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Abstract: Lithium-ion batteries are deployed in a range of modern applications. Their utilization
is evolving with the aim of achieving a greener environment. Batteries are costly, and battery
management systems (BMSs) ensure long life and proper battery utilization. Modern BMSs are
complex and cause a notable overhead consumption on batteries. In this paper, the time-varying
aspect of battery parameters is used to reduce the power consumption overhead of BMSs. The aim
is to use event-driven processing to realize effective BMSs. Unlike the conventional approach,
parameters of battery cells, such as voltages and currents, are no longer regularly measured at a
predefined time step and are instead recorded on the basis of events. This renders a considerable
real-time compression. An inventive event-driven coulomb counting method is then presented,
which employs the irregularly sampled data information for an effective online state of charge (SOC)
determination. A high energy battery model for electric vehicle (EV) applications is studied in this
work. It is implemented by using the equivalent circuit modeling (ECM) approach. A comparison of
the developed framework is made with conventional fixed-rate counterparts. The results show that,
in terms of compression and computational complexities, the devised solution surpasses the second
order of magnitude gain. The SOC estimation error is also quantified, and the system attains a ≤4%
SOC estimation error bound.

Keywords: event-driven processing; open circuit voltage; compression gain; Li-ion battery; state of
charge; curve fitting; coulomb counting; computational complexity; estimation error

1. Introduction

Effective and green power sources are strongly needed in the context of ongoing global warming
and environmental pollution. In this sense, the development of environmentallyfriendly power sources
and systems is growing. A prominent group of researchers are working on the enhancement of
electrochemical solutions to successfully replace existing power sources, with the aim of reducing
greenhouse gas emissions. Governmental agencies and industries are also playing their part within
this framework.

The level of pollution in the urban environment can be reduced by evading the use of voluminous
batteries and the oil-powered vehicles. This can be achieved by realizing and deploying long life and
economical renewable energy sources and rechargeable and compact high power batteries, which can
be effectively used in the industrial and transportation sectors [1]. An improvement is also possible by
using such batteries for off-peak energy storage in conventional grids. Going forward, these charged
batteries can power electric hybrid vehicles (EHVs) to reduce the amount of greenhouse emissions [2].
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The use of electric vehicle (EVs) and EHVs is growing, with the aim of creating a greener
environment. EVs have been a catalyst for reducing greenhouse emissions [3]. According to [3], one of
the key determinants of climate change is the transportation industry, which produces around 23%
of greenhouse gases in the atmosphere and is the second-highest greenhouse gas emitter after the
industrial sector. In order to maximize the use of EVs, it is necessary to reduce their purchase price to
an amount similar to that of existing combustion engine vehicles. Currently, the most costly component
of an electric car is the battery. Depending on the equipment used, it accounts for 25% to 50% of the
price of an electric vehicle [1]. As reported in [1], a decline in battery prices is projected to reach a price
of approximately 225 euros/kWh by 2025. This will result in a dramatic drop in the selling price of
EVs, allowing them to achieve a value similar to the price of conventional combustion engine vehicles.
Another important issue to tackle is the enhancement of existing EV charging protocols. Innovative
solutions have been reported in this framework by using machine learning techniques [4].

The lithium-ion (Li-ion) battery is the most used among the available variety of rechargeable
batteries [5–7]. It is favored because of its appealing benefits compared to other counterparts,
which mainly include a deeper discharge depth, higher count of charge–discharge cycles, higher energy
density, more compact and lower weight, lower self-discharge and lower maintenance requirements.
However, the complexity of effectively integrating a Li-ion battery pack in an intended system is
relevant as hundreds of cells are used to construct a single battery pack, and the state of each cell needs
to be monitored. As a result, high-complexity battery management systems (BMSs) must be deployed
with Li-ion batteries. One reason for using BMSs in contemporary power systems is to effectively
monitor and control the system [8]. It allows a timely recognition of power outages by observing the
status of every cell in the battery [9]. Therefore, BMSs are commonly used in modern devices, such as
EHVs, EVs and drones [10,11].

The principal battery cell parameters are estimated and monitored by BMSs, which includes the
state of health (SOH) and remaining useful life (RUL) of each cell in the battery pack. By calculating
these parameters, the BMS can perform cell balancing and fault detection. It also ensures the battery
stability and allows correct counting of the charge–discharge cycles at cell level [10,11].

A battery state of charge (SOC) is similar to a traditional vehicle’s fuel gauge and shows the
available power of a functional battery that can be drained out of it. Various researchers have suggested
several methods for estimating the SOC of batteries [12,13]. These SOC estimation approaches can
be categorized as direct measurements, model-based techniques and data-driven machine learning
techniques [14,15]. Direct measurement techniques include open-circuit voltage, electromotive force,
coulomb counting, internal resistance and impedance spectroscopy. The major model-based approaches
are Kalman filter, extended Kalman filter, unscented Kalman filter, sigma-point Kalman filter, particle
filter, nonlinear observer, sliding mode observer, proportional integral observer and Luenberger-based
observer [5,9]. Frequently used data-driven techniques are multivariate adaptive regression splines,
support vector machine, neural network, fuzzy logic, particle swarm optimization, bacterial foraging
algorithm and genetic algorithm [5,9]. The selection of each of these approaches is made as a function
of the BMS specifications and the targeted application [16–20].

Superior accuracy of SOC estimation can be attained by model-based and data-driven methods.
However, they are costly in terms of storage requirements for training datasets and computational
and realization complexities. Consequently, they render higher latencies and power consumption
overheads [20,21]. On the other hand, direct evaluation methods are effective in terms of the complexities
of computation and execution. Therefore, they can contribute to efficient real-time implementations
while maintaining sufficient accuracies.

Hundreds of cells are used to form a single battery pack, and the state of each cell needs
to be monitored [20,22,23], propelling the development of high-complexity BMSs with notable
overhead battery power usage. This study contributes to enhancing the data processing chain of
contemporary BMSs to effectively diminish the overhead consumption. This paper devises an efficient
and moderate precision online SOC approximation method. It enhances the conventional coulomb
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counting based direct assessment method, applicable for online realizations required for electric
vehicles and drones [24]. Additionally, it allows for simple and power-efficient realization, which
is carried out by using the linear operations and functions [25]. The contribution of this work is
to improve the computational effectiveness of the traditional coulomb counting approach, which is
realized by intelligently incorporating the methodology of event-driven processing in the proposed
solution. Event-driven analog to digital converters (EDADCs) effectively record the intended battery
cell parameters, such as current and voltage. This significantly decreases the computational cost of the
post SOC estimation process. This is realized through varying the sampling and processing rates by
observing the incoming time-varying signal [12,16,17,22].

2. Materials and Methods

The system modules are shown in Figure 1. In the following subsections, these modules
are described.
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2.1. Li-Ion Battery Model

In this study, the employed dataset is generated by using the high-power Li-ion battery model
presented in [18]. For reliable numerical modeling of batteries, equivalent circuit modeling (ECM)
is a known technique [11]. As per [19], a single resistance-capacitance (RC) block is adequate to
characterize all of the Li-ion cell’s dynamic properties. Therefore, in this work, a similar cell model is
parametrized and used. Parameters are calculated by using the procedure described in [18]. The model
elements are shown in Figure 2.
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In Figure 2, Vb is the cell terminal voltage. The ECM elements are a function of the cell SOC and
temperature, which are observable during the process of estimating the ECM elements [26]. Therefore,
these elements values are implemented as lookup tables for a range of SOC and temperature values [26].

By using independent experimental results, the model parameters are verified. The fitting method
primarily consists of evaluating four variables, namely Em, C1, R0 and R1. The electromotive force of
the principal branch is Em. In the main branch, Ib is the charging/load current. The intrinsic ohmic
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resistance is R0. The RC element capacitive and resistive components are C1 and R1. For simulation,
the parameterized model is used. Its output, such as voltages and currents, are used for evaluating the
suggested SOC estimation method.

The model is parametrized to effectively simulate the cell model of lithium nickel manganese
cobalt oxide (LiNixMnyCozO2)-(NMC) chemistry [18,27]. It is a suitable choice for EVs and has the
lowest self-heating rate. Due to its high energy density, this technology powers a number of modern
EVs, such as the Renault Twizy, Tesla Roadster and Smart Fortwo electric drive (ED) [1]. Its rated
capacity Crated at ambient temperatureis31 Ah. This battery technology has a long lifetime and costs
approximately US $400 per kWh, with an energy density of approximately 650 Wh/kg [27]. The MATLAB
based SimscapeTM blocks and SimscapeTM language are used to build the ECMs [28,29]. The EDADCs,
fitting module, SOC estimation and calibration processes are implemented in MATLAB [29].

The use of EVs is evolving to address the aims of reducing global warming and greenhouse gas
emissions. In this context, a case study is performed for a battery that is designed for use in EVs.
Initially, a battery pack of 9.92 kWh rated capacity is modeled. This battery capacity is suitable for
contemporary electric vehicles and can provide a range of 110 km while driving a Renault Twizy at a
maximum speed of 45 km per hour in real life conditions [1,30]. The battery pack is first realized by
assembling ten cells in series to form a cell pack of 1.24 kWh rated capacity. The process is illustrated
in Figure 3. Afterward, 8 cell packs are combined in series to realize a battery pack of 9.92 kWh rated
capacity. The process can be seen in Figure 4.
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2.2. Event-Driven Data Acquisition

Fixed-rate analog-to-digital converters (ADCs) are integrated into conventional BMSs.
Nyquist sampling and rules-based processing is used in traditional BMSs [12,16,21]. Therefore,
the architectural parameters of these structures are configured for the worst scenario. In this sense,
such devices are not effective in the case of arbitrary movement signals, such as battery voltage and
current [12]. As such, event-driven ADCs (EDADCs) are used in this work [6,21]. They are realized via
the rules of event-driven sampling (EDS) and can vary their sampling rate depending on the incoming
signal disparities. Therefore, in the case of intermittent signals with reduced activity, tactful use of
EDADCs can result in a substantial reduction in the number of samples obtained relative to traditional
ADCs [6,21].

tn=tn−1+dtn (1)

In the case of EDADCs, a data point is only recorded once the incoming analog signal x(t) traverses
one of the prefixed thresholds. Therefore, samples are irregularly distributed in time. The acquisition
rate varies depending on the variations in x(t) [21]. The process is given by Equation (1).

Where dtn is the step of time among the nth tn and the n−1th tn−1 samples. Every sample is a pair
(xn, tn), and here, tn is time, and xn is amplitude. xn is equal to one of the thresholds, and a timer circuit
is used to record tn.

The solution that is proposed in this article is the use of EDADCs to acquire battery parameters,
and depends on the event-driven sampling (EDS) phenomenon. In event-driven sampling, one takes
a sample as soon as the input analog signal x(t) traverses a given threshold. Samples are collected
depending on the time when x(t) crosses the given threshold; hence they are not distributed at even
intervals (cf. Figure 5).
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When choosing the set of levels, it is important to ensure that the levels span the analog signal
amplitude range ∆x(t). Figure 5 shows the case of equally spaced thresholds, spaced via a unique
quantum q. Nonetheless, it is also possible to space the thresholds logarithmically or to use any other
distribution [21]. Moreover, it is possible to realize time-varying threshold placement schemes [6].

The A/D conversion is mainly based on two operations, namely sampling and quantization [6].
The EDADCs are based on an A/D conversion principle, which is different in nature from the one
used in conventional ADCs. In a conventional case, the instances of sampling are ideally precisely
known, while the sample amplitudes are quantized. Therefore, the sole error is the quantization error,
which depends on the ADC resolution R [21]. R is measured in numbers of bits. This error is quantified
by measuring the signal to noise ratio (SNR) [21], given by Equation (2).

SNRdB = 1.76 + 6.02R (2)
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For EDADCs, amplitudes of the samples are ideally known. However, the sampling instants are
approximated by a timer circuit of step Ttimer =

1
Ftimer

. Ftimer is the operating frequency of this timer
circuit. According to [21], in this case, the SNR is given by Equation (3). Where Px and Px′ are powers
of x(t) and of its derivative, respectively. The SNR is independent of R and can be improved by 6.02 dB
by halving the Ttimer.

In classical cases, 12-bit resolution uniform ADCs are used for the acquisition of intended cell
voltages and currents [12,18]. It allows the attainment of precise SOC estimation [31–37]. In this study,
a 5-bit resolution uniform EDADC is used for the battery pack current acquisition. The choice of
resolution is made in an incremental fashion in order to attain the best precision and computational
complexity tradeoff. Each segment of the battery current waveform is considered equally important.
Therefore, a uniform mid-raised quantization approach is used for the acquisition of the battery
current. However, 2.8-bit resolution non-uniform EDADCs are used for the acquisition of cell voltages.
The placement of threshold levels is decided as a function of the used reference SOC-OCV lookup table
(cf. Section 2.3). Here, OCV stands for open-circuit voltage. The EDADCs are employed with 32-bit
resolution timers, which operate at FTimer = 40 kHz. These parameters permit accurate recording of
the intended cell signals for a duration of around 30 h. Additionally, for these parameter selections,
the theoretical EDADC SNR is around 73 dB, which is closer to the theoretical SNR of a 12-bit resolution
ADC and validates the selected system parameters for the targeted application.

SNRdB = 10. log
(3.Px

Px′

)
− 20.log(Ttimer) (3)

2.3. Event-Driven Coulomb Counting

Coulomb counting is the most appropriate and computationally efficient methodology for online
SOC determination [38]. It mainly accumulates sample magnitudes of the intended cell’s current and
uses it for the SOC approximation. Self-discharge currents and parasitic losses are not taken into
account by this simple technique. Consequently, calculation errors are accumulated with time, and,
therefore, periodic error correction is required [26,38]. SOC correction approaches based on SOC-OCV
have been employed for this purpose [24,25,38].

Recent technological advancements have revolutionized the usage of digital real-time SOC
estimation algorithms [38,39]. The main advantages of over the counter analog approaches are the
configurability, precession and availability of mature computer-aided design (CAD) tools. In this
sense, in contemporary BMSs, battery parameters, like voltage, temperature and current, are no
longer processed in the analog domain and are instead digitized and processed later on with available
state-of-the-art digital processing algorithms [39].

A novel event-driven coulomb counting method is introduced in this paper. The principle for one
cell is depicted in Figure 6.
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2.3.1. Conventional Approach

Let Crated be the full charge capacity of a cell, which depends on the discharge and storage time
and cell temperature. Firstly, the released charge Creleased is calculated by integrating the Ib(t) for a
considered time interval. Digitally, it is attained by the summation of the sampled version of Ib(t).
Creleased is the extracted charge from the cell in ampere hours (Ah) [38].

The sampled version of Ib(t) is obtained, in the conventional case, by multiplying Ib(t) with
the uniform sampling function S(t) =

∑N
n=0 δ(t− nLs) [39]. The process is given by Equation (4).

Where δ(t) is the Dirac function, Ls =
1
Fs

is the sampling step and Fs is the sampling frequency [39].
The choice of Fs is made by following the Nyquist criterion. N is the total number of current samples
acquired during the considered observation time interval (t0; t1) hours.

Ibs(t) =
N∑

n=0

Ib(t).δ(t− nLs) =
N∑

n=o
Ib(nLs) (4)

The Creleased between the time interval (t0; t1) hours is given by Equation (5). Where Ibn is the
sampled version of charging/load current.

Creleased =

n=N=t1×Fs∑
n=t0×Fs

Ib(nLs) (5)

The depth of discharge (DOD) can be calculated by using Equation (6). The DOD is expressed as
the ratio between the amount of charge released to the rated capacity of the cell. Finally, the SOC can
be estimated by using Equation (7). The SOC in percentage is given by Equation (8).

DOD =
Creleased
Crated

(6)

SOC = 1−DOD (7)

SOCP = (100− (DOD× 100))% (8)

The calibration of estimated SOC is performed by using a reference SOC-OCV correlation curve,
obtained by performing high precision experimentations in the laboratory [11,18,38]. Samples of
this SOC-OCV curve are stored in memory as a lookup table. Equal length OCV and SOC sets are
used, which are respectively OCV-V={OCV1, OCV2, . . . , OCVP} and SOC-V={SOC1, SOC2, . . . , SOCP}.
The length of both sets is P.

During online operation, the battery terminal voltage Vb(t) is sampled, and the process is given by
Equation (9).

Vbs(t) =
M∑

n=0

Vb(t).δ(t− nLs) =
M∑

n=o
Vb(nLs) (9)

Due to the Li-ion cell hysteresis phenomenon, the online measured values of Vb(t) can lead to
erroneous SOC calibration [27]. In this context, curve fitting and Kalman filtering techniques are
frequently used [27,40]. Each coming sample Vbn is first fitted to generate VbFn. The complexity of
the fitting process depends on the fitting algorithm used [27,40]. Each sample VbFn is subsequently
compared with elements of the set OCV-V, and P magnitude comparisons are performed for each
incoming fitted sample. The calibration operation depends on the comparator outcome. The calculated
SOC value is calibrated as SOC1 if VbFn = OCV1. If VbFn = OCV2, then the calculated SOC value is
calibrated as SOC2. The procedure for the remaining OCV-V elements is identical.
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2.3.2. Proposed Approach

Figure 6 shows that the system starts measuring current and voltage for the Li-ion cell. Different
EDADC architectures are used for current and voltage measurements. We accumulate the current
samples in real-time and use the output to compute the depth of discharge (DOD), which is then used
to estimate the SOC.

The EDADC introduces non-uniformity in the sampling process (cf. Equation (1)). Unlike the
classical sampling scheme, we do not have an a priori knowledge of the sampling instants in this case.
Each time the sampling process is triggered, the corresponding sampling instant is recorded using a
timer circuit [21]. The sampled version of Ib(t) is given by Equation (10), where Ibn is the nth current
sample magnitude, tn is the corresponding instance of the nth current sample and NED-Current is the
current samples, acquired during the considered observation time interval (t0; t1) hours.

In the proposed system, Ib(t) is acquired by using an M = 5-bit resolution and uniform quantization
based EDADC. The selected levels span the analog signal amplitude range ∆I. The uniform quantization

scheme leads to a unique quantum q =
∆x(t)
2M−1 [22]. The choice of EDADC resolution is made in an

incremental fashion to obtain the optimal solution in terms of system complexity and precision.

Ibs(t) =
NED−Current−1∑

n=0

Ib(t).δ(t− tn) =

NED−Current−1∑
n=o

(Ibn, tn) (10)

In this case, the Creleased between the time interval (t0; t1) hours is given by using Equation (11).
∝n is an adaptive multiplication coefficient, adjusted for the nth current sample as a function of
dtn (cf. Equation (1)). It allows an appropriate approximation of the area under the curve while
compensating the impact of non-uniform repartitioning of the sampling instants. Afterward, the DOD,
SOC and SOCP are respectively computed by employing Equations (6)–(8).

Creleased =

n=NED−Current∑
n=0

Ibn× ∝n (11)

In the proposed solution, an original event-driven SOC-OCV based calibration mechanism is
devised. The EDADC with non-uniform quantization is used. The reference threshold levels are
placed by following the values of the reference OCV-V elements. P thresholds are positioned within
the magnitude dynamics ∆V of Vb(t). The principle is shown in Figure 7. In the proposed solution,
an OCV-V with 7 elements is used, resulting in the realization of 2.807-bit resolution EDADC for the
Vb(t) measurement.
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In this case, the Vb(t) sampling process is given by Equation (12), where Vbn is the nth voltage
sample magnitude, tn is the corresponding instance of the nth current sample and NED-Voltage is the
number of event-based voltage samples acquired during the considered observation time interval
(t0; t1) hours.

Vbs(t) =
NED-Voltage∑

n=0

Vb(t).δ(t− tn) =

NED-Voltage∑
n=0

(Vbn, tn) (12)

A proper OCV measurement requires that the battery is kept static without load for an appropriate
time. It is necessary to avoid any hysteresis impact for the measured OCV [27]. Such latencies are not
affordable in online SOC estimation methods required in practical applications [27,40]. To overcome this
bottleneck, the terminal voltage Vb(t) measurements are used in place of OCV [27,40]. In order to avoid
errors, the Vb(t) data is collected during the constant current based charging and discharging cycles.
The obtained SOC-OCV curves, calculated during charging and discharging cycles, are then averaged.
In the next step, the averaged curve is fitted to the reference SOC-OCV correlation curve by using a 3rd
order polynomial. The reference SOC-OCV correlation curve is computed by performing high-precision
laboratory experiments, where the reference OCV is measured after keeping the considered Li-ion cell
static to achieve a stable condition [27,40]. During online operation, an acquired sample of terminal
voltage Vbn is fitted to obtain VbFn. The process is given by Equation (13). Where coefficient vector
A = {a3 ,a2, a1, a0} is obtained during the curve fitting process, given by Equation (14). Where XRe f is
the reference SOC-OCV coefficient vector and Xmeasured is the average of SOC-OCV vectors coefficients
calculated during constant current charging and discharging cycles.

VbFn = a3Vbn
3 + a2Vbn

2 + a1Vbn + a0 (13)

A =
[
XT

Re f .XRe f

]−1
×XT

Re f .XMeasured (14)

Unlike the standard calibration operation, in the devised solution, it is not required to regularly
sample the Vb(t) and fit and compare each Vbn with the OCV-V elements for calibration. The mechanism
of calibration only triggers on the basis of events. Here, an event points towards the occurrence of
predefined threshold crossing by the Vb(t). In this case, P thresholds are realized by employing P
discriminators. Sample magnitudes are predefined since they can be equal to one of the thresholds
established depending on the SOC-OCV reference curve. On the occurrence of every event, a terminal
voltage sample is generated and fitted. The fitted sample VbFn is then compared with elements of the set
OCV-V. P magnitude comparisons are performed for each incoming fitted sample. The approximated
SOC value is adjusted as SOC1 for the case when VbFn = OCV1. Similarly, the approximated SOC value
is adjusted as SOC2 for the case when VbFn = OCV2. The process for the remaining OCV-V elements is
the same.

2.4. Evaluation Measures

2.4.1. Compression Ratio

Compression ratio measures the performance of the designed solution in terms of the amount
of collected information. The assessment is made while comparing with the conventional fixed-rate
approach. The compression ratios for the battery current and cell voltages can be respectively
calculated by using Equations (15) and (16). In Equation (15), N and NED-Current are current samples
acquired for a considered time span of LT-hours in the conventional and proposed cases, respectively.
In Equation (16), M and NED-Voltage are voltage samples acquired for a considered time span of LT-hours
in the conventional and proposed cases, respectively.

RComp−I =
N

NED-Current
(15)
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RComp−V =
N

NED-Voltage
(16)

2.4.2. Computational Complexity

It is straightforward to calculate the arithmetical complexity of the classical coulomb counting
method. Let FsI be the sampling frequency for sampling of the cell current. Therefore, it remains unique
and time-invariant. The whole considered signal span is thus sampled at FsI. By using Equation (17),
the acquired number of current samples N can be determined for a considered time length LT. If FsV
is the sampling rate for the acquisition of the cell terminal voltage, then it remains unique and
time-invariant. Thus, the whole considered signal span is sampled at FsV. Therefore, it is possible to
measure the acquired number of voltage samples M for a time length LT by using Equation (18).

N = FsI × LT (17)

M = FsV × LT (18)

In this case, N additions are carried out by the classical coulomb counting method to compute
Creleased for a single battery cell. N divisions and N subtractions are needed to measure DOD and SOC,
respectively. For each acquired terminal voltage sample, the fitting operation is realized by performing
eight multiplications and three additions (cf. Equation (13)). The fitted voltage sample is then used
for the calibration judgment. This decision of calibration is made by conducting P comparisons.
Equation (19) gives the overall numerical complexity for the classical case.

Cclassic =
N + 3×M
Addition

+
N

Division
+

N
Subtraction

+
8×M

Multiplication
+

P×M
Comparison

(19)

The sampling frequency is not fixed in the case of the designed method and is updated as a
function of the input signal variations [21]. Consequently, the count of samples obtained for LT-Hours
can be specific for each cell. Current and voltage samples, obtained in the case of the suggested method,
are NED-Current and NED-Voltage, respectively. Then, NED-Current additions and NED-Current multiplication
are performed by the event-driven coulomb counting algorithm to compute Creleased.

The DOD and SOC calculations involve NED-Current divisions and NED-Current subtractions,
respectively. The fitting process is performed by executing eight multiplications and three additions for
each acquired terminal voltage sample. The fitted voltage sample is used for the calibration judgment,
which is made by conducting P comparisons. Finally, Equation (20) gives the total numerical cost of
the devised event-driven coulomb counting method.

CEvent-Driven =
NED-Current + 3×NED-Voltage

Addition
+

NED-Current + 8×NED-Voltage
Multiplication

+
NED-Current

Division
+

NED-Current
Subtraction

+
P×NED-Voltage

Comparison

(20)

2.4.3. Effectiveness of Fitting

For online SOC calibration, each voltage sample is fitted by using a 3rd order polynomial.
The polynomial coefficients are computed by using the curve fitting approach [41]. The effectiveness of
the curve fitting process is evaluated in terms of the sum of squares due to error (SSE) and the ratio of
the sum of squares of regression (SSR) and the total sum of squares (SST), which is denoted as R-squared.
The SSE, SSR, SST and R-squared are given by Equations (21)–(24). Where xn is the nth reference
observation, x̂n is the nth approximated observation and x is the mean of K reference observations.
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For SSE, a value closer to zero provides a good model with lower random error and good online
fitting and vice versa. R-squared can have any value between (0; 1). A higher value will provide a better
model performance and vice versa.

SSE =
K∑

n=1

(xn − x̂n)
2 (21)

SSR =
K∑

n=1

(x̂n − x)2 (22)

SST =
K∑

n=1

(xn − x)2 (23)

R− Square =
SSR
SST

(24)

2.4.4. SOC Estimation Error

A time-domain approach is used for the SOC prediction error calculation, which is made by the
proposed solution. In this scenario, an accurate fixed-rate SOC estimator based on coulomb counting
is used as a benchmark. It uses 16-bit resolution ADCs for acquiring the Li-ion cell voltages and
currents at a sampling rate of ≥1 kHz. This choice of parameters achieves reasonably high SOC
estimation precision [12]. The nth SOC values predicted respectively by the devised, and the reference
estimators are SOCEDn and SOCn. Then, Equation (25) can be used to compute the mean percentage
SOC prediction error (MPSOCE).

MPSOCE =

 1
NED−Current

NED−current∑
n=1

∣∣∣∣∣SOCn − SOCEDn

SOCn

∣∣∣∣∣
× 100% (25)

3. Results

A Li-ion battery pack model, consisting of 80 (LiNixMnyCozO2)-(NMC) chemistry-based cells,
was used [27]. An impulsive charge/discharge current profile was used for the considered battery pack.
This choice was made in compliance with the load profiles of electric vehicles [42]. In the beginning,
a charge current was applied to mitigate any SOC loss due to internal losses and cell aging [30,43].
An impulsive profiled discharge current was then applied to progressively discharge the battery
pack [20] (cf. Figure 8). Figure 9 shows the corresponding battery output voltage.
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Figure 9. The battery pack voltage.

The battery cells were connected in series; therefore, similar charge/discharge current flowed
through all of them. However, voltages across cells could be specific depending on their temperature
and SOC [18,43]. The voltage curves of the first 10-cell pack are shown in Figure 10. These voltage
curves can also be employed for the cell balancing of the battery pack [18,43]. However, in this study,
these voltage curves are used for monitoring the SOC of each cell.
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Figures 8 and 9 indicate that the charge/discharge current and the related cell voltages are observed
for a period of 11.11 h. This choice of duration was made depending on the used current profile and
the battery pack to obtain a complete discharge of a fully charged battery pack.

The current was acquired by employing a 5-bit resolution EDADC. It was composed of
32 discriminators and a 5-bit output priority encoder-based encoding logic [44]. The amplitude
dynamics of the current-acquiring EDADC was chosen between (−28.1; 7.6) amperes. Therefore, a fixed
value quantum, q = 1.12 ampere, was obtained. The output of the EDADC is shown in Figure 11.
The EDADC gathers 700 current samples for the considered observation time of 11.11 h.
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The reference SOC-OCV values are contained in the lookup table. These were recorded through
precise experimentation. In this case, each vector, SOC-V and OCV-V, consisted of seven elements,
as presented in Table 1. The employed elements of SOC-V and OCV-V were spaced with a bias toward
the minimum and maximum SOC values [18]. This allowed for tracking of the extreme SOC states of
the intended battery cells with a superior resolution and could lead to effective safety decisions [12].

Table 1. The reference SOC-OCV calibration values.

SOC-V SOC1 SOC2 SOC3 SOC4 SOC5 SOC6 SOC7

(%) 100 90 75 50 25 10 0

OCV-V OCV1 OCV2 OCV3 OCV4 OCV5 OCV6 OCV7

Volts (V) 4.20 4.10 3.90 3.70 3.60 3.50 3.45

In compliance with the SOC-OCV lookup table, the voltage of each cell was sampled with a
non-uniform EDADC, resulting in a varying quantum as a function of the used OCV-V. The process
is presented in Section 2.3 using 2.8-bit resolution EDADCs. Each EDADC is composed of seven
discriminators and a 3-bit priority encoder based output logic [39]. The EDADC output for cell-8 of the
battery pack is shown in Figure 12. In this case, 73 voltage samples are acquired for the considered
time period of 11.11 h.Energies 2020, 13, 5600 14 of 20 
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The voltage samples recorded by EDADCs were analyzed for each cell, resulting in the minimum
and maximum count of collected samples of 71 and 74, respectively, with an average and standard
deviation of 72.61 and 1.037, respectively.

The SOC of each cell in the battery pack was estimated and calibrated using the acquired current
and voltage signals. The SOC estimation was made by accumulating the acquired samples of battery
current and then estimating DOD and finally SOC. The SOC of each cell was then calibrated by using
the suggested event-driven calibration process. In this context, each acquired cell voltage sample was
fitted by using a 3rd order polynomial. Values of used polynomial coefficients were a3 = −0.1955,
a2 = 2.249, a1 = −7.556 and a0 = 10.77. The selection of used polynomial order was made in an
incremental fashion in order to achieve an optimal compromise among system precision and complexity.
The effectiveness of fitting was measured in terms of SSE and R-squared by using Equations (21) and
(24). The designed curve-fitting approach attained SSE = 0.002299 and R-squared = 0.997.
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The system’s effectiveness was contrasted with the traditional coulomb counting approach.
By pursuing the work described in [45], the current and voltage of each cell were recorded with 12-bit
resolution conventional ADCs for the classical fixed-rate approach. It promised a proper SOC estimation
while intended battery parameters were acquired at an appropriate rate [8,45], and FsI = 10 Hz was
used [45]. For the calibration purpose, the voltage was acquired at the rate of FsV = 16.66 MHz, meaning
a sample was acquired every minute [16].

For FsI = 10 Hz and FsV= 16.66 MHz, cell voltages and current measurement time span
of 11.11 h respectively resulted in N = 400 k-samples for the current and M = 667 samples for
each cell voltage. However, in the suggested method, the total count of sampled data points was
inferior, with NED-Current = 700 for the current and NED-Voltage = 72.61 on average for intended cell
voltages. For the considered battery pack, RComp−I and RComp−V were respectively computed by using
Equations (15) and (16), resulting in RComp−I = 571.43-fold for the whole battery pack. The RComp−V was
also calculated for each cell in the intended battery pack, resulting in minimum and maximum values of
RComp−V of 9.01-fold and 9.39-fold, respectively. With a standard deviation of 0.13, the average RComp−V
for all intended cells in the battery pack was 9.19-fold. For the whole battery pack, the cumulative
value of RComp−V was 735.01-fold. The results illustrated a dramatic real-time compression advantage
and a decrease in the number of gathered samples relative to the standard equivalents. It confirmed
the suggested solution’s decreased circuit-level activity and power consumption overhead relative to
the traditional fixed-rate equivalents.

By using Equations (19) and (20), the computational advantage of the designed solution over the
standard equivalent was also determined. For the studied battery pack, unique current flows through
all serially connected cells. However, the voltage across each cell can be specific as a function of its
temperature and SOC [43]. Therefore, the acquired count of current samples was fixed for the whole
battery pack. The acquired number of voltage samples NED-Voltage can also be specific for each intended
cell. The computational gains were calculated in terms of a reduction in the count of operations,
such as additions, subtractions, multiplications, divisions and comparisons. Gains in subtractions
and divisions are uniquely based on the count of current samples. Therefore, they remained fixed for
the studied case and were equal to 571.43-fold. Gains in additions, multiplications and comparisons
involve the count of voltage samples. Therefore, they can be specific for each cell. A summary of
gains in additions, multiplications and comparisons is presented in Table 2, where STD stands for the
standard deviation.

Table 2. The summary of the proposed system computational gains.

Operation Minimum Gain Maximum Gain Average Gain STD Total Gain

Additions 436.01 440.31 437.99 1.49 35.04 × 103

Multiplications 4.13 4.21 4.17 0.03 333.28

Comparisons 9.01 9.39 9.19 0.13 735.01

Table 2 shows that the proposed system secures the lowest and the highest gains in additions of
436.01-fold and 440.31-fold. The average gain of additions for all cells is 437.99-fold, with a standard
deviation (STD) of 1.49. The overall reduction in the count of additions for the whole battery pack
is 35.03 × 103-fold. The lowest and the highest gains in multiplications of the proposed system
are respectively 4.13-fold and 4.21-fold. The mean gain of multiplications for all cells is 4.17-fold,
with a standard deviation (STD) of 0.03. The overall reduction in the count of multiplications for
the whole battery pack is 333.28-fold. The minimum and the maximum gains in comparisons of the
proposed system are respectively 9.01-fold and 9.39-fold. The average gain of comparisons for all cells
is 9.19-fold, with a standard deviation (STD) of 0.13. The overall reduction in the count of comparisons
for the whole battery pack is 735.01-fold.
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Compared with the classical one, the above findings indicate a major compression gain and
enhanced processing performance of the suggested solution. It is accomplished by using event-driven
sensing and processing, along with an effective positioning of application-dependent voltage reference
thresholds. It enables only appropriate information to be collected and, therefore, results in a significant
decrease in the acquired samples and, thus, a notable reduction in the complexity of the processing.

The SOC estimation error of the suggested approach is determined by following the process
described in Section 2.4. In this study, the reference SOC estimator is based on 16-bit resolution ADCs.
FsI = 1 kHz and FsV = 1 Hz are selected. Examples of the SOC curves obtained for cell-8 are displayed
in Figure 13.

The MPSOCE is calculated for cell-8 as 2.4% for the classical estimator and 3.8% MPSOCE for
the proposed estimator. The MPSOCEs are calculated for each cell of the employed battery pack and
results are summarized in Table 3.

Table 3. The summary of MPSOCEs.

Solution Minimum Maximum Average STD

Classical 2.3% 2.8% 2.51% 0.21

Event-Driven 3.6% 4.0% 3.77% 0.17
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Table 3 shows that the classical case results in the minimum and maximum MPSOCE values for
the considered 80 cells, which are 2.3% and 2.8%, respectively. The average MPSOCE for all cells is
2.51%, with a standard deviation (STD) of 0.21. For the proposed event-driven system, the MPSOCE
calculations result in the minimum and maximum MPSOCE values for the considered 80 cells, which are
3.6% and 4.0%, respectively. The average MPSOCE for all cells is 3.77%, with a standard deviation
(STD) of 0.17.

4. Discussion

The results, as discussed in Section 3, show the favorable features of the proposed solution.
These results indicate a substantial compression gain and processing effectiveness of the suggested
solution compared to the traditional technique. The event-driven acquisition and the non-uniform
positioning of reference thresholds are the main factors behind this accomplishment [12,13]. It allows an
intelligent adaptive-rate acquisition of the concerned information. Thus, the count of collected samples
is reduced, and it renders a notable reduction in the computational load of the suggested solution.
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The overall compression gains of RComp−I = 571.43-fold and RComp−V = 735.01-fold are obtained for
the whole battery pack. The overall computational gains of 35.03 × 103-fold, 333.28-fold, 571.43-fold,
735.01-fold and 571.43-fold are secured respectively in terms of additions, multiplications, subtractions,
comparisons and divisions. Besides these benefits, such a method can compromise the accuracy of
the SOC calculation. In this context, for each cell, the SOC approximation errors of the proposed
solution and the traditional equivalent are computed. The SOC prediction errors for the analyzed
case are limited by 2.8% and 4%, respectively, for the classical sampling-based approach and the
suggested event-driven approach. It implies that in addition to attaining more than a second order of
magnitude gain compared to the over the counter classical solution in terms of data compression and
computational cost, the precession of the suggested solution’s SOC approximation is indeed analogous
to the classical estimator. In addition, the EDADCs used in the proposed solution have significantly
lower resolutions of 5-bit and 2.8-bit for the acquisition of the cell currents and voltages, respectively.
In the standard case, however, 12-bit resolution ADCs are used to obtain the battery cells currents
and voltages. Compared to the conventional equivalents, it guarantees a dramatic reduction in the
hardware complexity, cost and power usage overhead of the devised system.

For the studied case, the state of charge estimation error of the suggested method is bounded
by 4%. The integration of model-based or data-driven SOC estimation algorithms could improve the
proposed system precision at an increased computational and implementation complexity. The system
parameters, such as the resolution of EDADCs and the choice between uniform and logarithmic
quantization schemes and online fitting methods, should be effectively adjusted in this framework in
order to attain the best compromise between the system precision and computational cost.

A lower sampling rate and resolution can also be used in the conventional counterparts. However,
it will result in a higher quantization step and will decrease the system SNR because the SNR is
inversely proportional to the used quantization step in the case of conventional ADCs [21]. On the
other hand, the SNR of EDADCs is not influenced by the quantum value and is a function of the used
timer circuit [21]. This is the reason that the suggested method attains an analogous SOC estimation
accuracy even by using low-resolution EDADCs.

The realization of event-driven processing based BMSs is an original and novel concept [12,16,17].
Comparing the proposed strategy with state-of-the-art tactics is not obvious because they are developed
on the principle of standard-fixed rate data acquisition and processing based concepts. Moreover,
these techniques employ a variety of battery models or datasets with various preprocessing and SOC
estimation methods. In addition to all mentioned factors, a comparison is made with the conventional
fixed-rate processing based counter SOC estimators [31–37], and the upper bounds on the percentage
of SOC estimation errors are summarized in Table 4.

Table 4. Comparison with contemporary techniques.

Study SOC Estimation Method Upper Bound on Error

[31] Coulomb counting ≤4%
[32] Recursive least squares algorithm ≤5%
[33] Unscented Kalman filter ≤4%

[34] Adaptive sigma-point Kalman filter and
state equality constraints ≤2%

[35] Dual extended Kalman filtering ≤3%
[36] Modified moving horizon estimation ≤3%
[37] Adaptive sliding mode observer ≤2%

Proposed solution Event-driven coulomb counting ≤4%

Table 4 confirms that the devised method secures an analogous or better SOC estimation precision
as compared to fixed-rate counterparts [31–37], while assuring a noticeable reduction in the count
of acquired samples, computational complexity, hardware complexity and the power consumption
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overhead. Similar gains can be achieved by integrating the suggested solution into other state-of-the-art
solutions [31–37].

5. Conclusions

A novel and effective event-driven coulomb counting based online state of charge estimator was
devised in this work. The system was developed on the theory of data processing driven by events.
In this sense, original methods for the acquisition of battery cells current and voltages were suggested.
The suggested acquisition of data based on events offered the possibility to focus on the relevant
information. Thus, an interesting association was developed between the incoming signal information
content and the computational load of the proposed system. Based on the event-driven nature,
the system could organize its processing load in compliance with the time-varying incoming signal.

The system obtained overall compression gains of 571.43-fold and 735.01-fold in current and
voltage sample counts, respectively, demonstrating its computational efficacy. More than a second
order of magnitude gain over the traditional counterpart was obtained by the suggested scheme.
The method reached an upper limit of 4% on the state of charge estimation error. The proposed
method is thus equivalent to current state-of-the-art approaches and, in some cases, superior. The main
advantage is the gain in compression, computational effectiveness and hardware simplicity, along with
notable cost-effectiveness, size compactness and power consumption overhead reduction. This ensures
the value of incorporating the proposed approach within modern battery management systems.

Future work should concentrate on the analysis of the proposed method’s performance for other
battery technologies and models. Investigating the feasibility of using the suggested solution for cell
balancing is another prospect. The proposed system is designed for an online state of charge estimation.
Its embedded realization and integration in state-of-the-art battery management systems is another
axis to explore.
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