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Abstract: Recently, the need for energy-saving and eco-friendly energy systems is increasing as
problems such as rapid climate change and air pollution are getting more serious. While research on
a power generation system using hydrogen energy-based fuel cells, which rarely generates harmful
substances unlike fossil fuels, is being done, a power generation system that combines fuel cells and
Organic Rankine Cycle (ORC) is being recognized. In the case of High Temperature Proton Exchange
Membrane Fuel Cell (HT-PEMFC) with an operating temperature of approximately 150 to 200 ◦C,
the importance of a thermal management system increases. It also produces the waste heat energy at
a relatively high temperature, so it can be used as a heat source for ORC system. In order to achieve
this outcome, waste heat must be used on a limited scale within a certain range of the temperature of
the stack coolant. Therefore, it is necessary to utilize the waste heat of ORC system reflecting the stack
thermal management and to establish and predict an appropriate operating range. By constructing
an analytical model of a combined power generation system of HT-PEMFC and ORC systems,
this study compares the stack load and power generation performance and efficiency of the system
by operating temperature. In the integrated lumped thermal capacity model, the effects of stack
operating temperature and current density, which are important factors affecting the performance
change of HT-PEMFC and ORC combined cycle power generation, were compared according to
operating conditions. In the comparison of the change in power and waste heat generation of the
HT-PEMFC stack, it was shown that the rate of change in power and waste heat generation by the
stack operating temperature was clearly changed according to the current density. In the case of
the ORC system, changes in the thermal efficiency of the ORC system according to the operating
temperature of the stack and the environmental temperature (cooling temperature) of the object
to which this system is applied were characteristic. This study is expected to contribute to the
establishment of an optimal operation strategy and efficient system configuration according to the
subjects of the HT-PEMFC and ORC combined power generation system in the future.

Keywords: high temperature proton exchange membrane fuel cell; thermal management; organic
rankine cycle; plate heat exchanger; waste heat recovery; cooling system; thermodynamic modeling

1. Introduction

Today, the need to expand power generation systems utilizing eco-friendly and waste heat energy
to tackle climate changes is increasing, and active research on hydrogen fuel cell generation (electricity
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generation) and a cogeneration system capable of utilizing waste heat is being done. Unlike engine or
boiler-based power generation systems that generate power through a combustion process that uses
fossil fuels to produce thermal energy and emission, hydrogen fuel cell systems is an eco-friendly
power generator of electricity, thermal energy, and water through the chemical bonding process of
hydrogen and oxygen.

The Solid Oxide Fuel cell (SOFC) based micro-cogenerative power system is being actively
researched, and modeling research for predicting appropriate operating conditions is being considered
for important research project purposes. Arpino et al. investigated the factors that influence the
measurement uncertainty for combined heat and power design using SOFC [1]. In addition, they studied
the correlation between the 0D model of those SOFC-based systems and the collected data. Additionally,
an effective thermal management strategy through fuel utilization adjustments was presented for
optimizing cogenerative power system operation [2]. Duhn et al. conducted an analytical study of the
cooling plate design to improve operational efficiency by ensuring the pressure drop uniformity of
the gas distributor of the SOFC system [3]. As described above, in a fuel cell-based power generation
system having a high operating temperature, optimum control of the working fluid is important
in addition to proper operating temperature and pressure drop formation in order to improve the
efficiency and performance of the system.

In the case of High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC), there is an
advantage in that it can utilize waste heat at a relatively high temperature (150 ◦C or higher) with
highly efficient power generation. In order to secure the power efficiency and reliability of such
HT-PEMFC, a thermal management system is essential to maintain a high operating temperature [4,5].
As the operating temperature of the stack must be kept constant, the stack coolant must be used within
a controlled temperature. Consequently, a thorough examination of the appropriate operating range of
waste heat utilization (heat exchange) reflecting the respective stack thermal management and system
control thereto, should be performed for the optimal design of cogeneration using HT-PEMFC and
waste heat recovery [6,7].

Among the fuel cells, the PEMFC exhibits a relatively high power density and power efficiency,
and it can minimize noise and residual emissions. It is divided into Low Temperature Proton Exchange
Membrane Fuel Cell (LT-PEMFC) with an operating temperature of 60 to 80 ◦C and HT-PEMFC
with an operating temperature of 100 ◦C or more. The power efficiency of HT-PEMFC appears to
be approximately 45 to 60% [8]. Currently, research is being carried out on the cogeneration system
suitable for each operation characteristic of each PEMFC type [9]. The advantage of HT-PEMFC is the
simplification of the water management device configuration due to the high operating temperature as
well as the generation of highly useful waste heat. Specifically, if the liquid cooling system is applied
to HT-PEMFC thermal management with an operating temperature of 100 ◦C or higher, waste heat
exchange with higher utilization is possible, which is advantageous for cogeneration and trigeneration
systems [10]. Najafi et al. compared the performance and efficiency of the HT-PEMFC trigeneration
system according to operation strategies during a certain operating period while the research team
carried out a study on a trigeneration system to which both LT-PEMFC and HT-PEMFC were applied.
Furthermore, research on warm-up strategies to quickly increase the stack operating temperature when
the HT-PEMFC starts up was conducted [11]. Thus, based on the previous studies, it seems that the
HT-PEMFC-based cooling and heating system can be selectively applied according to the operation
strategy and subject.

It is important to secure the performance and efficiency of the waste heat recovery system in
order to expand the subjects for application and functionality of the combined power generation
system using such HT-PEMFC. This is one of the most important factors in selecting a target building
and power system to secure electric energy with high utilization at a certain level depending on the
operating environment [12,13]. Therefore, today, active research on Organic Rankine Cycle (ORC)
system using stack waste heat energy in addition to fuel cell systems is being done [14]. Dickes’
research team experimentally examined the temperature distribution of the working fluid for power
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generation in the evaporator heat exchanger in the ORC power system, and Jang’s research team
conducted a study on the performance of the compact ORC system at the 1 kW-level using a heat
source in the range of 100 to 140 ◦C [15,16]. In addition, Jeong’s research team conducted a study on
the heat exchange performance and characteristics of the plate heat exchanger for each working fluid
operating condition applied to the ORC system [17]. S.C. Yang et al. conducted a pilot study on an
ORC power generation system at the 3 kW-level, capable of utilizing waste heat at 100 ◦C [18]. In the
case of HT-PEMFC, the inlet temperature and mass flow rate of the coolant must be kept relatively
constant in order to secure appropriate power efficiency at a relatively high operating temperature [19].
This is a limiting factor that must be reflected in the operational design of waste heat utilization systems
such as ORC power generation and is the reason for the need to optimize the integrated system linked
to the stack thermal management system. To this end, it may be useful to introduce a HT-PEMFC
and ORC power generation integrated system modeling, as well as a confirmation and verification
process of power generation performance and efficiency range according to the application subject and
operating conditions.

In this study, through an analytical method based on the existing HT-PEMFC and ORC power
generation system model, the power generation performance and efficiency range according to the
operating conditions of the HT-PEMFC and ORC combined power generation system considering stack
thermal management were confirmed, and the rate of change of power generation performance (effect
on power generation performance change) for each control factor for the combined power generation
system was presented. For this, a system analysis was conducted to predict system performance and
efficiency according to changes in operating conditions such as stack operating temperature, current
density, and ORC cooling temperature for a combined power generation system composed of a lumped
thermal capacity model.

2. System Description Based on HT-PEMFC and ORC

Figure 1 shows the model composition for performance prediction and comparative analysis
of the combined system consisting of the HT-PEMFC subsystem for cooling of the HT-PEMFC
and the ORC subsystem for waste heat recovery power generation. The HT-PEMFC subsystem
and the ORC subsystem, each with a fluid flow diagram, share an evaporator. The coolant of the
HT-PEMFC subsystem was selected as Tri-ethylene glycol (TEG) since its phase does not change at the
operating temperature of HT-PEMFC, which is 423~463 K. It follows the black solid line in Figure 1.
The HT-PEMFC subsystem consists of an auxiliary heater/cooler, thermal storage, 3-way valve, cooling
pump, and evaporator heat exchanger. The auxiliary heater/cooler is configured to keep the inlet
temperature of PEMFC constant regardless of the influence of the ORC subsystem when the thermal
power of the HT-PEMFC and the heat supplied to the ORC is not the same during the initial system
startup. The 3-way valve is configured to meet the same flow conditions as the thermal power of
HT-PEMFC and the heat exchange amount of the ORC evaporator. The cooling pump was controlled
so that it would meet the flow condition in which the temperature difference between the inlet and
outlet of HT-PEMFC satisfies 5 K.

To simplify the analysis of this system, the study followed subsequent assumptions:

1. All equipment of the system follows the lumped model and ignores heat loss.
2. The pressure loss in the pipe through which the stack coolant and working fluid travel is ignored.
3. Temperature and cell voltage are evenly distributed over the entire electrode of HT-PEMFC, and

the reaction gas mixture is an ideal gas fluid.
4. The cathode charge transfer coefficient and the anode charge transfer coefficient are the same.
5. The isentropic efficiency of the expander is 60%, and the overall efficiency of the refrigerant pump

is 50%.
6. In the condenser of the ORC system, the working fluid is sufficiently subcooled, and the existing

superheat of the evaporator is 5 K.
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7. The pressure loss of the evaporator reflected only the pressure loss on the heat source side, and
only the loss due to friction was considered.
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3. Combined HT-PEMFC and ORC System Modeling

3.1. Thermodynamic Model of HT-PEMFC

The HT-PEMFC model applied in this analysis can be used by setting the operating temperature
range of 120 to 200 ◦C, the cathode stoichiometric ratio range of 2 to 5, and the CO concentration
range of 0.1 to 10%. Using a previously studied model as a reference [20,21], it is a one-dimensional
isothermal model, HT-PEMFC based on PBI, and the electrochemical reaction in the fuel cell is as
follows [22]:

Anode: H2→ 2H+ + 2e− (1)

Cathode 2H+ +
1
2

O2 + 2e− → H2O (2)

Overall reaction H2(g) +
1
2

O2(g) → H2(g) (3)

The overall cell voltage of the stack is calculated through the overpotential loss acting on the
cathode and the overpotential loss acting on the anode at the ideal standard potential as shown in the
Equation (4). The overpotential is divided into the activation overpotential (ηact), ohmic overpotential
(ηohmic), and concentration overpotential (ηconc) [23]. The activation overpotential is affected by the
Tafel equation and the charge transfer coefficient while the ohmic overpotential is affected by the
thickness of the membrane and the catalyst. The last term, concentration overpotential, represents the
effect of cathode stoichiometry.

The ideal standard potential (Videal) is calculated by the variation of Gibbs free energy (∆gf )
through electrochemical reaction and Faraday Constant (F) as shown in Equations (5) and (6), but in
this model, the open circuit voltage of a reference [20] is used.

Vcell = Vocv − ηact − ηohmic − ηconc (4)

∆g f = g fH2O − g fH2 − g fO2 (5)
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Videal = −
∆g f
2F

(6)

Activation overpotential acting on cathode and anode is obtained from the following equations:

ηact =
RTcell
4αcF

ln
(

I + I0

I0

)
+

RTcell
αaF

sinh−1
(

I
2kehθh2

)
(7)

αc = a0Tcell + b0 (8)

I0 = a1e−b1Tcell (9)

where R is the universal gas constant, Tcell is the operating temperature, αc is the cathode charge transfer
coefficient, F is the faraday constant, I is the current density, keh is the hydrogen electro-oxidation rate
constant, θh2 is the hydrogen surface coverage, I0 is the exchange current density, λair is the cathode
stoichiometry ratio, and αa is the anode charge transfer coefficient, and it is assumed to be the same as
the cathode charge transfer coefficient.

Ohmic overpotential and concentration overpotential acting on the cathode is given by:

ηohmic = RohmicI (10)

Rohmic = a2Tcell + b2 (11)

ηconc =
Rconc

λair − 1
I (12)

Rconc = a3Tcell + b3 (13)

Linear regression was used for the cathode charge transfer coefficient, ohmic resistance (Rohmic),
and concentration resistance (Rconc), and the exchange current density was expressed as an exponential
function type. The values of the regressions used are shown in Table 1.

Table 1. Numerical value for regressions used in the High Temperature Proton Exchange Membrane
Fuel Cell (HT-PEMFC) model.

Parameters Values Unit

Charge transfer constant, a0 2.761× 10−3 [K−1]
Charge transfer constant, b0 −0.9453 -
Limiting current constant, a1 3.3× 103 [A]
Limiting current constant, b1 −0.04368 -
Ohmic loss constant, a2 −1.667× 10−4 [Ω/K]
Ohmic loss constant, b2 0.2289 [Ω]
Diffusion limitation constant, a3 −8.203× 10−4 [Ω/K]
Diffusion limitation constant, b3 0.4306 [Ω]

It was assumed that all cell unit performances of the HT-PEMFC were the same, and the electric
power (WFC) and thermal power (QFC) of HT-PEMFC were calculated in proportion to the number
of cells (Ncell) and single cell active area (Acell) as in Equations (14) and (15). Moreover, the power
efficiency (ηFC) of HT-PEMFC can be obtained as in Equation (16) based on the lower heating value
(LHV) of hydrogen. Table 2 shows the parameters used in the HT-PEMFC model

WFC = NcellVcellIAcell (14)

QFC = Ncell

(LHV
2F
−Vcell

)
IAcell (15)

ηFC =
WFC

Ncell
LHV

2F IAcell
(16)
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Table 2. Operating parameters and empirical parameters used in the HT-PEMFC model.

Parameters Values Unit

Open circuit Voltage, Vocv 0.95 [V]
Number of cells, Ncell 880 -
Single cell active area, Acell 300 [cm2]
Operating temperature, Tcell 433 [K]
Current density, I 0.4 [A/cm2]
Universal gas constant, R 8.314 [J/mol·K]
Faraday constant, F 96485.3 [C/mol]
Cathode stoichiometry ratio, λair [24] 3 -
Hydrogen electro-oxidation rate constant, keh [24] 1.63818 [A/cm2]
Hydrogen surface coverage, θh2 [24] 0.14212 -
Low heating Value of hydrogen, LHV 239.92 [kJ/mol]

The thermal power generated by the HT-PEMFC was assumed to be heat-exchanged with the
coolant by the Dittus-Boelter Equation (17), and the heat generated by auxiliary devices such as the
cooling pump was ignored.

Nu = 0.023Re0.8Pr0.4 (17)

Furthermore, the pressure drop on the coolant side of the HT-PEMFC was reflected by the curve
fitting the pressure drop according to the flow rate based on the experimental value. In general,
the pressure drop on the coolant side of the stack is dependent on the flow path design of the cooling
plate, and in this study, the pressure drop test value of the most widely commercialized vehicle stack
with a level similar to the reaction area was applied to the model.

∆PFC = 4074 + 1.86× 106QFC + 3.184× 109QFC
2 (18)

As a cooling pump model used to transport Triethylene glycol (TEG), which is a stack coolant,
a commercial pump for cooling of a maximum 100 kW stack that has a performance curve as shown in
Figure 2 was applied [25].
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3.2. Thermodynamic Model of ORC

Figure 3 shows the T-s diagram of the ideal ORC cycle and conceptually shows each state and
system. In Figure 3, the movement from point 12 to point 9 refers to the section in which the liquid
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working fluid changes to the gaseous state through the evaporator and is the section to recover waste
heat from HT-PEMFC in the combined system. The vaporized working fluid generates power through
the expander, which is the travel section from point 9 to 10, reducing the pressure. The working fluid
with reduced pressure and temperature is liquefied in the travel section from point 10 to 11 through
the condenser and maintains the pressure difference while transporting the liquefied working fluid
through the pump.
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R245fa was selected as the working fluid used in this study considering the operating temperature
range of the HT-PEMFC. The pressure on the evaporator side of the ORC power generation of the
combined power generation system was set to 12 bar, and by setting the temperature range at the outlet
side of the condenser to 293~308 K, the saturation pressure appropriate for the respective temperature
was used.

All waste heat generated from the HT-PEMFC is heat-exchanged through the evaporator and
is calculated as shown in Equation (19).

.
Qeva is the amount of heat exchange of the evaporator, and

.
mORC is the mass flow rate of the working fluid of the ORC system. h means the enthalpy according to
the temperature and pressure for each location indicated by each number on the T-s diagram.

.
Qeva =

.
mORC(h9 − h12) (19)

The amount of power generated through the expander is Wexp and is calculated as in the
Equation (20).

Wexp =
.

mORC(h9 − h10) (20)

The amount of heat dissipated through the condenser is
.

Qcon and is calculated as in the
Equation (21).

.
Qcon =

.
mORC(h10 − h11) (21)

The power consumption of the refrigerant pump is Wrp and is calculated as in the Equation (22),
taking into account the overall efficiency ηrp.

Wrp =

.
mORC(h12 − h11)

ηrp
(22)

The net power generated through the ORC system is calculated by the power generated by the
expander and the power consumed by the refrigerant pump as shown in the Equation (23).

WORC = Wexp −Wrp (23)
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The thermal efficiency of the ORC system is ηORC and is calculated by the net power of the ORC
and the endothermic reaction through the evaporator as in the Equation (24).

ηORC =
WORC

.
Qeva

(24)

3.3. Analytical Model of the Evaporator Heat Exchanger

A heat exchanger model for the evaporator was constructed to calculate the mass flow rate
required by the heat source according to the mass flow rate of the working fluid of the ORC power
generation system and the inlet temperature of the heat source (stack coolant) side. The plate heat
exchanger used in the experiment in Jeong’s study was used as a reference for the shape information
of the respective evaporator and is shown in Table 3. [17]. The basic geometric characteristics of the
chevron plate heat exchanger are shown in Figure 4.

Table 3. Operating parameters of the chevron plate heat exchanger.

Parameters Values Unit

Effective width of plate, Lh 0.111 [m]
Vertical distance between ports, Lv 0.466 [m]
Plate thickness, t 0.0004 [m]
Chevron configuration pitch, λp 0.007 [m]
Plate channel gap, g 0.002 [m]
Flow channel hydraulic diameter, Dh 0.003389 [m]
Effective heat transfer area, Ahx 0.06105 [m2]
Plate chevron angle, β 35 [◦]
Plate thermal conductivity, k 15 [w/m-K]
Surface enlargement factor, ϕ 1.18 -
Working fluid channel number, Nwf 21 -
Heat source channel number, Nhs 22 -
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The overall heat transfer coefficient (U) of the Evaporator Heat Exchanger is calculated by the
convective heat transfer coefficient of the working fluid (hwf), the convective heat transfer coefficient of
the heat source (hhs), and the conduction heat transfer coefficient of the heat exchanger (kp) as shown in
the Equation (25).

1
U

=
1

hw f
+

t
kp

+
1

hhs
(25)

The heat source is in a single-phase state in all operating areas, and the convective heat transfer
coefficient in the single-phase state followed the Muley and Manglik correlation. Based on the Reynolds
number, it followed the Equation (26) at 400 or below and followed the Equation (27) at 800 or more [26].
Moreover, the Nusselt number was interpolated using the transitional algorithm in the transition zone.
ReL is the Reynolds number in the liquid state, whereas PrL is the Prantle number in the liquid state.
In addition, kL is the heat transfer coefficient in the liquid state, while Dh is the hydraulic diameter of
the plate heat exchanger.

hhs = 0.44
(
β

30

)0.38

ReL
0.5PrL

0.33
(

kL

Dh

)
(26)

D0 = 0.2688− 0.006967β+ 7.244× 10−5β2

D1 = 20.78− 50.94ϕ+ 41.1ϕ2
− 10.51ϕ3

D2 = 0.728 + 0.0543sin
(πβ

45 + 3.7
)

hhs = D0D1ReL
D2PrL

0.33
(

kL

Dh

)
(27)

The convective heat transfer coefficient in the two phase region of the evaporator’s working
fluid follows the Yan and Lin correlation and is as shown in Equation (28) [27]. Reeq is the equivalent
Reynolds number, Bo is the boiling number, Geq is the equivalent mass flux. G is the channel mass flux.
q is the heat flux. x is the vapor quality. µL is the dynamic viscosity of the liquid. ρL is the density of
the liquid, and ρv is the density of the vapor.

hw f = 1.926Reeq
0.5PrL

0.33Bo0.3

1− x + x
(
ρL

ρv

)0.5( kL

Dh

)
(28)

Bo =
q

GAhx
Bo =

q
GAhx

(29)

Geq = G

1− x + x
(
ρL

ρv

)0.5 (30)

Reeq =
GeqDh

µL
(31)

To compare and verify the analysis results based on the evaporator heat exchanger model
constructed as described above and the previous experimental results, The validation analysis was
conducted using the same conditions as in Jeong’s study using R245fa as the working fluid and water
as the heat source. As shown in Figure 5, the difference between Jeong’s heat exchanger performance
data that was previously studied and the analysis results in this study were within 3% approximately,
and the analysis model constructed accordingly was confirmed to have a certain level of reliability.
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The pressure loss on the heat source side of the evaporator heat exchanger is ∆Peva and is defined
as the Equation (32) considering only the loss due to friction.

∆Peva = fhs
LvNhsG2

2DhρL
(32)

fhs follows the Darcy friction factor and is expressed as in the Equation (33) [17].

fhs = 72.5ReL
−0.045 (33)

3.4. Performance of the Combined System (HT-PEMFC and ORC)

The total electric power produced by the combined system consisting of the HT-PEMFC and ORC
is expressed as the sum of the power generated by the HT-PEMFC (WFC), the power consumed by
the cooling pump for the HT-PEMFC (Wcp), the power generated through ORC (Wexp), and the power
consumed by the refrigerant pump (Wrp) as shown in the Equation (34).

Wtotal = WFC −Wcp + Wexp −Wrp (34)

In addition, the power efficiency of the combined system is expressed as the ratio of the total
power of the combined system according to the LHV of HT-PEMFC, as shown in the Equation (35).

ηsystem =
Wtotal

Ncell
LHV

2F IAcell
(35)

The whole system is analyzed using the commercial program Flomaster based on the law of
conservation of energy (36), the law of conservation of mass (37), and the law of conservation of
species (38). ∑( .

mh
)
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+

∑ .
Qin =

∑( .
mh

)
out

+
∑ .

Qout (36)∑( .
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)
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=
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)
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4. Results and Discussion

4.1. Effect of Stack Temperature

In order to check the performance change according to the operating temperature and current
density of the stack, the performance curves for each operating temperature (433 K, 443 K, 453 K,
463 K) and current density (0~0.5 A/cm2) were verified. As shown in Figure 6a, as the temperature
increased, the stack’s single cell voltage and efficiency increased as well because of the decrease in the
cell activation overpotential. In addition, it tended to decrease when the current density increased.
Furthermore, the stack electric power and thermal power showed a tendency to increase as the
current density increased, but the percentage of increase in the electric power decreased although
the percentage of increase in the thermal power increased. As the temperature of the stack increased,
the stack electric power increased thanks to the increase in power efficiency, whereas the stack thermal
power decreased. When the current density was 0.1 A/cm2 and 0.4 A/cm2 at a stack temperature of
433 K, the single cell voltage was 0.66 V and 0.47 V, the stack power efficiency was 53.7% and 38.1%,
the stack electric power was 17.6 kW and 50 kW, and the stack thermal power was 15.2 kW and 81.3 kW.
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4.2. Effect of Working Fluid Mass Flow Rate in the ORC System

The performance change was analyzed by applying the evaporator model configured to calculate
the performance according to the mass flow rate of R245fa, the working fluid of the ORC system,
and the heat exchange amount of the evaporator. The evaporator pressure was selected as 12 bar
considering the temperature level of the waste heat of the stack, and the condenser pressure was
selected as 2.2 bar considering the extreme summer outdoor temperature. Moreover, the flow rate
of the heat source (stack coolant, TEG) in which the superheat of the evaporator satisfies 5 K was
calculated according to the corresponding inlet temperatures of 428 K, 448 K, and 468 K.

As shown in Figure 7a, as the mass flow rate of R245fa increased, the ORC net power increased
linearly by the power consumption of the expander and the power consumption of the refrigerant
pump. Although there was a change in performance according to the mass flow rate of the working
fluid, the efficiency of the ORC system was relatively constant at about 7.69%, because all the conditions
satisfied 5 K of superheat. In addition, as shown in Figure 7c, since the mass flow rate of the heat
source (TEG) side where the superheat of the evaporator satisfies 5 K required a higher heat transfer
coefficient as the inlet temperature of the heat source decreased, the mass flow rate increased. For the
R245fa mass flow rate of 0.3 kg/s, the TEG-required mass flow rate was a maximum of 0.83 kg/s.
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Figure 7. ORC system performance curve according to R245fa mass flow rate. (a) Electric power;
(b) Evaporator and condenser heat transfer rate; (c) Mass flow rate of Tri-ethylene glycol (TEG) that
satisfies superheat 5 K in the evaporator.

4.3. Effect of Stack Inlet Temperature in the Combined System

In order to analyze the combined system that merged the HT-PEMFC subsystem and the ORC
subsystem, the transport pump controlled the mass flow rate so that the temperature difference at the
inlet and outlet of the stack was 5 K. The mass flow rate was controlled through a 3-way valve so that
all thermal power generated from the stack was exchanged with the evaporator of the ORC subsystem.
The system performance was compared and analyzed after the inlet temperature conditions of the
stack were selected as 433 K, 443 K, 453 K, and 463 K, and the current densities of the stack were
0.15 A/cm2, 0.2 A/cm2, 0.25 A/cm2, 0.3 A/cm2, 0.35 A/cm2 and 0.4 A/cm2.

As shown in Figure 8a, the mass flow rate of the cooling pump that satisfies the temperature
difference between the inlet and outlet of the stack as 5 K is proportional to the current density. As the
thermal power of the stack increased as shown in Figure 9d, the required convective heat transfer
coefficient also increased, resulting in an increase in the mass flow rate that satisfied the operating
conditions. As the inlet temperature of the stack increased, the physical properties of TEG changed,
which influenced the formation of the mass flow rate of the cooling pump. The mass flow rate at the
evaporator heat source (TEG) side of the ORC subsystem increased as the current density increased,
but it decreased as the inlet temperature of the stack increased. The results of the mass flow rate of the
cooling pump and the mass flow rate of the evaporator’s heat source (TEG) according to the operating
conditions, as well as the pressure drop of the stack and the pressure drop of the evaporator are shown
in Figure 8c,d, respectively.
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The efficiency of the combined system and the stack power efficiency are shown in Figure 9a,
and the highest efficiency was shown as 56.03% and 52.45% at a current density of 0.15 A/cm2 and a
stack inlet temperature of 463 K. Additionally, the percentage increase in the combined system power
efficiency compared to the stack power efficiency increased by up to 3.81% at a current density of
0.25 A/cm2 and a stack inlet temperature of 433 K. In the case of the ORC net power, as the current
density increased, the thermal power of the stack and the heat exchange amount of the evaporator
increased, resulting in an increase in power generation. However, when the inlet temperature of the
stack increased, the power generation decreased, and up to 0.3 kW decreased at a current density of
0.4 A/cm2. In terms of the stack electric power, it reached a maximum of 55.96 kW at a current density of
0.4 A/cm2 and 79.36 kW and a stack inlet temperature of 463 K as shown in Figure 9c, whereas in terms
of the stack thermal power, it reached a maximum of 79.36 kW at a current density of 0.4 A/cm2 and a
stack inlet temperature of 433 K as shown in Figure 9d. As the current density increased, the power
consumption of the cooling pump increased the required mass flow rate on the stack and the TEG side
of the evaporator as shown in Figure 8, resulting in the increase in the corresponding pressure drop.
As shown in Figure 9e, the power consumption of the cooling pump required a maximum of 1.69 kW
at a current density of 0.4 A/cm2 and a stack inlet temperature of 433 K.

Figure 10a shows the rate of change in the stack power, waste heat generation, and ORC power
generation performance according to the difference of the stack coolant inlet temperature for each stack
current density. As the current density is relatively higher, the rate of change in the stack power and
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waste heat generation amount according to difference of the stack inlet temperature clearly increases.
Additionally, the rate of change in power generation of stack considering power consumption of
cooling pump is increased by up to 20% at current density of 0.4 A·cm−2 compared to rate of change in
power considering only the stack model. On the other hand, the rate of change in the stack power,
heat generation, and ORC power generation performance according to the current density for each
inlet temperature showed a relatively low difference as shown in Figure 10b. Based on these system
analysis results, the stack inlet temperature of the HT-PEMFC power generation system is judged as an
important operating condition that affects the power generation performance change characteristics.
In addition, while the effect of the difference of the current density for each the stack inlet temperature
is relatively constant, the effect of the difference of the stack inlet temperature is expected to increase as
the current density increases. Additionally, when cooling actuators such as a water pump and loss
factors are added, the effect of stack operating temperature is expected to increase. In the case of the
ORC system, the rate of change in power generation performance according to the temperature and
current density was relatively low in the operating temperature range of this stack model.
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Figure 10. (a) The rate of change of stack power, waste heat generation, and ORC power generation
according to operating temperature for each stack current density; (b) The rate of change in stack power,
heat generation, and ORC power generation performance according to the current density for each
stack coolant inlet temperature.

As shown in Figure 11, the system efficiency was compared excluding the stack power efficiency
as a result of the coolant inlet temperature of the stack and condensing temperature of the working
fluid formed at the condenser outlet for the ORC system. This is shown by excluding only the stack
power generation from the overall efficiency of the combined power generation system. Through
this, the efficiency changes of the ORC power generation system by pumps and heat exchangers
excluding the stack were compared, and within the current density range, overall system efficiency
except the stack tended to increase as the working fluid condensing temperature decreased. When the
working fluid condensing temperature was 20 ◦C, the maximum efficiency was about 4.75%, which was
a 25% increase compared to the case where the working fluid condensing temperature was 35 ◦C.
Additionally, as the operating temperature of the stack increased, the deviation of the system efficiency
except the stack tended to decrease relatively according to the change in current density. When the
current density was 0.4 A/cm2, the change in the system efficiency except the stack appeared to be the
biggest according to the change of the stack operation temperature. This is believed to indicate that the
influence of the operating temperature gradually increases under the power generation condition with
the stack high load.
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condensing temperature.

5. Conclusions

In the case of HT-PEMFC, thermal management is formed as important as a relatively high
operating temperature, and in the case of a heat exchange system that utilizes waste heat, since the
operating range and strategies taking account of the thermal management of the stack must be selected,
it is necessary to predict the power generation performance and efficiency according to the operating
conditions. In this study, a model for a combined power generation system composed of a HT-PEMFC
stack and an ORC power generation system was established, and the power generation performance
and system efficiency were analytically compared according to the stack and ORC operating conditions.
Each system was made of a model using the existing research contents and in the case of the plate
heat exchanger for the Evaporator of the ORC system, which is the most important element for stack
thermal management and waste heat recovery, reliability was secured by comparing the experimental
results and the analysis results of the model. Through the analysis using the final combined power
generation system model, the system power generation performance and efficiency were compared
and predicted according to the operating temperature of the stack, the power generation load, and the
ORC system working fluid condensing temperature, and the results are summarized as follows.

(1) For the analytical comparative study, modeling of each of the HT-PEMFC stack and ORC combined
power generation system was conducted. In particular, in order to secure the reliability of the
plate heat exchanger for the ORC power generation system, previous experimental results under
the same operating conditions and the model-based analysis results established in this study
were compared. The reliability of the combined power generation system model was secured
through this process.

(2) Using the established combined power generation system model, the power generation
performance and system efficiency of each stack and ORC system according to the power
generation load and operating temperature of the HT-PEMFC stack were compared analytically.
It is believed that the model has a higher degree utilization in a HT-PEMFC stack in which the
higher the operating temperature within the allowable range, the higher the power generation
and efficiency is. It also has higher degree utilization at a stack operating temperature where the
waste heat that is proportional to the power generation load is relatively high. Furthermore, it is
determined that the stack capacity and rated power generation section (current density range
during power generation) need to be selected considering the target subjects as the amount
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of waste heat becomes greater than the amount of power generated at points above a certain
current density.

(3) And as the current density is relatively higher, the rate of change in the stack power and waste heat
generation amount according to the stack operating temperature clearly increases. Additionally,
the rate of change in power generation by operating temperature of stack with cooling pump is
increased by up to 20% at the current density of 0.4 A·cm−2 compared to rate of change in power
considering only stack model. Therefore, the operating temperature of the HT-PEMFC stack
generation system is able to be considered as an important operating condition that affects the
power generation performance change characteristics.

(4) In the model of the HT-PEMFC stack and ORC combined power generation system, comparative
analysis was performed according to the operating temperature, power generation load (current
density), and working fluid condensing temperature of the ORC system in order to compare the
system efficiency excluding the stack, that is, the thermal efficiency of the ORC and subsystem that
includes the stack cooling pump and heat exchanger, which change according to the operating
conditions. As the operating temperature of the stack increased, the efficiency deviation of
ORC and subsystem excluding the stack by the change in current density tended to decrease.
Considering the energy load consumed by the thermal management part, it was shown that,
under a certain current density, the lower the stack operation temperature was, and the more
the efficiency of the ORC and subsystem except the stack improved. Moreover, as the working
fluid condensing temperature decreased, the efficiency of the combined power generation system
except for the stack tended to increase as well.

The HT-PEMFC stack and ORC combined power generation system require an appropriate
operation strategy according to the target subjects and operating environment. To this end, this study
constructed a combined power generation system model that considered the thermal management
of the stack and the heat exchange process of waste heat and verified the operation range according
to operating. It is believed that the results of this study will contribute to the selection of stacks and
establishment of the strategies according to the target subjects and operation environments of the HT-
PEMFC stack and ORC combined power generation system. In the future, an improvement on the
model will be made regarding the target subjects of specific combined power generation, and analytical
and experimental comparative studies will be conducted.
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