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Abstract: Electric railway power systems (ERPS) as one of the most critical and high-power end-user
loads of utility grids are characterized by outlandish power quality (PQ) problems all over the world.
The extension and evolution of different supply topologies for these systems has resulted in significant
and various forms of distortions in network voltage and current in all ERPS, the connected power
system, and adjacent consumers. During the last years, numerous studies have been offered to
investigate various aspects of PQs in a specific supplying topology. Variation in the supply structure of
the ERPS and different types of locomotives has propelled the observation of different PQ phenomena.
This versatility and development have led to confront considerable types of two-way interactive
interfaces as well as reliability and PQ problems in ERPS. In addition, the lack of standards explicitly
dedicated to ERPS has added to the ambiguity and complexity of this issue. In this paper, an extensive
review of PQ distortions and phenomena in different configurations of ERPS is proposed and a
systematic classification is presented. More than 140 scientific papers and publications are studied
and categorized which can provide a fast review and a perfect perspective on the status of PQ indexes
for researchers and experts.

Keywords: power quality; electric railway system; harmonics; unbalance; resonance; voltage
distortions; reactive power; EMI

1. Introduction

The outstanding characteristics of electric railway power systems (ERPS) such as safe transport,
high-power/capacity, high-speed, great reliability and resilience, and environment-friendly manner
make them one of the popular and promising transport systems [1]. These systems have experienced
considerable improvement and evolution during the last decades. Historical, geographical,
and economical reasons have led to the establishment of different ERPSs structures in various
countries [2]. This development and diversity have resulted in facing different forms of distortions
and power quality (PQ) issues not only in ERPSs, but also in the supplier utility grid and other
adjacent loads. Generally, PQ issues in ERPSs have been investigated individually by dividing the
systems into three areas of DC, 16.67/25 Hz AC and 50/60 Hz AC. The DC type ERPSs introduced
as the primary technology with lower requirements and capacity in transportation electrification.
Urban railway systems including subways, trams, and light-rails are the most popular types of DC
systems. Voltage/current harmonics, waveform transients, system imbalance, and low power factor
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are the foremost phenomena which are reported in the so-far published researches related to these
systems [3–5]. The hardness and complexity of AC motors to supply the high-power traction loads
with the industrial frequency caused to establishment of 16.67/25 Hz system taking advantage of
rotary frequency converters. The frequency transient, stability problems driven by electromechanical
transients, and amplification of negative sequence current or imbalance in synchronous generators are
the main PQ issues of these systems [6–8]. With the subsequent developments of technologies and
high demands for transportation, industrial frequency-based ERPSs have become promoted and more
popular. Primary systems in this context are established based on 1× 25 kV ERPSs, which can be found in
different forms of without return conductor, with return feeder, and with booster transformer. The most
important PQ phenomena reported in these systems include imbalance, harmonics, low-frequency
oscillations, low power factor, voltage drops, and electromagnetic interference (EMI) based issues
due to the return currents and arcing [9–11]. The next-generation AC ERPSs were adopted based on
autotransformer based 2 × 25 kV systems concentrating on mitigation of EMI issues, voltage drops,
and arcing problems [12–14]. The PQ problems related to AC ERPSs are so crucial that different
configurations of passive and active compensation technologies [15–18] are proposed to mitigate them
in the literature. Meanwhile, extensive studies are underway regarding replacing existing systems with
modern power electronics (PE)-based ERPSs as co-phase, advanced co-phase, and different types of
VSC and MMCs [19–23]. These ERPSs are recognized as green types because the VSCs can control their
output voltage and currents matching with the desired PQ. During the last years, multiple studies have
been addressed some of PQ indexes in a specific supplying ERPS. In [24,25] PQ analysis in high-speed
railways (HSR) and 1 × 25 kV ERPSs have been carried out. Mariscotti has analyzed PQ issues in
16.67 Hz and DC ERPSs specifically in terms of conditioning and measurement in [26,27]. The analysis
in 2 × 25 kV ERPSs emphasizing EMI phenomena has been carried out in [28]. In [29] an inclusive study
of harmonic problems in ERPSs has been studied. However, there is still a lack of a comprehensive study
and framework that addresses all PQ phenomena and classifies them based on ERPS types. In addition,
unlike the power systems, for which multiple standards and resources have been developed, the ERPS
suffers from a deficiency of a comprehensive and all-encompassing resource. This has been reinforced
the ambiguity and complexity of PQ analysis in ERPSs. Meanwhile, selecting a suitable method to
relieve PQ issues needs a complete knowledge and identification of main sources, features, influencing
factors, and occurrence environment. Motivated by the above-mentioned shortcomings, this paper
presents an exhaustive definition and classification of PQ indexes and distortions together with a
brief review of various ERPSs configuration and the classified reported PQ phenomena in literature
based on each ERPS type. The rest parts of the paper are structured as follows: Section 2 describes
and portrays all the PQ phenomena and influencing factors in ERPS. In Section 3 the investigation of
phenomena based on the classified ERPS type is presented. In Section 4 the classification of reported
PQ phenomena in literature is discussed. Finally, Section 5 concludes the paper.

2. Power Quality Phenomena in ERPS

PQ issues, disturbances, or phenomena are terms used to characterize voltage or current deviations
from its ideal waveform. Different forms of PQ phenomena have been occurred all around the world
according to the designed and operating structure of ERPS. In this section, the reported PQ indexes
in EPRSs together with originated and influencing factors are described and categorized based on
their type.

2.1. System Unbalance

One of the most important and common PQ phenomena in EPRSs is system unbalance which
emanated from single-phase power supplying AC EPRS [30]. In normal conditions, when the network
is balanced, the three-phase voltages/currents are identical in magnitude and the phase differences are
120◦. When the system is gotten imbalanced, the three-phase voltages/currents are not the same in
magnitude and the phases are unsymmetrical.
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So far, different definitions of unbalance have been proposed in a three-phase system. The issue of
unbalance can be categorized into two subjects: voltage unbalance and current unbalance. These voltage
and current unbalances may cause extra losses, communication interference, motor overheating,
and malfunction of relays [30–37]. The degree of these unbalances depends on the train’s movement,
the tractive profile of electric locomotives, the type of traction substation transformer (TST) [35], and the
power-supply scheme. Numerous problems due to imbalance motivated experts to look at it with a
more specialized view and to propose standards for measuring the imbalance. The three key definitions
of imbalance are provided by the IEEE [38], IEC [39], and NEMA [40] over the years.

• IEEE std 112-1991

In 1991, the IEEE introduced its second definition of voltage imbalance under standard 112 to
define an indicator for voltage imbalance, in which the maximum deviation of the effective value of
the phase voltage from the mean effective value of the phase voltage, relative to the average value of
the phase voltage according to Equation (1) [38]. Where PVUR denotes phase voltage unbalance rate.

%PVUR =
max

{∣∣∣Va −Vavg
∣∣∣, ∣∣∣Vb −Vavg

∣∣∣, ∣∣∣Vc −Vavg
∣∣∣}

Vavg
× 100 (1)

Vavg =
Va + Vb + Vc

3
(2)

• IEC 60034-26

The IEC standard defines voltage imbalance as the ratio of the negative or zero sequence component
to the positive sequence component. In simple words, it is a voltage variation in a power system in
which the voltage amplitudes or the phase angle differences between them are not equal. The negative
and positive sequence of line voltage can be calculated using the Fortescue matrix as Equation (4) [39].
Where εV denotes voltage imbalance ratio.

%εV =
V−

V+
× 100 =

V−ab

V+
ab

× 100 (3)


Vab
◦

Vab
+

Vab
−

 = 1
3


1 1 1
1 a a2

1 a2 a




Vab
Vbc
Vca

 (4)


Vab = Va −Vb
Vbc = Vb −Vc

Vca = Vc −Va

(5)

• ANSI/NEMA Standard MG1-1993

In 1993, NEMA introduced a standard for unbalance that included only the effective magnitude of
line-by-line voltages. In this definition, the maximum deviation of the effective value of line voltages
from the average effective value of line voltages, compared to the average value of line voltages as
follows [40]. Where LVUR denotes line voltage unbalance rate.

%LVUR =
max

{∣∣∣Vab −Vavg
∣∣∣, ∣∣∣Vbc −Vavg

∣∣∣, ∣∣∣Vca −Vavg
∣∣∣}

Vavg
× 100 (6)

In general, the voltage/currents unbalance factor (VUF/CUF) is defined to measure the intensity of
the system unbalance as given in Equations (7) and (8).

%VUF =
V−

V+
× 100 (7)
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%CUF =
I−

I+
× 100 (8)

where V− and I− are the negative sequence voltage and currents, and V+ and I+ present the positive
sequence voltage and currents. A higher amount of factors declare a high value of negative-sequence
current (NSC) injected to the ERPS. Depending on the adopted TST type in ERPS, the factors are
changed. Figure 1 illustrates the measured real imbalance situation of Wuhan–Guangzhou high-speed
electrified railway [41].
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Figure 1. The measured unbalance ratio in Wuhan–Guangzhou high-speed electrified railway system:
(a) Current unbalance factor; (b) Voltage unbalance factor [41].

2.2. Harmonics

The ERPS is one of the main harmonic provenances in the public power grid. Depending on the
supplying topology type, different forms of harmonic phenomena can emerge.

2.2.1. Low Order Harmonics

Low order harmonics (LOH) known also as main harmonics are the most critical kind of harmonics
in ERPS. They have been noticed as the motivation of numerous functioning obstacles both to the power
grid and ERPS. The amplitude of the LOH is greater than the other harmonic spectrum ingredients.
Accordingly, the negative efficacy of LOH can decline the fundamental signal amplitude impressively.
Intensive shaking and noises in motors and generators, exceeding of heat and loss in transformers
and transmission lines, harmful impacts and destructions in relays and other protection systems,
and instability of power network are some of their main adversely effects [42]. In general, the main
LOH in ERPS can be classified into three categories as follows.

• Background Harmonics

This category also known as internal harmonics of ERPS is generated by the power supplying
system in the absence of operational trains. In addition, they can be turned out by adjacent contiguous
nonlinear loads linked to the joint busbar as a point of common coupling. The harmonic spectrum
ranges for background harmonics are pretty much odd inherent harmonics like 3rd, 5th, 7th, . . . ,
19th [43,44].

• Train Internal Harmonics

In AC ERPS, trains and their PE converter based interior driving systems are assumed in
the guise of basic harmonic origination. Most functioning trains in the world even now contain
thyristor/diode-based PE converters in their configuration, which turn out current harmonics and
accordingly voltage harmonic and distortion [24,45–47]. The low order ingredients as 3rd, 5th, 7th, . . . ,
21st, and 23rd are the most highlighted ones measured in these kinds of trains. Figure 2a demonstrates
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the harmonic content of conventional thyristor/diode-based trains measured in the ERPS. Conversely,
the modern trains equipped with four-quadrant converters (4QCs) evolve less harmonic pollution
thanks to the adoption of high switching frequency (pulse-width modulation) (PWM). However,
as shown in Figure 2b even the amplitude of LOH has declined significantly (the vertical axes scale
has been decreased), the high order components around switching frequency are considered as a
substantial problem. These components are known as the characteristic harmonics which will be
explained in the next sections.Energies 2020, 13, x FOR PEER REVIEW 5 of 34 
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Figure 2. The harmonic spectrum of the traditional and modern trains. (a) Traditional SS4 locomotives.
(b) High-speed modern CRH2 locomotives [24].

• DC Substation Harmonics

In addition to the trains, the internal structure of ERPS is considered as the foremost and significant
harmonic origination in the power grid. Contingent on the AC or DC type supplying system, type of
converter in traction power substation (TPSS) and voltage level, various forms of harmonic phenomena
can arise. Metro (subway) EPRSs which are fed by multi-pulse conventional rectification substations are
a pivotal reason for LOH distortion in the primary side of the grid [48–51]. Moreover, DC traction motor
based traditional locomotives functioning in AC systems are massive harmonic contamination loads
regarding the high-power utilization of nonlinear rectification converter. The harmonic ingredients in
the primary-side current of AC/DC substations can be defined as the function of pulse number:

h = kp± 1 k ∈ N (9)

where p is the pulse number of converter and h expresses the harmonic order. The popular n-pulse
rectifier based traditional substations in EPRSs is 6, 12, 18, and 24 pulses. The primary-side current
waveforms and fast Fourier transform (FFT) investigation for these types of TPSSs are simulated
and demonstrated on a small scale in Figure 3. As can be seen from the figures, by increasing the
number of pulses, the total harmonic distortion (THD) percentage has been decreased and the harmonic
components are shifted from low orders to high orders.
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2.2.2. Inter-Harmonics

In ERPS inter-harmonics (InH) are emerged by AC motors controlled by variable frequency drives
(VFDs). They are related to the fundamental main frequency (fo) and the input AC frequency (fi)
which supplies VFD. These kinds of harmonics are realized between the typical and characterized
harmonics of the VFDs. The main reason for occurrence is the compilation among the switching tasks
applied to invert the DC-link voltage to the three-phase AC voltage with the DC current ripple [52–55].
The frequency of the inter-harmonics can be characterized as

fIh =
∣∣∣npi fi ±mpo fo

∣∣∣ n, m ∈ Z (10)

where pi and po denote the number of pulses in the rectification and inversion process.
The inter-harmonics afford pulsating torque harmonics, stimulate a linked traction motor and torsional
resonance path, wheel wear, and a critical impact on the torsional behavior of the entire train.

2.2.3. Low Frequency Oscillation

The low frequency oscillation (LFO) is an impermanent phenomenon and a vehicle-grid
interlinkage issue situated by the impedance inconsistency between the ERPS and the modern
trains particularly those equipped with 4QCs. Furthermore, LFO can be produced by the rotary
frequency converter (RFC) used in several European ERPS [56,57]. In LFO circumstances the voltage
and current demonstrate a magnitude and phase oscillation. It can lead to several significant problems,
such as the conservation system breakdown, over voltage and current, damage to the onboard devices,
and even divergence oscillation of voltage and current leading to railway accidents and obstruction or
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inconsistency issues [56–65]. Three types of LFO scenarios are defined in the literature depending on
the structure of ERPS type. Figure 4. demonstrates the LFO in catenary voltage and currents.
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• LFO in RFC based ERPS

In the age of starting railway electrification, based on the low requests, existing low-capacity power
grids, and consequences regarding using of powerful motors in industrial frequency, the low-frequency
systems got more attention. These kinds of ERPS are established in several countries as Austria,
Germany, Switzerland, Norway, Sweden, and the USA functioning with a frequency of 16.67 or 25 Hz.
The frequency below the power grid frequency demonstrates the urgency of the requirement for RFC.
The LFO is primarily measured in these kinds of ERPS. The usual oscillation content in this group is
reported in the range of (0.1–0.3) p.u [56–58].

• LFO in ERPS without RFC

The consistently incremental request for passenger and mass transfer as well as subsequent
advancement of technologies and power networks promote the construction and development of
transformer-based AC systems operating with industrial frequency and without RFCs. The conventional
1 × 25 kV and 2 × 25 kV autotransformer based ERPS are the most popular embraced structures.
Notwithstanding, LFO in such a network often occurs by concurrent functioning of multiple
trains. The ultra-critical quantity of operating trains which leads to the LFO occurrence is reported
approximately 6–8. The usual oscillation content in this group of LFO is reported in the range of
(0.01–0.12) p.u [59–63].

• Irregular LFO

The latter category of LFO is non-periodic and immethodical oscillations that can enhance current
and voltage magnitude unfavorably. The irregular LFO has been reported mostly in China [64,65]. It is
not possible to assign a special frequency oscillation range for this type of LFO. Figure 5 shows the
measured voltage and current waveforms including various types of LFO. As shown in the figure,
the most undesirable type is related to irregular LFO with higher current magnitude reinforcement.
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2.2.4. Harmonic Resonance

The current LOH produced by trains mainly in modern ERPS can spread all around the power
supply networks. Contrarily, the inductance and capacitive specifications of the overhead catenary
system (OCS), may make a distributed LC circuit that can lead to parallels or series resonance at the
specific frequencies. The interaction of these current harmonics and internal resonance may cause
the harmonic resonance (HR) phenomenon at some characteristic frequencies in ERPS. By way of
explanation, some harmonic ingredients are strengthened by the resonance. The HR can create serious
issues such as drastic voltage distortion, electromagnetic interference in communication and signaling
system, overheating and losses, and misdeed of protection equipment [66–79].

Figure 6 illustrates the harmonic spectrums for measured OCS currents/voltages reported in two
main HSR lines in China and Italy containing HR phenomenon. This phenomenon which is reported
in many countries can be divided into parallel and series scenarios. Generally, the composition of
inductive and capacitive features of OCS can lead to either a series resonance (when L and C are in
series) or a parallel resonance (when L and C are in parallel).Energies 2020, 13, x FOR PEER REVIEW 8 of 34 
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• Parallel HR

The parallel HR (PHR) is most likely HR scenario in ERPS due to the inductive and capacitive
specification of multi-conductor OCS. The specified frequency oscillation range for PHR based on
measurements is between 10 and 55 p.u. The critical HR incidents correlate with the parallel resonance
which is the basic concern in TPSS. The PHR has been reported in some countries which are classified
based on the order in Table 1.

Table 1. Different types of reported harmonic resonance (HR) in the literature.

No. Type of HR Frequency Period (p.u) Location

1 Parallel 15–20, 45–55, 35–59, 50–64 China [66–69]
2 Parallel 24–30 Korea [43]
3 Parallel 21–29,39,121,139 Italy [28,70]
4 Parallel 20–60 United Kingdom [71]
5 Parallel 49–51 Thailand [72]
6 Parallel 29–41 Japan [73]
7 Parallel Up to 63 Zimbabwe [74]
8 Parallel 13–20 Czech Republic [75]
9 Parallel 21,81 Iran [76]

10 Parallel <25 Germany [77]
11 Series 3–7 Spain [78]
12 Series 64, 72, 80 Italy [79]

• Series HR

The series HR (SHR) is an infrequent HR phenomenon in EPRSs. Functioning of FACT device or
conditioners as static VAR compensators, STATCOM and Steinmetz theory may interact with ERPS
impedance and create SHR. The specified oscillation content in this group is reported in the range of
(3–9) p.u. The SHR has been reported in some countries which are mentioned in Table 1.

2.2.5. Harmonic Instabilities

The most basic factor of harmonic instabilities (HI) genesis is the higher switching frequency of
PWM based 4QCs in recent and modern trains. The interplay among the multiple switching frequency
and ERPS interior resonance frequency reinforce an intense oscillation with a sort of insignificant
damping termed as HI [80–87]. In addition, the high-frequency features of the closed-loop control
system for 4QCs including voltage and the current controller can interact with ERPS and originate
HI. Accordingly, HI may amplify the voltage and current harmonics and cause the system to be
instable. Compared with HR as a stable phenomenon and harmonic reinforcement, the HI is an
unstable phenomenon. The specified oscillation content for this phenomenon is dependent on the
resonance frequencies.

Nevertheless, according to the measurements and reports, the resonance orders can be in the
range of 2nd to 100th with field test intensifications of 23rd to 24th and 47th to 55th [64]. It can lead
to critical issues such as overvoltage problems, stimulate some harmonic ingredients, explosion or
malfunction of protection devices together with overheating and loss problems. HI phenomenon has
been stated in China [64], Switzerland [81], and Italy [82]. Figure 7 demonstrates a measured OCS
voltage waveform including HI. For the purpose of having a rapid review and a suitable classification,
the harmonic phenomena organization chart together with the frequency range is presented in Figure 8.
This figure illustrates an epitome of the harmonic indexes with their different types in ERPS. Meanwhile,
the possible per unit range for each phenomenon has been determined and demonstrated. A schematic
based comparison together with a technical discussion between harmonic phenomena can be found
in [64,80].
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Figure 7. Measured overhead catenary system (OCS) voltage and experiment waveform with harmonic
instabilities (HI). (a) Traction power substation (TPSS) voltage in electric railway power systems
(ERPS) [64]. (b) Phase-to-phase unstable voltage [83].
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frequency range.

2.3. Reactive Power and Low Power Factor

Notwithstanding the application of advanced PWM based trains, the majority of working trains
in ERPS all over the world are still based on AC/DC rectifiers using thyristor or diode. This can cause
the current distortion in the primary-side of the substation and overlap commutation angle. Therefore,
it can reduce the power factor (PF) of the system substantially. On the other side, considering the
impacts of ERPS impedance including the inductive reactance features of the OCS, the PF will be
reduced by about 1–5%. The low PF in the system can be the origination of many problems including,
lower efficiency, high power losses, heating of devices, and high voltage drops across the line [45,88–95].
This is so serious for power grids that fine subscribers with a low power factor of 0.9 in PCC. However,
the average amount of PF in ERPS depending on the type of supply is measured in the range of
0.70–0.84 [93]. Figure 9 demonstrates the measurements of PF for three different popular HST trains
operating in the world. According to these figures, for the light-loading situation and coasting mode,
the amount of PF is proportionally lower and rapidly when the train current/power increase PF reaches
close to unity. Power factor is commonly specified by a particular description assuming a balanced
situation without harmonics on the system. However, in a real practical system, the PF can be affected
by the harmonic components and imbalance condition in the ERPS. Accordingly, the type of traction
transformer and its loading characteristics will play an important role to determine the PF in AC
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ERPS [95]. The performance of popular traction transformers in ERPS is based on the different PF
definitions as fundamental PF (PF1), effective PF (PFE), vector PF (PFV), and arithmetic PF (PFE) [95]
in IEEE Std-1459 is demonstrated in Table 2. The practical measurement in this table reveals the
better performance of Y/d and Scott transformer in presence of harmonics for both balanced and
imbalanced conditions.
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Table 2. Performance of different traction transformers based on PF definitions in the harmonic presence.

Transformer Type Load Condition PF1 PFE PFV PFA Overall

Single-phase Balanced high very low medium very low very low
Unbalanced high very low medium very low

V/V Balanced low low high low
mediumUnbalanced medium low high medium

Y/d Balanced very high medium very high medium very
highUnbalanced very high medium very high low

Scott
Balanced medium very high low very high high

Unbalanced low high low very high

Le-Blanc
Balanced very low high very low high

lowUnbalanced very low very high very low high

2.4. Transient Events

PQ phenomena in ERPS includes a wide range of disturbances and different types of deviations
in voltage amplitude or waveform. The PQ deviation events/disturbances can be classified based on
the disposition of the waveform distortion, duration, rate of rising, and amplitude for each category of
electromagnetic disturbances. A comprehensive classification of PQ electromagnetic phenomena for
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power systems can be found in [96]. However, due to the specific and different features, a specific
classification based on the characteristics of ERPS has been carried out. The transient events are
unwelcome and momentary in nature. Generally, transient events can be classified into two groups of
impulsive and oscillatory which comprised the waveshape of both current and voltage transient.

2.4.1. Impulsive Transients (ImT)

The ImT is an abrupt, frequency variation from the nominal condition of voltage/current, which is
usually unidirectional in polarity. It is specified by the peak value, rate of rising or decay, and duration
times. The most popular reason for the occurrence of impulsive transients in ERPS are as follow:

• Lightning

Every time thunderstorms happen, ERPS has exposed to impulses transients of lightning.
The strikes can be direct lightning to any conductor which is in the upper of the ground or indirect form
as the induced voltage in a part of the system caused by close lightning [97–100]. The lightning energy
can damage and completely destroy the equipment. Figure 10 illustrates the measured waveforms
during lightning occurrence in four position distance of Swedish railway
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Figure 10. Measured waveforms during lightning occurrence in 4 position distance of Swedish 
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 Switching of circuit breakers 

Figure 10. Measured waveforms during lightning occurrence in 4 position distance of Swedish railway
facility [98]. (a) Line-to-neutral voltage (b) Local ground to rail current waveforms.

• Switching of circuit breakers

Some remarkable voltage transients are measured during the operating switching of circuit
breakers the ERPS. This type of transients can be classified in the impulsive group because of the
sudden rise and duration of occurrence. The two possible switchings in ERPS can be defined as
switching of the main high-voltage busbar for maintenance purposes and switching of converters
in TPSS for daily operations [101]. The measured voltage transient for the mentioned switching of
breakers in Rome subway is shown in Figure 11.
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• Abnormal changes in tractive efforts

During the train movement in the route, several situations may cause sudden changes in the
driving of traction motors and consequently sudden changes in voltage or currents. Some of these
factors and conditions are abnormal abruptly generated tractive effort by passing neutral sections and
high current absorption which can make step-change in pantograph voltage. In addition, the other
type of transient can be measured during the passing neutral zone in changing over the supplying
substation of sections [27,102]. The measured voltage transients for the two mentioned situations in
Italian ERPS are shown in Figure 12.
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Figure 12. Measured transient voltage in 3 kV DC Italian ERPS [102]. (a) Caused by sudden generated
tractive effort. (b) Caused by passing neutral section and changing supplying TPSS.

2.4.2. Oscillatory Transients (OsT)

The OsT is an abrupt, and non-power frequency variation of the steady-state situation
of voltage/current, which is usually bidirectional in polarity. OsT includes a waveform with
instantaneous amount changes of polarity quickly for several times and commonly declining within a
fundamental-frequency period. It is specified by the amplitude, spectral content, and duration times.
They can be classified into three groups of low (<5 kHz), medium (5–500 kHz), and high (0.5–5 MHz)
frequency oscillations [96]. The most popular reason for the occurrence of OsT in ERPS are as follows:

• Changing in operational condition and modulation patterns

During the train movement in the route, some circumstances may lead to having changes in the
operation of locomotives or modulation patterns of drive converters related to traction motors and
consequently changes in voltage or currents. Some of these factors and conditions are as sudden
braking, train wheel slide/slip, change in driving pattern, and extra torque. The field measurement of
this phenomenon is demonstrated in Figure 13a.
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ripple index caused by changes in operational conditions [104]. (b) Pantograph voltage and current
during oscillatory transients (OsT) caused by sliding/jump effect [103].
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• Sliding contact and pantograph jump over OCS

Due to the sliding contact between the OCS and suspended pantograph on top of trains during
their movement, the electromagnetic transient events which are a very common phenomenon can
reduce the effective voltage and continuity of train operation. By increasing the operational speed
of trains especially in HSR and high-power lines the related problems will get worse. Moreover,
during this interaction, the arcing issue can appear which is detrimental for the signaling system [103].
However, based on the ERPS features we have classified this phenomenon in the radiated interference
indices category which will be discussed in the next sessions. Field measurement of voltage/current
transient caused by sliding contact for 3 kV DC ERPS is illustrated in Figure 13b.

• Inrush current of the locomotive transformer

The very low frequency OsT with less than hundreds Hz typically is connected with ferroresonance
and energization of a power transformer. In the power system, this phenomenon happens when
the system resonance leads to the amplification of low-frequency ingredients of transformer inrush
current [96].

In ERPS especially AC type, this can occur when the unmagnetized transformer of the locomotive
is connected to the OCS. When the onboard train’s transformer is connected to the OCS, an inrush
current issue arises because of the nonlinear conditions caused by a saturated transformer [105,106].
A measured inrush current transient in Switzerland is shown in Figure 14. This phenomenon can be
mitigated by suitably sizing and designing transformers and filters.
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• Capacitor bank energization

The capacitor bank energization can arise both in low and medium frequency OsT. The low
frequency OsT in ERPS is more common due to the energization and switching of capacitor
banks [104–106]. Due to the low PF and voltage drop in railway systems, reactive power compensation
using capacitors is prevalent in terms of different compensators as capacitor bank, passive filters,
thyristor-switched capacitor (TSC), static VAR compensator (SVC), and railway power conditioner
(RPC) [107].

2.5. Short Duration rms Variations

These kinds of variations are characterized as the variations in voltage/current for a period
not exceeding one minute. According to occurrence duration, it can be in three forms of an
instantaneous, momentary, or temporary phenomenon. Meanwhile, depending on the reason of
appearance, the variations can be classified into three formats of voltage dips, voltage surge/rises,
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and interruptions [96]. However, the duration of the variations does not meet all the time the values
assigned for the power grid standard due to the special features of ERPS. The measured voltage dip in
Korea and Rome metro lines are represented in Figure 15.

2.5.1. Voltage Dips (Sag)

Voltage dip is a kind of phenomenon when a short duration decrement occurs in rms value
of voltage. This decrement is defined in the range of 10–90% of nominal amplitude. It can be
measured in TPSS and on-board. The reasons for and influencing factors of occurrence in ERPS are as
follows [108–112]:

• During the fault occurrence in the line.
• The high value of starting current absorbed by traction motors.
• Sudden load changes or supplying high-power locomotives.
• TPSS transformers energization.
• The motor blocking caused by the segregation of pantograph and OCS in the vibration situations

or neutral sections.
• TPSS equipment triggering such as lightning, escalator, air-conditioners, heaters, etc.
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Figure 15. Measured voltage dip in Korea. (a) 4-cycle voltage sag signal without a noise [111]; (b) 63%
voltage sag recorded in Rome metro line [101].

2.5.2. Voltage Rises (Swell)

The voltage rises known also as swell are characterized in IEEE 1159-2019 standard as the 10–80%
increment in the rms value of voltage in a short duration of less than one minute [96]. It is infrequent
in comparison to the voltage sag. This phenomenon can be caused in ERPS by different factors like:

• Sudden load changing or supplying high-power locomotives.
• TPSS transformers de-energization.
• The motor blocking caused by the segregation of pantograph and OCD in the vibration situations

or neutral sections.
• TPSS equipment ceasing such as lightning, escalator, air-conditioners, heaters, etc.
• De-energization or disconnecting of high-power loads.

It is worth mentioning that the impacts of voltage swell to the ERPS in comparison to voltage sag
are more hazardous. They can destruct equipment, leading to overheating and loss issues together
with a malfunction on protection devices [108–112]. Figure 16 demonstrates the examples of reported
voltage swell in Korean HSR.
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Figure 16. Measured voltage swell in ERPS. (a) 3 kV DC line in Italy [109]. (b) Korea HSR (G7) [108].

2.5.3. Interruption (InR)

Interruptions have been defined by IEEE 1159-2019 as a short-duration in which the rms voltage
amplitude is less than 10% of nominal voltage [96]. The impressive external determinants in interruption
occurrence are the cutting of the fuse, the operating of the circuit breaker, failure and fault in the
power system equipment, etc. The foremost reason for the short interruption in ERPS is the abrupt
disconnection between the contact wire and pantograph. Losing of data, ruining of susceptible
equipment, unwelcome tripping of protective devices, and relays and malfunction of data processing
equipment are substantial ruinous impacts [3,109,112–114]. Figure 17 demonstrates the example of
measured interruption in 25 kV AC ERPS line of Italy.Energies 2020, 13, x FOR PEER REVIEW 16 of 34 
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Figure 17. The measured interruption in ERPS. (a) Uncontrolled InR in 25 kV AC ERPS line of Italy [112];
(b) Controlled 10 ms InR with smart electric neutral section executer [113].

2.6. Long Duration rms

These kinds of variations are characterized as the variations in voltage/current for a period longer
than one minute. However, due to the instantaneous variation of loads and time-varying features of
ERPS, the duration can be lower in such a system. Depending on the creating factors of the variation,
this phenomenon can be classified into three formats of overvoltage, undervoltage, and sustained
interruption [96].

2.6.1. Overvoltage (OvG)

When the system voltage increments and exceeds the higher limit of the designed nominal rate,
it is known as an overvoltage situation. This phenomenon is in the range of a 10–20% increase in rms
voltage less with a duration longer than 1 min [96]. However, it should be noted that the maximum
allowed overvoltage in ERPS is 20%. Based on [99], more than 16% of malfunctions in electric power
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systems are originated from overvoltage. However, the time/location-varying traction load in ERPS
has made it more prone to accept such a phenomenon. Figure 18a illustrates the overvoltage situation
during the braking of trains in Metro de Medellin. Various influencing factors can lead to overvoltage
occurrence in ERPS as [6,12,115–119]:

• Voltage increase in the OCS in the case of regenerative braking and lack of consumer trains in
the network.

• The interlinkage of system harmonics and pantograph impedance and created resonances.
• System instabilities.
• Oscillations happening in the onboard controllers.
• Automatic passing of neutral zones.
• Impedance unconformity at the inverter and traction motor terminals.
• Lightening overvoltage.
• Switching or other atmospheric phenomena.
• Functioning of split-phase breakers in case of phase changing procedure.
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Figure 18. The measured overvoltage and under voltage in ERPS. (a) Overvoltage situation during
braking of trains in Metro de Medellin without dissipating resistance [117] (b) Voltage drop/undervoltage
in 25 kV ERPS [120]. (c) Simulated voltage drop across the Rome–Florence HSR line.

The overvoltage can damage electronic equipment, traction, and compressor motors located in
the trains and the insulators. It can also cause malfunction and failure on protection and relays.

2.6.2. Undervoltage (UvG)

When the system voltage decrements and exceeds the lower limit of the designed nominal rate,
it is known as undervoltage (UvG) situation. According to IEEE 1159-2019, this phenomenon is in
the range of a 10% to 20% decrease in rms voltage less with a duration longer than 1 min. However,
it should be noted that the minimum allowed voltage drop or undervoltage situation in ERPS is
−33% [1]. Therefore, ERPS can tolerate most of these UvG situations. The analysis of voltage drops in
ERPS is important for all rating, design, and planning stages to confirm that even under the worst
situation, the voltage at the pantograph satisfies the related standards [120–123]. In DC ERPS, voltage
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drops are assigned just by the resistive component of the line, omitting the transient phenomena.
On the other hand, the AC ERPS lines are affected not only by the resistive component but also by the
inductive voltage drop and the reactive power included in the system. Meanwhile, the type of DC
power supply including unilateral, bilateral, single-point parallel, and multi-parallel connections can
influence the voltage drops [1]. Figure 18b,c show the voltage drop situation over the distance from
TPSS in 25 kV AC and 3 kV DC ERPS, respectively.

2.6.3. Interruption Sustained (InRS)

The decrement of the voltage to less than 10% of the nominal value for a duration of more than one
minute is characterized as sustained interruption [96]. Like short interruption, this phenomenon can be
caused by some influencing factors like operating of the fuses or circuit breaker, failure, and fault in the
line equipment undesirable tripping of protective devices and relays [101,109,112–114]. In Figure 19
sustained interruption with periods of about 3.5 min, which has been occurred at the substation of
Rome subway is demonstrated.
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Figure 19. The measured sustained interruption with 3.5 min duration in Rome metro line [101].

2.7. Voltage Fluctuation (Flicker)

Voltage Fluctuations are characterized as the change in nominal voltage in the range from 0.1 to
7% with frequencies less than 25 Hz. The time-varying specification and abrupt load changes in ERPS
can lead to a fast variation of the traction current results in sudden changes of OCS voltage known
as voltage flicker. The voltage flicker can have resulted in light flickering, destruct the equipment,
unwanted triggering of relays, and protection devices. The currents flowing in ERPS equipment may
lead to pulsating forces with high amplitude and which can be potentially harmful to TPSS equipment.
Static frequency converters (SFC), the operation of high-power traction motors, and arcing equipment
are the main reasons for flicker occurrence [41,124–126]. Figure 20 demonstrates the examples of
measured short and long duration voltage flicker in ERPS TPSS.
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2.8. Waveform Distortion

Waveform distortions are characterized as a steady-state deflection from an ideal fundamental
power frequency sinusoidal. According to IEEE 1159-2019, there are five different forms of waveform
distortion as harmonics, inter-harmonics, DC offset, notch, and noise. Due to the importance of the
harmonic issue in ERPS, we classified and discussed the first two forms separately in harmonic sections.

2.8.1. DC offset

The existence of a dc component in voltage or current in the AC side is characterized as dc
offset. In ERPS, the most popular time to occurrence of this phenomenon is controlling 4QCs with
indirect current control methods [127,128]. Meanwhile, in the six-step mode control of permanent
magnet machines, the difference between the positive and negative half-cycle length can lead to this
phenomenon on the AC side [129]. DC offset can cause DC magnetization of magnetic equipment,
saturate the transformers, enhance heating problems, stressing of insulation. It can also impact the
stability of 4QCs.

2.8.2. Notch

The notch is a kind of voltage disturbance which can be occurred mostly by power electronics
devices. Technically, it can be generated by the synchronous transition of two semiconductors
persisting on the equal dc output terminal for a short time period, when two out of three of the ac
inputs are short-circuited. This can be found especially in voltage source converters controlling by SVM
modulation technique which drives traction motors. Meanwhile, this phenomenon can be originated
in 4QC drives [3,71,111]. Based on its specification, this phenomenon can be found in both transient
and oscillation forms. In addition, due to the periodic situation and frequency oscillation features it
can be classified as harmonic distortions. However, implementing high capacitors or batteries can
mitigate this phenomenon.

2.8.3. Noise

According to IEEE 1159-2019, noise is characterized as an undesirable electric signal with contents
lower than 200 kHz which can be imposed on the voltage/current of conductors [96]. In ERPS, it can be
occurred by power electronic devices, control circuits, arcing equipment, and traction locomotives with
onboard rectifiers. Meanwhile, impulsive noise and radio frequency (RF) noises have been addressed
in some papers [100,130–132] as electromagnetic transients caused by the sliding contact between the



Energies 2020, 13, 6662 20 of 35

OCS and the pantograph. The common amplitude of the noise is lower than 0.01 p.u of the voltage
magnitude. The communication and signaling systems in ERPS are the most vulnerable parts which
are at risk and damage. Utilizing filters and isolation systems, this phenomenon can be mitigated.
Due to the high potential of ERPS associated with electromagnetic noises, this phenomenon has been
covered and categorized in the conductive electromagnetic interference group.

2.9. Electromagnetic Interference (EMI)

Electromagnetic interference (EMI) is characterized as a phenomenon in which an electromagnetic
field (EF) interposes with another, cause to the contortion of both fields. In other words, electromagnetic
coupling between a source of interference and a general sufferer system is demonstrated whenever
an interlinkage happens between the EF produced by the source and the sufferer system. As a
consequence, initiating a transfer of energy between them unfavorably modifies the physical features
and performance of the system. EMI and electromagnetic compatibility (EMC) issues play a significant
role in the generic performance of the ERPS and signaling systems. The EMI disturbances in ERPS
can be manifested by formations of current/voltage, electric/magnetic field coupling and they can be
classified into the four types of conduct, inducted, electrostatic, and radiated [1,131–145]. The different
impacts of EMI between ERPS, infrastructure, and circumambient environment are demonstrated in
Figure 21. These EMIs are known as
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• The induced interference voltage because of the inductive/capacitive coupling of three-phase ac
power grid transmission lines nearby to the OCS and TPSS.

• The induced interference voltage by inductive/capacitive coupling of OCS conductors.
• The conducted interference between rails and signaling systems/track circuits.
• The inducted/radiated interference originated by pantograph arcing.

2.9.1. Conducted EMI

Conducted EMI (CEMI) phenomenon occurs when a source and sufferer system share one or
more conductors. CEMI can be produced by injection of distorted current or harmonics into the power
lines from devices with nonlinear features, or by transient overvoltage originated by switching and
atmospheric phenomena [1]. In most ERPS, the running rail conductors are utilized simultaneously as
a return circuit and as the conductors for locomotive detection and signaling systems. In this situation,
the trains and TPSSs which are the source of harmonic currents can interfere with the signaling
system and disrupt the signal of track circuits [1]. The frequency analysis and separation for power
systems and signaling systems together with designing frequency filters are the main procedures
to mitigate this phenomenon. The earth current or known as the stray current is the other type of
foremost conductive coupling that returns currents flow through the earth and re-enter to the rails
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nearby the TPSS especially in DC ERPS. The high amount of currents injected into the soil can lead to
electrochemical corrosion in metal devices buried in the earth. Meanwhile, it can result in high rail to
earth or touch voltage [103,131–136]. Figure 22a shows a simple diagram of stray current phenomena
in DC ERPS. The other form of conducted EMI mentioned in the literature are emissions related to the
PWM converters which drive the train’s induction motors [137]. They can be stimulated and generate
RF noises. Figure 22b shows an example of measured CEMI in PWM 4QC with power factor correction
(PFC) unit.
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Figure 22. Different forms of conducted EMI (CEMI) in ERPS. (a) Simple diagram of stray
current phenomena in DC ERPS. (b) Output measured EMI in 4QC without filter (output
frequency = 15 Hz) [137].

2.9.2. Inducted EMI

Inductive EMI (IEMI) happens when the magnetic flux is related to the source current interface
with a secondary system. ERPS’s lines especially AC types are known as a source of such EMI
phenomenon since they can induce the electromotive force (emf) on the close paralleled conductors.

This longitudinal emf and the induced voltage is one of IEMI impacts. The other type is related
to physical positioning, cause transverse emf to generate considerable audio frequency noise in
communication circuits and power controlling cable networks [131–142]. The measured induced
voltages on a conductor parallel to ERPS for both 1 × 25 kV and 2 × 25 kV are shown in Figure 23.Energies 2020, 13, x FOR PEER REVIEW 21 of 34 

 

  

(a) (b) 

Figure 23. The induced and touch voltage on a conductor parallel to ERPS track. (a) Induced voltage 

based on the distance of the conductor [131]. (b) Induced voltage based on frequency for both 1 × 25 

kV and 2 × 25 kV ERPSs [132]. 

2.9.3. Electrostatic/Capacitance EMI 

Electrostatic EMI (EEMI) can be caused by the production of electrostatic electric fields (EF) and 

happens when an EF source (primary system) has a considerable parasitic capacitance against the 

victim circuit (secondary system), leading to undesirable interference and induced voltage on the 

secondary system [1]. EEMI is executed when the railway lines are close to the interfering OCS lines 

(inducing EF source) and the conductors in the line (rails, signaling and telecommunication cables, 

metal objects) receiving interference. The noise generated by EEMI becomes more critical in the case 

of a high voltage supply. EEMI has been reported mostly during the regenerative braking of trains in 

field test measurements with frequencies ranged 8–20 kHz and the maximum transient rail current 

amount of 10 A [131,132]. It can be categorized in static type, where the conductors of a system with 

high-voltage make a potential divider toward the capacitors to earth or other metal objects, and 

dynamic type, where a sudden change in voltage or inherent track admittance like charging and 

discharging of capacitors or switching semiconductors may cause CdV/dt currents [131,132]. The 

diagrams of both static and dynamic EEMI are displayed in Figure 24 marking capacitor coupling 

between wires, ground, and metal subjects closed. 

Metal fence

F

M

CG

MF

RRM

 

 

(a) (b) 
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Figure 23. The induced and touch voltage on a conductor parallel to ERPS track. (a) Induced voltage
based on the distance of the conductor [138]. (b) Induced voltage based on frequency for both 1 × 25 kV
and 2 × 25 kV ERPSs [139].
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2.9.3. Electrostatic/Capacitance EMI

Electrostatic EMI (EEMI) can be caused by the production of electrostatic electric fields (EF) and
happens when an EF source (primary system) has a considerable parasitic capacitance against the
victim circuit (secondary system), leading to undesirable interference and induced voltage on the
secondary system [1]. EEMI is executed when the railway lines are close to the interfering OCS lines
(inducing EF source) and the conductors in the line (rails, signaling and telecommunication cables,
metal objects) receiving interference. The noise generated by EEMI becomes more critical in the case of
a high voltage supply. EEMI has been reported mostly during the regenerative braking of trains in
field test measurements with frequencies ranged 8–20 kHz and the maximum transient rail current
amount of 10 A [131,132]. It can be categorized in static type, where the conductors of a system with
high-voltage make a potential divider toward the capacitors to earth or other metal objects, and dynamic
type, where a sudden change in voltage or inherent track admittance like charging and discharging
of capacitors or switching semiconductors may cause CdV/dt currents [131,132]. The diagrams of
both static and dynamic EEMI are displayed in Figure 24 marking capacitor coupling between wires,
ground, and metal subjects closed.

Energies 2020, 13, x FOR PEER REVIEW 21 of 34 

 

  

(a) (b) 

Figure 23. The induced and touch voltage on a conductor parallel to ERPS track. (a) Induced voltage 

based on the distance of the conductor [131]. (b) Induced voltage based on frequency for both 1 × 25 

kV and 2 × 25 kV ERPSs [132]. 

2.9.3. Electrostatic/Capacitance EMI 

Electrostatic EMI (EEMI) can be caused by the production of electrostatic electric fields (EF) and 

happens when an EF source (primary system) has a considerable parasitic capacitance against the 

victim circuit (secondary system), leading to undesirable interference and induced voltage on the 

secondary system [1]. EEMI is executed when the railway lines are close to the interfering OCS lines 

(inducing EF source) and the conductors in the line (rails, signaling and telecommunication cables, 

metal objects) receiving interference. The noise generated by EEMI becomes more critical in the case 

of a high voltage supply. EEMI has been reported mostly during the regenerative braking of trains in 

field test measurements with frequencies ranged 8–20 kHz and the maximum transient rail current 

amount of 10 A [131,132]. It can be categorized in static type, where the conductors of a system with 

high-voltage make a potential divider toward the capacitors to earth or other metal objects, and 

dynamic type, where a sudden change in voltage or inherent track admittance like charging and 

discharging of capacitors or switching semiconductors may cause CdV/dt currents [131,132]. The 

diagrams of both static and dynamic EEMI are displayed in Figure 24 marking capacitor coupling 

between wires, ground, and metal subjects closed. 

Metal fence

F

M

CG

MF

RRM

 

 

(a) (b) 

Figure 24. The static and dynamic electrostatic (EEMI) in ERPS. (a) Static EEMI. (b) Dynamic EEMI. 

2.9.4. Radiated EMI 

One of the foremost common phenomena in ERPS especially in HSR is radiated EMI (REMI) 

known also as arcing. The interlinkage between the pantograph and contact wire or between the 
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Figure 24. The static and dynamic electrostatic (EEMI) in ERPS. (a) Static EEMI. (b) Dynamic EEMI.

2.9.4. Radiated EMI

One of the foremost common phenomena in ERPS especially in HSR is radiated EMI (REMI)
known also as arcing. The interlinkage between the pantograph and contact wire or between the
train’s brushes and the third or fourth rail in ERPS and neutral intersection points are the main
influencing factors and environments in creating REMI. To put it another way, loss of mechanical
touch between a train and supplying wires because of excessive shaking and disturbances at ERPS
tracks, the electric arc can occur. Even though the duration of this phenomenon is so short, it is
highly nonlinear features lead to distorted currents with RF spectra that makes radiated emissions.
The arcing issue can distort voltages and currents of ERPS and produce different kinds of transient
problems [131–145]. Meanwhile, they can create DC components in AC points which may breakdown
of dielectrics. However, the foremost issue caused by REMI is an intervention in the wireless or
radio-based telecommunication systems, traction power, and signaling system. Various factors like
train speed, absorbed current, inductance feature of OCS, network power factor, etc., can impact the
arcing phenomenon. Figure 25a,b show examples of pantograph and brush-based arcing phenomenon
in ERS.
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Figure 25. Arcing phenomenon and measured radiated emission in ERPS. (a) Pantograph arcing.
(b) Brush arcing. (c) The measured electric field emission in the range frequency of 30 MHz to 1 GHz
with train positions on ground and viaduct [145].

The impact of arc in ERPS can be either as radiated or inducted. The radiated EMI type which
is discussed in this section is related to the high-frequency part of the pantograph current transient.
The inducted type which is related to the low-frequency part of the pantograph current transient is
discussed in OsT section. Figure 25c illustrates the measured radiated electric field emission by the
pantograph-catenary interaction in the two train positions (viaduct and ground) at 10 m position. As it
is obvious in the figure, the frequency band of REMI, in this case, is in the range of 30 MHz to 1 GHz.
To have a comprehensive review and appropriate categorization of all mentioned phenomena, the PQ
phenomena organized chart is presented in Figure 26. This figure illustrates the overview of the main
PQ phenomena together with their different types in ERPS.Energies 2020, 13, x FOR PEER REVIEW 23 of 34 
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3. Investigation of PQ Phenomena Occurrence Based on ERPS Type

Railway electrification has experienced a significant modification and evolution process over
time. A sharp increase in population growth and enhanced demand for high-power and high-speed
transport together with historical, geographical, and economic policies and features of the countries,
have led to different structures of ERPSs all around the world. Depending on the configuration of
each ERPS, PQ characteristics and influencing parameters are different. In this section, a brief review
of various ERPSs configurations together with the classified reported PQ phenomena in literature
based on supplying system type are presented. As mentioned, at the beginning of the ERPS the
transformer-based TPSS were prevalent and popular. They were based on the DC supplying system
which feeds DC motors directly. The TPSSs in such an ERPS is resourced with the three-phase
multiple pulse rectifiers to cover the locomotive’s energy. They lead to a wide spectrum of harmonics.
However, in addition to the harmonic problems, voltage fluctuations, voltage imbalance, voltage
drops, and other transient events are reported in different DC TPSS around the world. Meanwhile,
the brush-based arcs and the EMI based problems due to the stray currents are the other issues of DC
ERPS. Inventing advanced PE-based DC TPSS and taking benefits of bidirectional switches, the DC
voltage regulation, allowing the regenerative braking energy harvesting of trains, reduction of voltage
drop and voltage fluctuation has occurred. With the growing developments of power technologies and
electrical motors, the AC transformer-based TPSS were appeared and got popular. The 1 × 25 kV simple
and back feeder based structures are initial configurations have been adopted. The main problem of
these systems is voltage and current imbalance due to the single-phase feeding systems. Furthermore,
the LPF, harmonics, transient problems, and EMI issues, and telecommunication interfaces regarding
the return currents are other forms of PQ indices that have been reported in the literature. To decrease
the return current of rail and mitigate EMI issues, the booster transformer (BT) based 1 × 25 kV ERPS
was presented. However, the large arcing and voltage drops in BT sections could cause essential
damage to the OCS. Further, the BT sections reduce the operating speed of trains. Motivated by
these problems, the autotransformer based 2 × 25 kV ERPS has been employed. Reducing inductive
and telecommunication interfaces, voltage drops, and arcing problems are the foremost features of
these systems. Nonetheless, LFO and HI issues regarding the high-speed 4QC based locomotives
and impedance interplay among the system and trains are the fundamental obstacles of these ERPS.
To decrease the arcing problems and enhance the functioning speed of trains close the TPSSs the
specialists provided a new ERPS topology with a lower number of neutral sections and insulating
areas. They are known as co-phase system. Disregarding the converter performance in the co-phase
ERPS configuration, the PQ issues are like other traditional ERPS except arcing and related problems
which have been reduced. During the development of AC industrial frequency-based ERPS, several
countries like Germany, Norway, Sweden, Austria, and Switzerland employed the 16.67 Hz ERPS
using RFC. The main critical issues of such an ERPS are stability and transient problems owing to the
synchronously coupled motor and generators. Furthermore, the modern kind of frequency converter
termed the static frequency converter (SFC) comprises high-frequency harmonics and HR and HI
phenomena. In addition, a wide range of perturbation among SFC and RFC manifest during their
parallel functioning. However, as a consequence of the PE-based equipment, SFC can mitigate the
system imbalance, control power factor, and regulate voltage.

With the rapid developments of power electronics and high-voltage switches, a new ERPS
structure called advanced co-phase system is presented. Due to the three-phase to single-phase
converter and their capability in controlling output voltage and currents, these types of ERPS can
compensate harmonics, imbalance, and PF. Meanwhile, with the elimination of neutral zones, the arcing
problems and other related voltage variation can be suppressed. In some cases, the three-phase to
single-phase converters are based on the modular multilevel converter either direct (AC/AC) or indirect
(AC/DC/AC). The MMC based ERPS is connected directly to the utility grid via the three-phase side of
MMC. These systems symmetrically transfer active power from the three-phase grid to the single-phase
OCS which leads to compensate NSC and harmonics and improve PF simultaneously. Eliminating
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bulky traction transformers, integrating of OCS, and removing the neutral sections which lead to obviate
the arcing problems and voltage fluctuation and transients are the advantages of mentioned ERPS.
To have a quick review and appropriate classification of all mentioned ERPS structures, the related
organized chart is provided in Figure 27. This figure illustrates a comprehensive classification of ERPS
types based on internal configuration.
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4. Discussion and Classification

Choosing the right method to mitigate PQ issues requires comprehensive knowledge and
identification of main sources, the characteristics, influencing factors, and occurrence environment.
Unlike the power grid, for which numerous standards and resources have been developed, the ERPS
suffers from a lack of a comprehensive and all-encompassing resource. As discussed before, by the
proliferation and development of ERPSs, different forms of PQ phenomena emerge. Generally
speaking, all kinds of ERPS can be categorized according to their internal configuration in two groups,
transformer-based and modern power electronic converter based. The first category known as the
most popular and predominant system is the preference of experts in the designing stage due to the
lower expenditure costs and effortless operation. However, as evaluated in a specific framework,
these systems deal with many PQ issues which even may enhance their costs remarkably. Meanwhile,
as a perspective view and compatibility evaluation with future smart grid-based ERPS, power flow
control in these ERPSs contain many complexities and difficulties.

On the contrary, the second group ERPSs taking advantage of the modern converter have not
only admirable performance in terms of power quality but also significant potential to achieve future
smart grid-based networks. However, the high cost of PE converters is still a basic weak point for
this type which has led them to remain in the theoretical stage for the time being and prevents the
developments and implementation of these systems. The overall classification of PQ phenomena based
on the sources, ERPS system structure, and the probability of occurrence together with an overview of
some main studies which have been carried out in each index are provided in Table 3.
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Table 3. Reported classified PQ indexes in different ERPS.

Phenomena Type Causes and Sources System Type & References

Unbalance
VUF single-phase power supply, asymmetric faults AC 1 × 25 kV [30], AC 2 × 25 kV [37,41]

CUF single-phase power supply, asymmetric faults AC 2 × 25 kV [31,41], AC 1 × 25 kV [33],
AC 15 kV-16.67 Hz [36]

Harmonics

LOH background harmonics, train internal
harmonics, DC rectifier substation

AC 1 × 25 kV [24,44–47], AC 2 × 25 kV
[42,43], LVDC [29,48,50], MVDC [49,51]

InH AC motors controlled by variable frequency
drives, onboard PWM converters

AC 1 × 25 kV [54,55], 2 × 25 kV [53],
15 kV-16.67 Hz [52], MVDC [53]

LFO impedance mismatch between the railway
network and PWM trains, rotary converter

AC 1 × 25 kV [59–62], 2 × 25 kV [64,65]
15 kV-16.67 Hz [56–58], MVDC [63]

HR interaction of current harmonics and internal
resonance of LC circuit of OCS

AC 1 × 25 kV [71–75], 2 × 25 kV
[66–70,76,79], 15 kV-16.67 Hz [77]

HI

interaction between high switching frequency
of PWM converters in modern trains and

internal resonance of OCS, high-frequency
specifications of the closed-loop control system

for 4QC

AC 1 × 25 kV [85,86], 2 × 25 kV [80,82,84],
15 kV-16.67 Hz [81,87], MVDC [82]

Low Power
Factor LPF

overlap commutation angel in conventional
rectifier, inductive reactance features of the

OCS, supplying sections with different phase

AC 1 × 25 kV [89,90,95], 2 × 25 kV [92–94],
15 kV-16.67 Hz [88], MVDC [12],

LVDC [12,51]

Transient events

ImT

lightening, switching of circuit breakers,
abnormal changing in tractive efforts, sliding

contact between pantograph and OCS, passing
neutral zone

AC 1 × 25 kV [99,100], 2 × 25 kV [97],
15 kV-16.67 Hz [98], MVDC [99,102],

LVDC [101,102]

OsT

changing in operational condition and
modulation patterns, sliding contact and

pantograph jump over OCS, inrush current of
locomotive transformer, capacitor bank

energization

AC 1 × 25 kV [106,111], 2 × 25 kV [1],
15 kV-16.67 Hz [105], MVDC [103,104],

LVDC [103,104]

Short duration
rms variation

Sag fault occurrence, high current absorbed by
traction motors, sudden load changes or

supplying high-power locomotives,
TPSS transformers

energization/de-energization, motor blocking
caused by the segregation of pantograph and

OCS, neutral sections,
TPSS equipment triggering

AC 1 × 25 kV [108,111,112], 2 × 25 kV [110],
15 kV-16.67 Hz [105,109], MVDC [109]

Swell

AC 1 × 25 kV [108,111,112], 2 × 25 kV [110],
15 kV-16.67 Hz [105,109], MVDC [109]

InR

train passes NZ, pantograph bounce operating
of the circuit breaker, failure, and fault,

abruptly disconnection between the contact
wire and pantograph

AC 1 × 25 kV [108,109,112,113], 2 × 25 kV
[108,113], 15 kV-16.67 Hz [109],

MVDC [109], LVDC [3,114]

Long duration
rms variation

OvG

regenerative braking and lack of consumer
trains, resonance, system instabilities, passing
of neutral zones, lightning, switching or other

atmospheric phenomena, functioning of
split-phase breakers

AC 1 × 25 kV [99,115], 2 × 25 kV [12,116],
15 kV-16.67 Hz [6], MVDC [117],

LVDC [117,118]

UvG
Type of line (unilateral, bilateral, . . . ),
high traffic of line, resonance, system
instabilities, passing of neutral zones,

AC 1 × 25 kV [122], 2 × 25 kV [120,121],
15 kV-16.67 Hz [123], MVDC [1,122],

LVDC [1,117,122]

InRS

Train passes NZ, pantograph bounce operating
of the circuit breaker, failure, and fault,

abruptly disconnection between the contact
wire and pantograph

AC 1 × 25 kV [108,109,112,113], 2 × 25 kV
[108,113], 15 kV-16.67 Hz [109],

MVDC [109], LVDC [3,114]

Voltage
fluctuation

(Flicker)
FlK

time-varying specification, abrupt load changes
in ERPS, static frequency converters, operation

of high-power traction motors,
arcing equipment

AC 1 × 25 kV [41,108,124,125], 2 × 25 kV
[108], 15 kV-16.67 Hz [124], LVDC [124]

Waveform
distortion

DC offset
indirect current control method of 4QCs,
inequality of the positive and negative

half-cycle length in six-step mode control

AC 1 × 25 kV [127,129], 2 × 25 kV [127,129],
15 kV-16.67 Hz [127], MVDC [127],

LVDC [128]

Notch
power electronics devices, 4QC drives,

abruptly disconnection between the contact
wire and pantograph

AC 1 × 25 kV [45,71,111], 2 × 25 kV [18,111],

Noise

power electronic devices, control circuits,
arcing equipment and traction locomotives

with onboard rectifiers, sliding contact between
the OCS and the pantograph

AC 1 × 25 kV [100,131,132], 2 × 25 kV [100],
15 kV-16.67 Hz [131,132], MVDC [130],

LVDC [130–132]
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Table 3. Cont.

Phenomena Type Causes and Sources System Type & References

Electromagnetic
Interference

CEMI

injection of distorted current or harmonics into
the power lines from devices with nonlinear
features, transient overvoltage originated by

switching and atmospheric phenomena, return
current flowing through earth

AC 1 × 25 kV [1,134,137], 2 × 25 kV
[1,134,137], 15 kV-16.67 Hz [1,137,140],

MVDC [1,135,136,145], LVDC [1,135,145]

IEMI
Interfacing of magnetic flux related to the

source current with a secondary closed system,
physical positioning causing transverse emf

AC 1 × 25 kV [1,134,138,139,143,144],
2 × 25 kV [1,138,139,142–144],

15 kV-16.7 Hz [1,138,140]

EEMI

production of electrostatic electric fields,
capacitive interference between closed

conductors and earth, the sudden change in
voltage or inherent track admittance causing

charging and discharging of capacitors or
switching semiconductors

AC 1 × 25 kV [1,133], 2 × 25 kV [1,133],
15 kV-16.7 Hz [1,133]

REMI

The interlinkage between the pantograph and
contact wire or between the train’s brushes and

the third or fourth rail, neutral
intersection points

AC 1 × 25 kV [1,143], 2 × 25 kV [1,143],
15 kV-16.7 Hz [1], MVDC [103,136,145],

LVDC [103,145]

5. Conclusions

Since the start of railway electrification, ERPSs have experienced substantial modifications
and developments. This diversity including the types of railway power supply systems, AC or
DC-based power supply, the types of converters adopted in trains and TPSS, controlling and drive
systems, and the dedicated frequency has led to various power quality issues reported all around
the world. Furthermore, the lack of specific standards and encompassing resources dedicated to
ERPS has increased the obscurity and complexity of its PQ. In this paper, a comprehensive review of
PQ phenomena in terms of characteristics, influencing factors, and occurrence sources in different
configurations of ERPSs is proposed and a systematic classification is presented. Meanwhile, a detailed
review of the reported PQ phenomena in the literature is classified. Unbalance of system, various
types of harmonics, low power factor, different aspects of transients events, and waveform deviations,
with EMI are addressed with details as the outstanding indexes. Classifying and assessing of diverse
transformer-based and PE modern converter based ERPS exposed that the latter types are more
efficient and have good performance regarding the PQ issues. Moreover, due to the suitable power
flow capability and possible connection to the weak utility networks, which can mitigate and reduce
the PQ issues significantly, the converter based ERPS are realized as an appropriate option for smart
grid-based future studies of ERPS.
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