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Abstract: Data-driven methods are widely applied to predict the remaining useful life (RUL) of
lithium-ion batteries, but they generally suffer from two limitations: (i) the potentials of features
are not fully exploited, and (ii) the parameters of the prediction model are difficult to determine.
To address this challenge, this paper proposes a new data-driven method using feature enhancement
and adaptive optimization. First, the features of battery aging are extracted online. Then, the feature
enhancement technologies, including the box-cox transformation and the time window processing,
are used to fully exploit the potential of features. The box-cox transformation can improve the
correlation between the features and the aging status of the battery, and the time window processing
can effectively exploit the time information hidden in the historical features sequence. Based on this,
gradient boosting decision trees are used to establish the RUL prediction model, and the particle
swarm optimization is used to adaptively optimize the model parameters. This method was applied
on actual lithium-ion battery degradation data, and the experimental results show that the proposed
model is superior to traditional prediction methods in terms of accuracy.

Keywords: lithium-ion battery; remaining useful life; gradient boosting decision trees; the box-cox
transformation; time window; particle swarm optimization

1. Introduction

With the global energy crisis and environmental pollution problems intensifying, electric vehicles
have been rapidly promoted by countries around the world for their advantages of high efficiency,
energy saving, low noise and zero emissions [1,2]. Due to the high energy density, high cell voltage,
low self-discharge rate and long life, lithium-ion batteries are widely used in power systems of electric
vehicles [3,4]. But with degradation, the battery will face many issues (capacity degradation, internal
resistance increase, etc.), which will have a significant impact on the mileage and safety of electric
vehicles. The remaining useful life (RUL) can indicate the remaining time before the battery needs
to be replaced, and an alarm can be issued before the fault reaches a critical level, so that timely
maintenance can be performed to prevent malfunction, or even catastrophic failures [5,6]. Therefore,
the prediction of RUL has become a research hotspot in the prognostics and health management of the
lithium-ion battery, and it is also one of the important goals for the battery management systems of
electric vehicles [7].
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In recent years, many methods have been proposed for battery RUL prediction, which can
be roughly divided into two categories: model-based methods and data-driven methods [8].
The model-based methods predict battery RUL based on a physical model or a mathematical model [9].
Remmlinger et al. [10] improved the second-order RC equivalent circuit model, and then combined
special load signals (transient voltage, current during engine start-up) and the linear least squares
method to obtain the internal resistance. Based on the internal resistance, the battery’s aging status was
captured. Ramadass et al. [11] proposed a battery decay model based on electrochemical principles.
In this model, the growth of a solid–electrolyte interface film was considered, which is associated
with capacity fading and active lithium-ion consumption. In addition, many empirical model-based
methods have also been developed. Xian et al. [12] employed the verhulst model, particle swarm
optimization, and particle filter to estimate the RUL of batteries. He et al. [13] established an empirical
model based on the physical degradation behavior of lithium-ion batteries. They initialized the model
parameters by the Dempster–Shafer theory, and updated the model parameters using the Bayesian
Monte Carlo method. The model-based methods can approximately reflect the dynamic and static
characteristics of the battery, but choosing a suitable physical or mathematical model requires a large
amount of domain knowledge [14]. Moreover, as the operating conditions (e.g., power, temperature)
change, the complex coupled nonlinear partial differential equations need to be frequently solved [15],
and the simplified methods of this solution process are difficult to implement [16,17]. These factors
limit the application of model-based methods.

The data-driven methods have been popular for battery RUL prediction recently. Unlike the
model-based methods, the data-driven methods are based on large numbers of data, where the deep
understanding of electrochemical principles is not necessary [18]. It mainly includes the support
vector machine [19–21], neural network [22,23], Bayesian method [24,25], random forest [26] and so on.
For data-driven methods, the effectiveness of features and the performance of regression algorithms
can greatly affect the accuracy of the RUL prediction, so they have attracted the attention of many
researchers.

In order to improve the accuracy of RUL predictions, various features have been explored to
capture the degradation of batteries. Goebel et al. [7] used the impedance in the electrode-electrolyte
interface as a feature variable to predict the RUL of the battery. Lee et al. [27] used open-circuit voltage
(OCV) as a feature to estimate the state-of-charge and the capacity. Considering that both internal
resistance and OCV are difficult to measure, some studies tried to capture the aging status of batteries
through external parameters. Wu et al. [23] put the voltage curves during the whole constant current
charge into the neural network model, and established the mapping relationship between the voltage
curve shape and the RUL. Liu et al. [28] extracted the time interval of the discharge voltage difference
for predicting the RUL of the satellite battery. Widodo et al. [29] used the sample entropy of the
discharge voltage as a feature to reflect the health of the battery.

It is worth noting that the existing studies mainly focus on finding new features with superior
performance, but ignore exploiting the feature potential. In fact, if the potential of features can be
fully exploited using feature enhancement technologies, the accuracy of RUL prediction can be further
improved. Specifically, due to the internal and external factors, the degradation process of the battery
is extremely complicated [30,31]. As a result, the relationship between features and RUL is significantly
non-linear, which increases the difficulty of RUL prediction. If the correlation between features and
RUL can be improved, the accuracy of RUL prediction can be improved. In addition, the degradation
of the battery is a continuous process, and the historical cycle states of the battery are critical to the
current RUL prediction. If the time information hidden in the historical cycles can be effectively
exploited, the accuracy of the RUL prediction can be improved.

In order to improve the accuracy of RUL prediction, many studies tried to use advanced machine
learning algorithms to establish the mapping relationship between features and RUL. Wu et al. [23]
combined a feed forward neural network and importance sampling to learn the relationship between
the RUL and charge curves. This algorithm can handle the nonlinearity of a lithium-ion battery well,
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but the neural network requires a large amount of training data, and it is easy to fall into a local
minimum during the solution process. Patil et al. [21] proposed a multistage support vector machine
approach for RUL prediction, where the classification model provided a gross estimation and the
regression model was used for accurate prediction, which can reduce the computational load, but
the performance of support vector machine depends on the choice of kernel functions. Razavi-Far
et al. [26] used battery capacity as the feature and used random forest to predict RUL. However,
due to the randomness of the training process, it is difficult for the random forest method to obtain
stable prediction results. In recent years, the gradient boosting decision tree (GBDT) has developed
rapidly. As a tree-based ensemble algorithm, GBDT only requires very little data and can fit a complex
nonlinear relationship. Studies have shown that GBDT has considerable advantages over traditional
statistical methods [32]. In our previous work, GBDT has been successfully applied in the battery
RUL prediction. However, the disadvantage of GBDT is that its parameter selection is difficult. Some
parameters (the number of trees, the learning rate, the number of leaf nodes) determine the structure
and training method of the model, which affects the prediction performance. In order to fully realize
the potential of GBDT, it is necessary to develop appropriate strategies to determine the parameters.

Inspired by the above discussion, this paper presents a new data-driven method for battery RUL
prediction. We first extract the raw features online from the voltage signal that reflect the aging state of
the battery. Then, the feature enhancement technologies, including the box-cox transformation and
the time window processing, are used to fully exploit the potential of features, where the box-cox
transformation is used to enhance the correlation between features and RUL, and the time window
processing is used to deeply exploit the time information hidden in the sequence of historical cycles.
In addition, based on the extracted features, GBDT with strong regression ability is used to establish the
RUL prediction model, and the particle swarm optimization (PSO) is adopted to adaptively optimize
the model parameters.

In our previous work [33], the time window and GBDT were proposed for the RUL
prediction of lithium-ion batteries. Compared with the conference version, this paper provides three
new contributions:

• Duration of constant current mode, duration of constant voltage mode and energy of discharge
voltage are extracted as features so that we can capture the degradation of the battery from
various angles.

• The feature enhancement technologies including the box-cox transformation and the time window
processing are proposed to fully exploit the potential of features.

• PSO is introduced to adaptively find the optimal parameters of GBDT, which improves the
accuracy and stability of RUL prediction.

The remainder of this paper is organized as follows. In Section 2, we introduce the proposed RUL
prediction framework and related technical algorithms. In Section 3, the battery data set is introduced.
Additionally, the validity of the raw features and the box-cox transformation is presented. In Section 4,
the optimization process of PSO is shown, and experiments in various cases prove the accuracy and
reliability of the proposed method. The conclusion and prospects are given in Section 5.

2. Proposed Approach

2.1. Framework

The data-driven RUL prediction method proposed in this paper is shown in Figure 1. The method
uses features extracted from the real-time voltage curves of the battery to predict the RUL, which is
suitable for online scenes. In addition, the feature enhancement technologies and the machine learning
algorithm with powerful regression capabilities are used. This method can perform accurate RUL
prediction, and it contains two steps: a training step and a prediction step.
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Figure 1. Schematic of the proposed method for lithium-ion battery remaining useful life (RUL)
prediction.

In the training step, duration of constant current mode (CCD), duration of constant voltage mode
(CVD) and energy of discharge voltage (VCE) are extracted from the training data as raw features.
After filtering and normalizing the extracted features, the feature enhancement technologies are used
to fully exploit the potential of features, including the box-cox transformation and the time window
processing. These data are then used to train the PSO-GBDT model. During the training process,
the optimal parameters of the model are adaptively optimized, including the number of trees M,
learning rate ξ and the number of leaf nodes N.

In the prediction step, CCD, CVD and VCE are extracted online from the voltage curves of the
battery to be measured. After the same filtering and feature enhancement operations as in the training
step (using the same parameters), the final feature data is fed into the trained PSO-GBDT model to
obtain the predicted value of RUL.

2.2. Raw Feature Extraction and Correlation Analysis

Considering that the internal characteristics change during battery aging, and this change can
be reflected by external parameters, we extract CCD, CVD and VCE from the voltage curves as the
raw features to capture the aging status of the battery, where the battery is charged with a constant
current-constant voltage (CC-CV) mode [34] and discharged with a constant current (CC) mode.

CCD is the duration of CC charging mode, which is a direct indicator of the battery’s charging
capacity in CC mode, and it reflects the polarization of the battery to a certain extent. CVD is the
duration of constant voltage (CV) charging mode, and its size can reflect the difficulty level of the
lithium-ion intercalation process [31]. VCE is the measure of signal strength of the discharge voltage
signal over time, and is calculated by

VCE =

+∞∫
−∞

|x (t)|2dt (1)

where x is the voltage signal and t is time.
Figure 2 shows the extraction methods of CCD, CVD and VCE.
To verify the validity of the raw features, in this work, the Pearson correlation analysis [35] is

used to calculate the correlation between the extracted features and actual RUL, and it is calculated by

Corr =
∑n

i=1 (yi − ȳ)
(

RULi − RUL
)√

∑n
i=1 (yi − ȳ)2

√
∑n

i=1
(

RULi − RUL
)2

(2)

where yi and RULi are the feature value and RUL value of the ith observation sample. n is the number
of the samples. The closer the Pearson correlation is to 1 or −1, the stronger the correlation. The closer
the Pearson correlation is to 0, the weaker the correlation.
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Figure 2. (a) Graphical representation of the features CCD and CVD in the charge curve. (b) Extraction
method of feature VCE in the discharge curve.

2.3. Box–Cox Transformation and Time Window Processing

The raw features, such as CCD, CVD and VCE, can reflect the aging of the battery through
its own changing trend. However, due to the complexity of the underlying degradation process of
the battery, the raw features and the aging status do not have a complete linear relationship, which
increases the difficulty in predicting RUL. Therefore, in this paper, we use the box-cox transformation
to enhance the linear relationship between the raw features and RUL and improve the prediction
performance of the features.

The box-cox transformation is a generalized power transform method, which can improve the
additivity, normality and homoscedasticity of raw features.

Let y = (y1, y2, · · · , yn)
′ be the raw feature to be converted by the box-cox transformation;

say, vce = (vce1, vce2, · · · , vcen)
′. Mathematically, the box-cox transformation takes the following form

y(λ) =

{
yλ−1

λ , λ 6= 0
ln y, λ = 0

(3)

where λ is the transformation parameter to be identified, and different λs correspond to different
transformations. Note that the transformation is only valid for yi > 0, i = 1, 2, · · · , n, and modifications
have to be made when negative raw features are present.

In the box-cox transformation, parameter λ needs to be determined to ensure the usual
assumptions for linear model hold, which is y(λ) ∼ N

(
Xβ, σ2 I

)
and can be expressed as{

y(λ) = Xβ + e
e ∼ N

(
0, σ2 I

) (4)

where X is the regression independent variable, which in this paper refers to the RUL; β is the set of
parameters associated with the y(λ); and e = (e1, e2, · · · , en) is the error term.

We use the maximum likelihood (ML) method [36] to determine λ. Since y(λ) ∼ N
(
Xβ, σ2 I

)
,

for a fixed λ, the likelihood function of β and σ2 is

L
(

β, σ2
)
=

1(√
2πw

)2 exp
{
− 1

2σ2

(
y(λ) − Xβ

)′ (
y(λ) − Xβ

)}
J (5)

where J is the transformed Jacobi determinant

J =
n

∏
i=1

∣∣∣∣∣dy(λ)i
dyi

∣∣∣∣∣ = n

∏
i=1

yλ−1
i (6)
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Taking the partial derivatives of Equation (5) with respect to β and σ2, and setting each of the
resulting equations to zero yields, we can get

β (λ) =
(
X′X

)−1X′y(λ) (7)

σ̂2 (λ) =
y(λ)

′ (
I − X(X′X)−1X′

)
n

(8)

The log-likelihood function can be expressed as

ln L (λ) = − n
2 ln

[
z(λ)

′ (
I − X

(
X′X

)−1X′
)

z(λ)
]

(9)

where

z(λ) =
(

Z(λ)
1 , · · · , Z(λ)

n

)′
=

y(λ)

J
1
n

(10)

Z(λ)
i =


yλ

i

(∏n
i=1 yi)

λ−1
n

, λ 6= 0

(ln yi)

(
n
∏
i=1

yi

) 1
n

λ = 0
(11)

In order to maximize Equation (5), the Newton’s method is used to find the most suitable λ̂,
and then the corresponding β̂ can be obtained by Equation (7).

In this work, we perform the box-cox transformation on CCD, CVD and VCE to get corresponding
CCDbct, CVDbct and VCEbct, and their transformation parameters are λccd, λcvd and λvce.

To deeply exploit the time information hidden in the historical feature sequence, time window
processing is used. In this process, multiple features from consecutive cycles are packaged into a
window of size S, and the RUL label of each window is the RUL value of the latest unit in it.

Let CCDbct(k), CVDbct(k) and VCEbct(k) be the features of the kth cycle; then, a data set D
containing n cycles can be expressed as

D = {(w1, y1) , · · · , (wn−s+1, yn−s+1)} (12)

where wi is the ith window, as follows:

wi =


CCDbct (i) , · · · , CCDbct (i + s− 1)
CVDbct (i) , · · · , CVDbct (i + s− 1)
VCEbct (i) , · · · , VCEbct (i + s− 1)

 (13)

and yi is the RUL of the ith window.

2.4. Gradient Boosting Decision Trees (GBDT) for RUL Prediction

In this paper, GBDT is used to establish the RUL prediction model. As an ensemble learning
method, GBDT uses multiple decision trees as base learners, and each leaf on a tree has a real score.
GBDT gets the final score by adding predictions of all the trees, and for an input wi, the RUL prediction
result can be expressed as

RULi =
M

∑
m=1

gm (wi) (14)

where, M is the number of decision trees. gm is the mth tree, which divides the input into J disjoint
regions R1m, R2m, · · · , Rjm, and each region corresponds to a prediction value bjm. gm is expressed
as follows
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gm (w) =
J

∑
j=1

bjm I (w) (15)

I (w) =

{
1, w ∈ Rjm
0, w /∈ Rjm

(16)

GBDT uses the gradient boosting strategy for training. It sequentially generates multiple base
models from a weighted version of the training data to strategically find the best combination of
decision trees. In the boosting process, each additional base model is aimed to correct the residuals
made by its previous base models, and the updating equation is as follows

fm (w) = fm−1 (w) + ξ · ρmgm (w) (17)

ρm = arg min
ρ

n

∑
i=1

L (RULi, fm−1 (w) + ξ · ρgm (wi)) (18)

where n is the number of training samples; the loss function L is the squared error function; and ρm

is the gradient descent step size of gm(w). In addition, to prevent overfitting, GBDT introduces the
learning rate ξ to control the contribution of each base model, and ξ ∈ (0, 1].

GBDT is excellent in terms of regression ability, but as a tree-based ensemble algorithm,
the structure and update method of the model has a great impact on its performance, which mainly
includes the three parameters of the number of trees M, learning rate ξ and the number of leaf nodes
N. Therefore, to ensure the performance of the model, we need to optimize these parameters.

Algorithm 1 The training and optimization process of the PSO-GBDT model.

Initialize particle swarm parameters (D, P, C1, C2, ω), and randomly initialize (p, v) for particles.
for j = 1 to Q do

Initialize f0 (x) to be a constant, f0 (x) = arg min
ρ

∑N
i=1 L (yi, ρ).

for m = 1 to M do

for i = 1 to n do

Compute the negative gradient

zim = −
[

σL(yi , f (xi))
σ f (xi)

]
f= fm−1

end for
Fit a tree gm (x) to predict the targets zim from covariates xi for all training data.
Compute a gradient descent step size as

ρm = arg min
ρ

n
∑

i=1
L (yi, fm−1 (x) + ξ · ρgm (xi))

Update the model as

fm (x) = fm−1 (x) + ξ · ρmgm (x)

end for
Get the GBDT fM (x) and evaluate its performance. Compute the fitness pid ,pgd.
Update each particle as

vk+1
id = ωvk

id + C1rand(0, 1)(pid − xk
id) + C2rand(0, 1)(pgd − xk

id)

xk+1
id = xk

id + vk
id

end for
Output the final PSO-GBDT model.
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2.5. Particle Swarm Optimization (PSO) for Model Optimization

In this work, PSO is used to find the optimal combination of these parameters. PSO finds
optimal parameters by simulating foraging behavior of birds. Assume that a particle swarm of P
particles is flying in D-dimensional space. The current position of particle i is xi = (xi1, · · · , xiD)

and the speed is vi = (vi1, · · · , viD). pid = (pi1, · · · , piD) is the current optimal position of particle
i, and pgd = (p1, · · · , pD) is the global optimal position. PSO updates the particle according to the
global optimal position and the individual optimal position as follows.

vk+1
id = ωvk

id + C1rand(0, 1)(pid − xk
id) + C2rand(0, 1)(pgd − xk

id) (19)

xk+1
id = xk

id + vk
id (20)

where ω is the inertia factor, d means the dimension number, k is the iteration number and rand(0, 1)
represents a random number between 0 and 1. C1 and C2 are the acceleration constants; they usually
take the values [0, 4]. Optimized parameters can be obtained after Q iterations. After integrating PSO
and GBDT, the training and optimization process of the RUL prediction model is shown in Algorithm 1.

3. Data Description and Feature Analysis

In this section, the battery data set used in the experiments is introduced. Based on the battery
data set, the raw features and the box-cox transformation are verified.

3.1. Lithium-Ion Battery Data Set

In this work, in order to verify the proposed method, experiments and analysis were performed
on multiple lithium-ion batteries. The battery cycling data were sourced from a publicly available
data set, which is provided by Prognostics Center of Excellence (PCoE) at NASA [37]. This data set
was collected on several commercially available lithium-ion 18650-sized rechargeable batteries based
on NASA’s battery prediction test bed. The test bed contains a power supply, a thermocouple sensor,
a programmable DC electronic load, a voltmeter, an environmental chamber, an electrochemical
impedance spectrometer and a PXI-based data acquisition system. In the aging experiments,
the lithium-ion batteries were cycled in three different modes (charge, discharge and impedance)
at specific temperatures (Batteries #5, #6, #7 and #33 were 24 ◦C; Battery #56 was 4 ◦C) to accelerate
aging. The charging used CC-CV mode. The batteries were first charged to 4.2 V in 1.5 A CC mode,
and then continued to charge in CV mode until the charging current dropped to 20 mA. The discharge
used CC mode. The batteries were discharged at the set current (Batteries #5, #6, #7 and #56 were 2 A;
Battery #33 was 4 A) until the battery voltage dropped to the threshold (2.7 V, 2.5 V, 2.2 V, 2.0 V and
2.7 V for Batteries #5, #6, #7, #33 and #56, respectively). During the charging and discharging process,
the voltage, current, capacity, impedance and temperature of each batteries was collected. When the
rated capacity dropped to the threshold (Batteries #5, #6, #7 and #56 were 1.4 Ah; Battery #33 was
1.6 Ah), the batteries reached the end of life (EOL) and the experiments stopped. The number of cycles
for Batteries #5, #6, #7, #8, #33 and #56 were 168, 168, 168, 197, and 102, respectively. Table 1 lists the
details of these batteries.

Table 1. List of batteries with their operating parameters.

Battery
Number

Charge
Current (A)

Discharge
Current (A)

End Discharge
Voltage (V)

Cut-Off
Capacity (Ah)

Temperature
(◦C)

No of
Cycles

#5 1.5 2 2.7 1.4 24 168
#6 1.5 2 2.5 1.4 24 168
#7 1.5 2 2.2 1.4 24 168

#33 1.5 4 2.0 1.6 24 197
#56 1.5 2 2.7 1.4 4 102
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3.2. Raw Feature Extraction

As the battery degrades, many irreversible electrochemical changes occur inside the battery (such
as the growth of the EIS film), and these changes can be represented by the charging and discharging
characteristics of the battery. Figure 3 shows the charging and discharging curves of Battery #6 at
different cycles. It can be seen that from Figure 3a that as the number of battery cycles increases,
the duration of CC charging mode has a significant downward trend, and the duration of CV charging
mode has a significant upward trend. In view of the obvious regularity of the charging voltage curves
in geometry, we can extract features from the geometric perspective. From Figure 3b we can see that
as the number of battery cycles increases, the discharge voltage at the same moment in each cycle
gradually decreases, and the duration of the CC discharge mode gradually decreases. Therefore, the
concept of signal energy can be used to extract features from the discharge voltage curves.
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Figure 3. (a) Charge curves of Battery #6 at different cycle numbers. (b) Discharge curves of Battery #6
at different cycle numbers.

According to the method introduced in Section 2.2, we extract CCD, CVD and VCE from Batteries
#5, #6 and #7 respectively, and use the sliding window filtering algorithm to filter some obvious outliers.
The numerical ranges of these features may be very different, which will have a great impact on the
model training. Therefore, the features need to be normalized. In this work, Min-Max normalization is
used, which can scale the features to the range of [0, 1]. For the ith value in the jth feature sequence,
the normalization process is shown in Equation (21).

yij =
xij −min

{
xj
}

max
{

xj
}
−min

{
xj
} (21)

Figure 4 shows the raw features variation of Battery #6. It can be seen that, as discussed above,
the CCD and VCE have a significant downward trend as the number of cycles increases. CVD shows
a clear upward trend overall. Note that the CV charging mode stops once the current drops to 20 mA.
There is a certain error in the measurement of CVD due to the small cut-off current and the noise drift
of the current sensor, which causes a local degree of jitter in the CVD curve. Therefore, CCD, CVD
and VCE can be used as features to reflect the aging status of the battery. Additionally, it should be
noted that even though there may be redundant terms in the selected features, they will not affect the
final RUL prediction.
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Figure 4. Before the box-cox transformation, changes of features with cycle numbers in Battery #6:
(a) CCD. (b) CVD. (c) VCE.

3.3. Correlation Enhancement for Features

In the above discussion, we found through a qualitative analysis that there is a correlation between
the raw features and the degree of aging of the batteries. In this section, we use the Pearson correlation
to quantitatively calculate the correlation between the raw features and the RUL, and use the box-cox
transformation to further improve it.

In this work, we define RUL by using the percentage of the remaining charge-discharge cycles in
the total number of cycles. For a battery at Ni cycles, RUL is defined as:

RUL =
NEOL − Ni

NEOL
× 100 (22)

According Equation (2), the Pearson correlations between the raw features and RUL of every
battery are acquired, as shown in Table 2. It can be seen that the Pearson correlation between CCD,
VCE and RUL is close to −1, indicating that they have a strong negative correlation. And the Pearson
correlation of CVD and RUL is close to 1, indicating that they have a strong positive correlation.

Table 2. Calculation results of the Pearson correlation (Corr).

Before the Box–Cox Transformation After the Box–Cox Transformation
Feature #5 #6 #7 Feature λ #5 #6 #7

CCD −0.986 −0.979 −0.980 CCDbct 0.17 −0.988 −0.992 −0.983
CVD −0.958 0.886 0.943 CVDbct 3.3 0.959 0.904 0.946
VCE −0.988 −0.966 −0.988 VCEbct −2.8 −0.995 −0.990 −0.994

We use the box-cox transformation to enhance the correlation between features and RUL. Since
different transformation parameters λ correspond to different transformation formulas, in order
to determine the optimal λ, we use different λ in [−10,10] to transform features and calculate the
corresponding Pearson correlations. The optimization process is shown in Figure 5. Note that the
optimal transformation parameters for the same feature are slightly different in different batteries,
and we chose the mean value as the optimal λ. For CCD, CVD and VCE, the optimal λ are 0.17,
3.3 and −2.8, respectively. We transformed the features based on the optimal λ. Table 2 records the
Pearson correlations after the transformation. It can be found that the Pearson correlations of the
three features are closer to 1 or −1 than before the transformation, which indicates that the box-cox
transformation enhances the correlation between the features and RUL. The transformed features of
Battery #6 are shown in Figure 6. It can be seen that the linearity between the features and RUL has
been improved, which will promote RUL prediction.
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Figure 5. The Pearson correlations between CCD, CVD, VCE and RUL with different transformation
parameters λ: (a) Battery #5; (b) Battery #6; (c) Battery #7.
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Figure 6. After the box-cox transformation, changes of features with cycle numbers in Battery #6:
(a) CCD. (b) CVD. (c) VCE.

4. Battery RUL Prediction with PSO-GBDT Model

In this section, the proposed RUL prediction method is applied to the NASA data set, and several
experiments are designed to verify its effectiveness. The experimental platform is a desktop PC with
an Intel Core i7-9700K 3.60-GHz CPU and 16-GB RAM, and the operating system is Windows 10.

In the following validation, the root mean square error (RMSE) is adopted as the key performance
indicator (KPI) to evaluate the performance of the proposed method. It is given as:

RMSE =

√√√√ 1
N

N

∑
i=1

(
r(i)real − r̂(i)

)2
(23)

where N is the total number of test samples. rreal is the actual RUL, and r̂ is the corresponding
prediction value.

4.1. Model Parameter Optimization with PSO

In order to determine important parameters such as the number of trees M, learning rate ξ

and the number of leaf nodes N in the proposed RUL prediction model, PSO is used for parameter
optimization. We use five particles to form the particle swarm, and randomly initialize their positions
(parameters of GBDT) and velocity parameters. In the process of iterative optimization, we use all
samples of Batteries #5, #6 and #7 to perform a 5-fold cross validation on the proposed model, and
the RMSE results are used to evaluate the fitness of the particles. The iterative optimization process
of the PSO-GBDT model is shown in Figure 7. Figure 7a shows the trajectories of the five particles,
where the X axis is the number of trees M, the Y axis is the learning rate ξ and the Z axis is the number
of leaf nodes N. In the early stage of PSO optimization, a larger velocity inertia coefficient makes the
update step of each parameter larger, which is beneficial to initially find the global optimal region of
the particle swarm. In the later stage of PSO optimization, the velocity inertia coefficient decreased
significantly, and the smaller update step makes each particle gradually approach the global optimal
region of the parameter space.
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Figure 7. The iterative optimization process of the PSO-GBDT model: (a) The trajectories of the five
particles. (b) RMSE results of the 5-fold cross validation experiment.

In Figure 7b, five particles continuously record and update their parameters through self-learning
and mutual learning between particles. In each iteration, the optimal value of the current iteration
is compared with the historical optimal value to continuously update the global optimal value of
the particle swarm. Finally, after 60 iterations, the optimization process is stopped. It can be seen
that during the PSO optimization process, the average RMSE of the 5-fold cross validation gradually
decreases from 2.95 and finally stabilizes to 2.07, which indicates that the adaptive optimization of the
parameters by PSO can significantly improve the prediction accuracy of the GBDT model. Based on
PSO optimization, the important parameters of the GBDT model are shown in Table 3.

Table 3. The important parameters setting of the GBDT model.

Parameter Value Parameter Value

Number of trees 257 Minimum samples split 2.0
Learning rate 0.147 Subsample 1.0

Number of leaf nodes 408 Min samples of leaf 1.0

4.2. Experimental Case 1: Single Battery Data

In order to verify the reliability and accuracy of the proposed RUL prediction model, we first
applied the PSO-GBDT model to Batteries #5, #6 and #7, respectively. For each battery, we selected
70% of the samples as the training set (117 samples), and selected the remaining 30% of the samples
as the test set (51 samples). To generate unbiased samples, the random number generator was used.
Note that this method does not require strong battery consistency. Due to the process factors, the
three batteries in this experiment have different initial capacities, but this method still works. Figure 8
shows the RUL prediction results for Batteries #5, #6 and #7, where panels (a), (c) and (e) show the RUL
prediction values and the corresponding actual values for the three batteries. Panels (b), (d) and (f) are
the absolute errors of the prediction results. The RUL prediction values of the three batteries are very
close to the actual values, and the absolute errors of most sample points are less than 5%. From Table 4,
we can see that the RMSEs of the RUL prediction values for Batteries #5, #6 and #7 are 1.927, 2.496 and
2.142. The small RMSEs also indicate that the proposed RUL prediction method has excellent accuracy.
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Table 4. Root mean square errors (RMSEs) of the RUL prediction results with different methods.

SVM [21] MLP [23] NB [24] RF [26] PSO-GBDT (S = 1) PSO-GBDT (S = 30)

Case1
#5 2.231 3.576 2.975 2.721 1.927 0.391
#6 3.545 4.452 4.014 3.436 2.496 0.728
#7 2.914 3.164 2.862 3.459 2.142 1.062

Case2
#5 3.112 4.272 3.933 3.614 2.801 0.842
#6 4.589 5.215 5.027 4.752 4.113 1.386
#7 3.743 4.287 4.122 3.682 3.283 1.152

Case3
#33 6.254 6.239 6.238 6.140 4.981 3.008

Case4
#56 6.374 6.842 6.952 6.512 5.775 3.459

This work uses a time window to exploit the time information of features. In order to verify the
validity of the time window processing, for each test battery, we adopt the above cross validation
method and increase the time window size S from 1 to 30 for testing. Figure 9a shows the RMSEs of
the RUL prediction results at different window sizes. It can be seen that as the window size grows,
the RMSEs have a significant downward trend, and the RMSEs of the three batteries drop to 0.391,
0.728 and 1.062 when the window size is 30. The small amount of fluctuations is due to the randomness
of the training set and test machine selection. The decrease in RMSE indicates that the time window
effectively uses the time information hidden in the battery history cycles, which improves the accuracy
of the RUL prediction, and the larger the time window size, the higher the accuracy. Figure 9b shows
the total calculation time spent by the proposed model for training and prediction at different window
sizes. A larger window size requires a larger computational load. But in fact, in most application
scenarios of the RUL prediction, a few seconds of calculation time is acceptable. Note that the size of
the window is limited by the number of consecutive cycles the battery can provide. Therefore, this size
should be selected according to the actual situation.

In order to compare with the traditional data-driven methods, we use support vector machines
(SVM), multi-layer perceptron (MLP), naive Bayes (NB) and random forest (RF) to conduct experiments
in the same experimental scenarios. To avoid accidental errors, the average of multiple experiments
is taken as the final result, which is recorded in Table 4. It can be seen that compared with the
traditional data-driven methods, the prediction results of the proposed method have smaller RMSEs
and higher accuracies.
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Figure 8. Results of experimental case 1. RUL prediction results and absolute errors when testing the
PSO-GBDT method on single battery data: (a,b) Battery #5. (c,d) Battery #6. (e,f) Battery #7.
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Figure 9. Results of experimental case 1. The RUL prediction results of Batteries #5, #6 and #7 when
using the PSO-GBDT method with different window sizes: (a) RMSE at different window sizes. (b) The
total calculation time required for training and prediction at different window sizes.

4.3. Experimental Case 2: Prediction for an Untrained Battery

To verify the effectiveness of the proposed method in predicting a new untrained battery, in this
case, we select two batteries from the Batteries #5, #6 and #7 as the training set to predict the RUL of the
remaining battery. For example, Batteries #5, #6 are used as the training set (336 samples) to predict the
RUL of #7 (117 samples). Figure 10 shows the RUL prediction results of Batteries #5, #6 and #7. It can
be seen that in the three batteries, the predicted values of RUL are very close to the actual values, and
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they have smaller absolute errors. In addition, the RMSEs were recorded in Table 4, and the RMSEs of
the RUL prediction values for Batteries #5, #6 and #7 are 2.801, 4.113 and 3.283. The small RMSEs also
indicate that the proposed method is effective in predicting the RUL of an untrained battery.

In this case, we still increase the window size in turn to verify the validity of the time window.
Figure 11 shows that in the three batteries, the RMSEs of the RUL predictions gradually decrease,
and the RMSEs of the three batteries drop to 0.842, 1.386 and 1.152 when the window size is 30.
The decrease in RMSE indicates that the time window mechanism is still effective when predicting a
new untrained battery. The prediction results of several different methods are listed in Table 4. It can
be seen that the RMSE of the proposed method is the lowest, indicating that the proposed method has
higher accuracy than other data-driven methods.
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Figure 10. Results of experimental case 2. RUL prediction results and absolute errors when testing the
PSO-GBDT method on an untrained battery: (a,b) Battery #5. (c,d) Battery #6. (e,f) Battery #7.
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Figure 11. Results of experimental case 2. The RUL prediction results of Batteries #5, #6 and #7 when
using the PSO-GBDT method with different window sizes: (a) RMSE at different window sizes. (b) The
total calculation time required for training and prediction at different window sizes.

4.4. Experimental Case 3: Prediction for A Battery with Different Discharge Currents

In order to verify the effectiveness of the proposed algorithm in predicting a battery with different
discharge currents, in this case, we use all samples of Batteries #5, #6 and #7 as the training set
(504 samples), and use the full-cycle sample of Battery #33 as the test set (197 samples). As can be seen
from Table 1, Battery #33 and Batteries #5, #6 and #7 have the same charging current and operating
temperature, but they have different discharge currents. In fact, it is the general situation faced by RUL
prediction algorithms in practical applications. Figure 12 shows the RUL prediction result of Battery
#33. The average absolute error of the prediction result is 3.934, and the RMSE of prediction result is
4.981, which shows that the proposed prediction method still has high accuracy in predicting a battery
with different discharge currents.
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Figure 12. Results of experimental case 3. RUL prediction results and absolute errors when Battery #33
is the test set and Batteries #5, #6 and #7 are the training set: (a) The RUL prediction results. (b) The
absolute errors.

Table 4 lists the prediction results of different methods in this experiment. It can be seen that
when predicting a battery with different discharge currents, the proposed method has a lower RMSE
than the traditional data-driven methods. The RMSE drops to 3.008 when the window size is 30, which
indicates that the time window mechanism is still effective when predicting a battery with different
discharge currents.

4.5. Experimental Case 4: Prediction for A Battery with Different Temperatures

In order to verify the effectiveness of the proposed method in predicting a battery with different
operating temperatures, in this case, we use all samples of Batteries #5, #6 and #7 as the training set (504
samples), and use the full-cycle sample of Battery #56 as the test set (102 samples). As can be seen from
Table 1, the operating temperature of Battery #56 is 4 ◦C, and the operating temperature of Batteries #5,
#6 and #7 is 24 ◦C. They have the same charging current and discharging current. Figure 13a shows
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the RUL prediction result of Battery #56. The average absolute error of the prediction result is 4.396,
and the RMSE of prediction result is 5.775, which shows that predicting the RUL of batteries with
different temperatures is worse than predicting the RUL of batteries with the same temperature. In fact,
temperature has a great influence on the electrochemical characteristics of the battery, so this result
is normal. Therefore, the effect of temperature needs to be considered when actually deploying the
prediction algorithm.
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Figure 13. Results of experimental case 4. RUL prediction results and absolute errors when Battery #56
is the test set and Batteries #5, #6 and #7 are the training set: (a) The RUL prediction results. (b) The
absolute errors.

Table 4 lists the prediction results of different methods in this experiment. It can be seen that
when predicting a battery with different operating temperatures, the proposed method has a lower
RMSE than the traditional data-driven methods. The RMSE drops to 3.459 when the window size is 30,
which indicates that the time window mechanism is still effective when predict a battery with different
operating temperatures.

5. Conclusions

This paper presents a novel data-driven battery RUL prediction method. This method establishes
the RUL prediction model based on machine learning algorithm, and improves the accuracy of
RUL prediction through feature enhancement and model parameter optimization. Specifically,
effective raw features are extracted from the charge and discharge voltage curves of the battery.
Then, the feature enhancement technologies, including the box-cox transformation and time window
processing, are used to exploit the potential of features. In this way, the correlation between the raw
features and RUL is enhanced, and the time information hidden in the historical cycles is exploited
efficiently. Based on the extracted features, GBDT establishes the RUL prediction model by learning the
mapping relationship between features and RUL, and then PSO adaptively optimizes the parameters
of the model to further improve the prediction performance. The proposed method was applied
to a public data set, and experiments in various cases were designed to test the model. The results
verify the effectiveness of the proposed method, and when compared with the traditional data-driven
prediction methods, the proposed method has superior accuracy.

It is worth noting that this method does not require complicated battery electrochemical principles,
so it has good versatility and can be applied to various types of batteries. Moreover, according to the
performance verification results, the method can be used as a potential RUL estimation tool for electric
vehicles. Specifically, we can deploy this algorithm on a cloud server, and electric vehicles upload
the working data of the battery in real time. Based on these data, the algorithm can output the RUL
prediction results, which will promote predictable maintenance of electric vehicles.
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RUL remaining useful life
CCD duration of constant current mode
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VCE energy of discharge voltage
GBDT gradient boosting decision trees
PSO particle swarm optimization
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