organic foamy materials, expanded and extruded
polystyrene and, to a lesser extent, polyurethane, account for 27% [16].

The three more common building insulation materials used in Spain are polyurethane, mineral
wool and polystyrene. A large number of researchers have studied numerically thermal performance
of fibrous insulations that are widely used in construction all over the world, and also the heat transfer
mechanisms [17].

Other specific research is focused on obtaining approximate expressions for thermal conductivity.
If this layer of insulation material is supplemented by another one with a phase change material (PCM),
the temperature inside the enclosure can be regulated more effectively. For a few years now, research
has been carried out on this type of material that uses energy to change phases. PCMs have been used
in various fields for thermal energy storage (TES), especially in the building envelope [18]. PCM is
defined as a substance that requires high thermal energy to change phase (in particular, from solid to
liquid or vice versa). Water has been used as PCM in large installations for a long time, although it has
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fallen into abeyance due to the high costs that installations have when they need secondary fluids that
require low evaporation temperatures. This required energy is much higher than that needed to cause
small temperature increases in the same substance. Therefore, this phenomenon can be used to store
thermal energy [19]. When the substance changes phase, it retains the absorbed energy in the form of
latent heat. Phase changes can be from solid to liquid, liquid to vapor and solid to solid. The least
used is the liquid–vapor phase change, since vapor generates high pressures and an expensive system
is needed to withstand this pressure. The solid-solid change generally consists of changing from a
crystalline structure to amorphous, but it is not very widespread either. The one that takes more
energy is the liquid-solid change [20]. Finally, another advantage of these materials is that the release
or storage of energy occurs at almost constant temperature [21].

PCM has been studied deeply in different research, mostly focused on its application for using
solar energy to storage that energy [22], and utilize it for heating purposes, whether using hot water or
floor heating [23] or, in general, to obtain comfort inside a facility optimizing energy consumption [24].
Most of the studies focus in the residential applications for apartments [25], attics [26] or isolated
houses [27], but, to the best of our investigations, none on reused containers.

There are cases of research studying the effect of PCM in specific cities [28], specific countries [29],
or a concrete season like dry climate [30], or winter [31]. Again, to the best of our knowledge,
the literature has not focused so far in addressing the airport case in several cities, through different
climate conditions.

In [32], the thermal behavior has been studied using EnergyPlus (9.4.0, funded by the U.S.
Department of Energy’s Building Technologies Office, USA), to predict the expected temperatures
achieved using this insulation; in [33], the characteristic temperature values have been found using a
novel approach, based on numerical analysis, with similar results. Other areas of the literature focus
on maximizing latent heat, experimenting with different thickness, as in [34], or combining it with
different construction materials to obtain optimal insulation values [35]. A key aspect, not covered
thoroughly though, is how heat is transferred through the insulating walls [36], according to the
location in the wall; authors claim to have found an optimal model combining different layers of PCM,
air and other construction materials. To use all the potential of PCM in a latent heat thermal energy
storage system, and succeed recharging it completely, there are interesting proposals based on using
controlled natural ventilation during the night phase [37].

Of special interest are the studies that develop new PCM materials, since they provide an overview
of the factors that affect their design, and their performance (temperature limits, phase change melting
and solidification temperatures, and the degree of thermal loading) [38].

This paper addresses the use of shipping containers for applications, such as residences, offices,
small warehouses or equipment enclosures. These containers, with small modifications or adaptations,
would be recycled and transformed into mobile, transportable, economic and practical elements to
be placed in any space of an airport where it is needed. Due to their manufacturing materials, they
are very resistant to impacts and environmental conditions. Consequently, in order to improve their
insulating, thermal and also acoustic properties, as well as the thermal comfort inside, they will be
supplemented with layers of insulating material and PCM. For the study, the simulation of the thermal
behavior of a 1 TEU marine container that has been covered on the inside with a layer of a glass wool
and also a phase change material, are proposed. The main novel aspect of the present study is the
analysis of the real contribution of the PCM wall insulation to energy savings and thermal comfort
(inside temperature analysis), considering different locations under several climate conditions, in the
specific use case of refurbished containers used for facilities within airports.

2. Methodology

The research started by defining the 3D design on SketchUp (2020, Trimble, Sunnyvale, CA, USA),
using the OpenStudio plugin. OpenStudio (3.0.0, Alliance for Sustainable Energy, Lakewood, CO,
USA), is used to provide the design with materials and special construction properties. Once designed
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under SketchUp, the model is exported to EnergyPlus, where the energetic simulation is performed,
and the results can be analyzed; under the EnergyPlus software, the locations for the simulations are
defined, the requirements are imposed, and the insulating alternatives are designated. The locations
(airports) were selected based on the Köppen-Geiger climate classification. Thus, the impact of the
insulation on different climates was analyzed, using the EPW weather files were used provided by
the software.

2.1. Locations and Climatic Zones

This research was developed in Spain and locations within this territory where selected using the
climatic classification by Koppën and Geiger, as seen in the Figure 1. According to this classification,
climates are catalogued as: A (tropical), B (arid), C (temperate), D (continental) and E (polar).
Moreover, precipitation level is also described, classified as: W (desert), S (steppe), f (no dry season),
s (dry summer), w (dry winter) and m (monsoon). Finally, Koppën–Geiger provides a classification
according to temperature: h (hot arid), k (cold arid), a (hot summer), b (warm summer), c (cold summer),
d (very cold winter) and F (eternal frost) [21].
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Figure 1. Köppen–Geiger climate classification for Spain and selected airport locations.

Out of the 48 airport locations in Spain, six were selected to perform the simulations. The criterion
was based on climate according to the Koppën–Geiger classification. Table 1 summarizes location
and climate for the selected places. Being all locations within Europe, 18 ◦C was chosen to calculate
heating degree days (HDD) and cooling degree days (CDD) [39]. HDD and CCD provide insight on
heat and cooling needs for the different sites. Meteorological data for the simulation was obtained from
the EnergyPlus database, that offers information from different sources in EPW (EnergyPlus weather
file) format.
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Table 1. Airport locations description. Reproduced from [17], ASTM International, 1980.

Location Latitude Longitude Elevation
(m)

Köppen
Climate

HDD18
(◦C·Days/Year)

CDD18
(◦C·Days/Year)

Alicante 38.28 −0.56 43 BSh 841 1120
Bilbao 43.30 −2.93 42 Cfb 1505 467

La Coruña 43.30 −8.38 100 Csb 1683 240
Las Palmas 27.94 −15.39 23 BWh 81 1258

Madrid 40.49 −3.59 610 Csa 1932 1078
Valencia 39.49 −0.48 73 BSk 1028 1142

2.2. Building Model

The construction model designed to perform simulations was a 1 TEU standardizer container,
with a volume of 38.51 m3 (1360 ft3) without any internal partitions; it has a 2.3 m2 glass surface
in three window panes, as shown in Figure 2 and a 1.80 m2 door in the north wall. According to
previous research [40], walls and ceiling (exposed to the outdoors) were painted in grey to improve
solar absorption, and the base of the container was separated from the ground, both measures for
simulation purposes.
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Figure 2. Container model geometry.

The container was conceived as an office workplace. With the goal of determining the effect of
the inclusion of PCM in the enclosure on thermal comfort and energy demand, three different models
were considered and compared: first, a baseline reference model with no insulation; second, a model
with traditional insulation; third, a model including traditional insulation plus a PCM layer (Figure 3).
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Figure 3. Enclosed models used for simulation.

Energain® PCM panels by DuPont™ were used, after previous research that proved their
feasibility [41]. In our simulation, Energain® chosen panels where 5.26 mm thick, and provided up to
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515 kJ/m2 thermal capacity storage in the 18–24 ◦C range [42]. The kernel of the panel is a mixture
of copolymer and paraffin. Paraffin represents 60% of the kernel and is the phase changing material,
giving the panel its thermal characteristic. Table 2 displays the properties of the panels used in the
simulation. Enthalpy data versus temperature for the PCM were obtained using differential scanning
calorimetry (DSC), under a heat ratio of 0.05 ◦C/min [42]. The construction details of the container are
shown in Table 3.

Table 2. PCM DuPont™ Energain® characteristics. Reproduced from [20], Elsevier: 2008.

Thickness 0.0053 (m)

Thermal conductivity:
Solid (T < 21.7 ◦C) 0.018 (W/m·K)

Liquid (T > 21.7 ◦C) 0.014 (W/m·K)
Density 855 (kg/m3)

Specific heat 2500 (J/kg·K)

Table 3. Construction materials details.

Category
Materials

Element Conductivity
(W/m·K)

Specific Heat
(J/kg·K)

Layer Thickness
(mm)

External wall

Stainless steel 17 460 0.5
Polyurethane (PUR) 0.022 1400 250

Stainless steel 17 460 0.5
Glass wool 0.04 7955 63.5
Plasteboard 0.25 1000 100

PCM DuPont™ Energain® 0.018 2500 53

Ground Extruded polystyrene 0.034 1540 300

Roof

Stainless steel 17 460 0.5
Glass wool 0.04 7955 63.5

Plaster (ceiling) 0.25 1000 150
PCM DuPont™ Energain® 0.018 2500 53

Door
Stainless steel 17 460 0.5
Polystyrene 0.18 1500 250

Stainless steel 17 460 0.5

2.3. EnergyPlus Building Simulation

The thermal simulation of the PCM can only be performed using the CondFD algorithm under
EnergyPlus. This algorithm discretizes walls, floor and ceiling in nodes using a finite differential scheme
to solve heat transfer equations numerically [43] (EnergyPlus 2010). In this research, the CondFD
algorithm characteristics applied on EnergyPlus were a difference scheme fully implicit first order
with space discretization constant of three, and one-minute time step. Considering that the goal of this
project is to predict the benefits of the use of PCM in the enclosure, internal gains and infiltration loads
were inserted. Thus, a continuous usage of the facility during HVAC working hours was considered.
Having no internal partitions, the container was considered as a single thermal zone, selecting dual set
point thermostat. According to ASHRAE standards for living spaces, temperature set point was 21 ◦C
for heating and 25 ◦C for cooling. A 54 W power was assumed for lighting and 0.63 air changes per
hour were supposed as infiltration rate. The occupancy schedule was constant, and the internal gains
set to the equivalent of one occupant throughout a day. The activity level was set to 186 W, assuming a
machine work activity [43].
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3. Results

Table 4 displays the total amount of energy consumed for heating and cooling purposes during
a year, for the three proposed envelopes along the six airports under study. Results show that the
inclusion of PCM leads to energy savings for heating and cooling along all locations. Average energy
savings with respect traditional insulation are 2.62% for heating, and 1.33% for cooling; energy savings
compared to the original uninsulated container reach 40% for heating and 30% for cooling. Yearly
energy savings expressed in percentage terms are quite similar for every climate under analysis. While
the Madrid (Csa) site achieves the best energy savings among every other location (as shown in
Figure 4), it is key to emphasize that heating demands are far higher that cooling ones (as seen on
Table 4), with a remarkable exception at Las Palmas airport (BWh).

Table 4. Yearly power demands under different insulating conditions.

Energy Required Heating (kWh) Cooling (kWh)

City Raw Insulation Insulation + PCM Raw Insulation Insulation + PCM

Alicante 1417 822 788 642 465 457
Bilbao 2971 1777 1706 61 34 33

La Coruña 2566 1550 1487 55 43 42
Las palmas 191 91 83 594 392 387

Madrid 2933 1708 1640 611 366 352
Valencia 1834 1083 1039 453 312 307
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Figure 4. Energy savings comparison among the selected airport locations.

Table 5 displays a key parameter involved in the design of an HVAC for a building: heating
and cooling peak. The mere existence of insulation in the enclosure (whether PCM is used or not)
implies an average 50% fall in energy demand peak; as shown, the addition of PCM is beneficial in
every case, albeit its impact is moderated. As for cooling, maximum energy saving is achieved for the
Bilbao location, with a 3.8% reduction. With respect to heating, Las Palmas is the airport where the
peak reaches its best value (2.5%), attaining values rounding 2% for the rest of the locations. For the
Madrid (Csa), La Coruña (Csb) and Valencia (BSk) sites, heating peak demand happens in January,
whilst in Bilbao (Cfb) and Las Palmas (BWh) it occurs in February, and in December for Madrid (Csa).
With regards cooling peak, it spreads between July (Bilbao and Las Palmas) and August (Alicante,
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La Coruña, Madrid and Valencia). Figure 5 shows that peak demand results do not necessarily
correspond to the month where the total HVAC are greater.

Table 5. Heating and cooling peak for a year time frame in every airport location.

Energy Required Heating (kWh) Cooling (kWh)

City Raw Insulation Insulation + PCM Raw Insulation Insulation + PCM

Alicante 0.93 0.49 0.47 1.01 0.59 0.58
Bilbao 1.11 0.60 0.58 0.56 0.17 0.15

Coruña 0.88 0.52 0.51 0.32 0.11 0.10
Las Palmas 0.41 0.18 0.17 0.75 0.41 0.41

Madrid 1.46 0.73 0.71 1.24 0.60 0.58
Valencia 0.98 0.52 0.51 0.90 0.53 0.52
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Another key aspect when analyzing the performance of the different enclosures is the seasonal
behavior, as shown in Figure 6. It allows the distinction of two different periods: cooling season
and heating season. The greatest energetic demands happen in the coldest months (heating season),
and consequently, the melting temperature of the PCM must adapt to those periods. Melting
temperature of the Energain® panel used (21.7 ◦C) suits heating and cooling demands reduction.
Nevertheless, in certain locations it could be preferable to select a PCM with a lower melting temperature
to reduce heating and cooling demands. Previous research shows that melting peak temperature and
PCM activations along a day are key to reduce thermal demand for a specific technology [44]. Obtained
results for cooling and heating demands are consistent with those displayed in Table 1 for HDD and
CDD. Accordingly, locations with higher heating demands (Madrid, La Coruña and Bilbao) show the
greatest energy savings (Table 4) with respect to the non-insulated option.
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Figure 6. Thermal demand accumulated savings and losses within the container: a comparison between
PCM and traditional insulation for an airport at Madrid.

Madrid was the location where the addition of PCM led to the greatest energy savings (Table 4);
consequently, the effect of PCM was further analyzed. Figure 6 shows the sum of the energy savings
per hour for a year when using PCM, compared to those where the insulation has no PCM. As expected,
a seasonal behavior is found with changes within a day. Throughout the cooling season (July and
August), PCM absorbs cooling loads and internal gains during the beginning and the end of the day,
leading to energy savings; on the other hand, high temperatures during the central hours of the day
prevent PCM from performing melting-solidification cycles: phase change temperature is not exceeded
(21.7 ◦C) and consequently it stays in liquid phase. The consequence is that the inclusion of PCM in the
enclosure does not reduce the energy needs of the container during the central hours of the day in the
warmer months. Accordingly, results show that for the Madrid location, the selected PCM has a low
melting point for the central hours of the day during summer months; nevertheless, in the same cooling
season, melting temperature of PCM DuPont™ Energain® achieves full melting-solidification cycles
in a day, recharging itself completely. On the other hand, the insulation effect is greater during the
heating season in the central hours of the day; throughout these hours, the phase change temperature
of the PCM is reached, since the presence of the PCM helps reducing heat losses and increments the
thermal mass (indeed, that thermal mass increment is also beneficial for any other time of the day
during the heating season). As other research shows, the addition of PCM improves the energetic
performance, since it reduces peak loads (as seen in the central hours of the day during May), and it
shifts peak demand temporally [45].

Comparing the behavior between an enclosure with PCM insulation and another raw
(no insulation), it can be observed that in the cooling season the addition of PCM is detrimental for
the thermal demand (Figure 7). Two are the reasons for this effect: first, the melting temperature of
the PCM (21.7 ◦C) is exceeded during the central hours of the day in the summer months (that keeps
PCM in liquid state, preventing it from performing melting-solidification cycles that would reduce
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consumption); second, the addition of the insulation helps reducing heat losses and increments the
thermal mass that, although advantageous during night, is again detrimental at the central hours
of the day (temperature inside is higher when insulated, and thus cooling loads are incremented
as well). On the other hand, through winter months, the addition of the insulation or PCM has
no effect on consumption reduction during nighttime. It is important to mention that during those
periods the temperatures are lower, so PCM is not performing melting-solidification cycles, and
consequently it only increments insulating thermal mass: in order to obtain the best efficiency of the
PCM, it needs to change phase every 24 h [46]. From 16:00/17:00 on during February and March in
Madrid, the temperature outside increases, something beneficial for a non-insulated construction
(it reduces heating load more quickly), as seen in Figure 7. PCM shows beneficial for the months where
heating is needed, not only in the first hours of the day, but also in central ones. As stated before, this is
because these temperatures help PCM perform melting-solidification cycles, and the greater thermal
mass damps thermal conduction through the enclosure.Energies 2020, 13, x FOR PEER REVIEW 11 of 15 
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PCM and raw for an airport at Madrid.

Analysis on Temperature inside the Container

In order to deepen the analysis of the effect of the presence of PCM on thermal comfort and energy
demand, the container was simulated under EnergyPlus deactivating the HVAC system. Figure 8 shows
the results for Madrid during a week in May, with a one-minute resolution. As shown, the addition
of the insulation allows damping internal thermal variations inside the container; it also modifies
temperature profile inside the container and in its walls (whether we are using PCM or not). PCM
presence increases temperature inside the container by an average of 1 ◦C because of the thermal
mass increment. As for the PCM insulated option, temperature results do not show the moment
where the phase change takes places; previous research show that the hysteresis of the PCM melting
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and solidification process cannot be captured by the EnergyPlus environment [47]. Obtained results
indicate a discomfort state: defining discomfort as the difference between comfort temperature (20 ◦C)
and the actual temperature, the addition of the insulation is beneficial.Energies 2020, 13, x FOR PEER REVIEW 12 of 15 
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Figure 8. Temperature evolution inside the container during a week in May (Madrid) without HVAC.

Table 6 displays average, maximum, minimum temperatures and their variability (SD, or standard
variation) for the six locations under analysis. The results confirm what has been previously stated:
first, temperatures inside the container are higher and variabilities are lower when the enclosure is
insulated; second, peak temperature can be reduced by up to 11.49% (as shown comparing raw results
versus PCM-insulated for the Bilbao location), and minimum temperature can grow up to a 50% (Bilbao
and Madrid cases). Both results show the positive effect of a passive air-conditioning system (as PCM
insulation) on comfort and on the design of a HVAC; peak temperatures (maximum and minimum)
have a key impact on HVAC selection.

Table 6. Yearly temperature evolution summary inside the container for the three different enclosures
and the selected locations.

Enclosure Raw (◦C) Insulation (◦C) Insulation + PCM (◦C)

City M SD Max Min M SD Max Min M SD Max Min

Alicante 20.93 5.98 34.70 8.21 20.97 5.63 32.48 10.33 21.01 5.63 32.53 10.49
Bilbao 15.64 5.08 29.38 5.31 15.96 4.68 26.24 7.77 16.01 4.66 26.01 7.96

Coruña 16.36 4.38 27.37 7.38 16.55 3.97 25.75 8.96 16.59 3.96 25.69 9.04
Las Palmas 23.83 3.19 32.05 15.85 23.68 2.81 29.78 17.85 23.73 2.79 29.85 17.93

Madrid 17.42 8.80 38.35 0.16 17.83 8.15 35.41 4.04 17.87 8.09 35.38 4.15
Valencia 19.43 6.08 33.71 7.07 19.63 5.71 31.61 9.70 19.68 5.70 31.63 9.83

Note: M: mean; SD: Standard deviation; Max: Maximum; Min: Minimum.

4. Conclusions

In this research a 1 TEU container refurbished for workshop activities within airports has been
thermally analyzed using three different enclosure alternatives: raw (non-insulated), insulated and
PCM-insulated. As a general conclusion, the addition of an insulation (with or without PCM) improves
the thermal performance of the construction. PCM insulation provides global energy savings in the
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HVAC system and reduces load during peak hours, compared to traditional insulation. This positive
effect is produced not only because PCM presence increases the thermal mass of the enclosure
(and, consequently, it modifies the thermal conduction), but also because of the melting-solidification
cycles performed by PCM. In the absence of a HVAC system, temperature curves inside the container
is clearly damped when the enclosure is insulated. This fact is helpful during the HVAC selection,
since it allows the use of a lower-powered system.

Although the presence of PCM generates a positive effect throughout the six selected airports,
it was observed that it performs better in certain climates. PCM cannot be considered as solution for
all cases and its use or not will depend on climate and the height of the location selected to install
the facility. It is important to note that the container was analyzed as a single-standing object; that is,
it was assumed that it had no construction of any kind around it. This fact implies that shadow effects,
among others, were not considered. In larger facilities, the analysis of constructions resulting from the
combination of several containers could be considered, in which case the results could differ.

The results show that the use of PCM in the enclosure increases temperature inside the container
in the heating season even with no HVAC. Considering that a 1 ◦C change in the set-point temperature
increases energy consumption by approximately a 7% [48], this solution clearly shows its benefits.
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